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Abstract: Radiotherapy represents a highly targeted and efficient treatment choice in many cancer
types, both with curative and palliative intents. Nevertheless, radioresistance, consisting in the
adaptive response of the tumor to radiation-induced damage, represents a major clinical problem.
A growing body of the literature suggests that mechanisms related to mitochondrial changes and
metabolic remodeling might play a major role in radioresistance development. In this work, the main
contributors to the acquired cellular radioresistance and their relation with mitochondrial changes
in terms of reactive oxygen species, hypoxia, and epigenetic alterations have been discussed. We
focused on recent findings pointing to a major role of mitochondria in response to radiotherapy,
along with their implication in the mechanisms underlying radioresistance and radiosensitivity, and
briefly summarized some of the recently proposed mitochondria-targeting strategies to overcome the
radioresistant phenotype in cancer.

Keywords: mitochondria; radiotherapy; radioresistance; ROS; tumor hypoxia; mitochondria-targeting
compounds

1. Introduction

It is historically known that mitochondria developed from an endosymbiotic associ-
ation between an ancestral bacteria and a proto-eukaryotic host cell, inaugurating a two
billion-year symbiotic partnership [1]. Since then, it has been recognized that the mito-
chondrion is a highly evolved system coordinating energy production and distribution
for cellular maintenance and reproduction. Specifically, mitochondria are small, double-
membrane organelles whose main task is to ensure general cellular metabolism and the
supply of energy by means of ATP through the tricarboxylic acid cycle, electron transport
chain (ETC), and oxidative phosphorylation (OXPHOS). While their main function is to
serve as metabolic units, mitochondria have also co-evolved with their hosts to function as
central signaling nodes in multiple pathways, involved in modulation of the intracellular
redox status, reactive oxygen species (ROS) production, and modulation of inflammation
and apoptosis. Over the years, mitochondrial DNA (mtDNA) has evolved alongside its
nuclear counterpart (nDNA); however, given the relatively small size of the mitochondrial
genome, consisting of 37 genes, it has often been ignored in the pioneering sequencing
analyses and functional studies. Nevertheless, an increasing number of studies is reporting
the influence of mutations in the mtDNA sequence in a large variety of diseases, from
metabolic and musculoskeletal ones to cancer [2–4].

Overall, mitochondria may contribute to malignant transformation by two major
mechanisms, also discussed in more specialized reviews: (i) ROS production, which poten-
tially contributes to the accumulation of DNA mutations and to the activation of oncogenic
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pathways [5]; and (ii) mitochondria outer membrane permeability transition which is a
crucial step required for malignant clones to escape programmed cell death [6,7]. In addi-
tion, a third mechanism has recently emerged, consisting in the abnormal accumulation of
mitochondrial metabolites (i.e., fumarate and succinate), resulting in transforming effects
from normal to malignant clones [8].

In many tumors, radiotherapy (RT) represents the first line of treatment, both with
curative and palliative intent, and it is estimated that as many as half of all cancer patients
will receive RT at some point throughout the course of disease [9]. Growing evidence
suggests that specific mitochondrial changes and metabolic remodeling play a role in the
onset of resistance to RT [10–13]. Radioresistance, defined as the adaptation of tumor cells
to ionizing radiation (IR)-induced damages, represents a major clinical issue in various
cancer types [14,15]. Its etiology is complex and includes interactions among various
cellular mechanisms, such as DNA damage repair mechanisms, cell cycle arrest, oncogenes
and/or tumor suppressor genes, tumor microenvironment (TME), microbiome changes,
and altered regulation of ROS [12,16].

The present review highlights recent findings on the role of mitochondria in RT, focus-
ing on their implication in the mechanisms underlying radioresistance and radiosensitivity
and on the available mitochondria-targeting strategies in the radioresistant setting. A brief
focus will be also given to the cross-talk among hypoxia-induced radioresistance, ROS
regulation, metabolic reprogramming, and epigenetics.

2. Radiation Therapy and Mitochondria

The long-held concept of radiation biology assumed that the effects of IRs were
a direct result of targeted DNA damage in the nuclei of impacted cells. On the other
hand, non-targeted effects and acquired genomic instability suggested that such a model
could be flawed [17,18]. A significant body of the literature reported that IR exposure
results in a long-term increase in oxidative stress [19]. In particular, cumulative targeting
of mitochondrial metabolism and that of several redox-sensitive pathways by radiation
were proven fundamental in elevating oxidative injury and altering cellular physiology
within the intracellular microenvironment. The current hypothesis is that oxidative stress
might promote an unstable phenotype functioning as a hypothetically unifying biochemical
framework that might link multiple seemingly disparate cellular responses to past radiation
assaults [20–22].

RT is a critical component of many cancer treatments, and generally, its mechanism
of action relies on the direct induction of DNA damage or the indirect production of ROS
(Figure 1).

In the direct action, electrons directly interact with DNA, causing double- and single-
strand breaks (DSBs and SSBs, respectively), ultimately leading to cell death. This process
is predominant with dense IR, such as charged particles with enough kinetic energy and
high-linear energy transfer (LET) radiations [23], as protons in the end region of their
range. In the indirect action, predominantly within sparse IR (photons), water molecules,
representing the major constituent of the cell (about 80%), are hit-producing free radicals
(such as the hydrogen radical –H•– and hydroxyl radical –OH•–), which are very reactive
molecules because of the unpaired orbital electron in their structures. In turn, this event
triggers a chain reaction: free radicals are able to react with oxygen, fixating the radiation-
induced modification and resulting in irreversible DNA damage [24,25]. This phenomenon
is largely explained by the oxygen enhancement ratio (OER) or oxygen enhancement effect,
which in radiobiology refers to the boosting of therapeutic or detrimental effects of IR due
to the presence of oxygen. Since sparse ionizing radiation induces about 70% of the damage
by indirect effect, oxygen is necessary for the fixation of DNA damage by ROS and the
main consequence is that tumor hypoxia represents one of the most important factors in
the development of radioresistance.
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Figure 1. DNA damage by IR can be direct or ROS-mediated. In the direct effect (a), DNA molecules 
are hit directly by the secondary electrons produced by the incident radiation, resulting in cleavage 
of the chemical bonds and lesions such as single- and double-strand breaks. In the indirect effect (b), 
secondary electrons interact with water to produce ROS which attack DNA molecules in the cell, in 
the nucleus and in the mitochondria. When mitochondria are exposed to IR, the generation of ROS 
rises and can harm mtDNA in the matrix (c) and nDNA by leakage in the cell (d). Some of the rec-
ognized locations for ROS formation during oxidative phosphorylation in ETC are shown in the 
bottom right (e) and include complexes I and III, which are the primary sources of ROS in mitochon-
dria, as well as complex II. The most prevalent ROS in mitochondria are superoxide anions, ex-
tremely reactive free radicals that are easily changed into other ROS such as hydrogen peroxide 
(H2O2) and hydroxyl ions (OH). The indirect ROS-mediated effect of IR is enhanced in the presence 
of oxygen: under aerobic conditions, oxygen reacts extremely rapidly with DNA radicals, fixating 
the damage and ensuring an unrepairable strand break (f); in the absence of oxygen, DNA radicals 
can be reduced, and DNA repairs to its original form, preventing strand damage. Abbreviations: 
ETC, electron transport chain; IMS, intermembrane space; IR, ionizing radiation; mtDNA, mito-
chondrial DNA; nDNA, nuclear DNA; ROS, reactive oxygen species. 

Mitochondria, being the hub of energy generation, are a key supplier of reactive spe-
cies, especially when metabolic stress disrupts oxidative phosphorylation processes [26]. 
Depending on the cell type, they may constitute about 4% to 25% of the cell volume, there-
fore representing a sizeable target for IR [27]. 

In mammalian cells, under physiological conditions, mitochondria represent the 
most important source of ROS [28], with ATP synthesis producing them during normal 
oxygen metabolism and accounting for about the great majority (more than 90%) of the 

Figure 1. DNA damage by IR can be direct or ROS-mediated. In the direct effect (a), DNA molecules
are hit directly by the secondary electrons produced by the incident radiation, resulting in cleavage
of the chemical bonds and lesions such as single- and double-strand breaks. In the indirect effect
(b), secondary electrons interact with water to produce ROS which attack DNA molecules in the
cell, in the nucleus and in the mitochondria. When mitochondria are exposed to IR, the generation
of ROS rises and can harm mtDNA in the matrix (c) and nDNA by leakage in the cell (d). Some of
the recognized locations for ROS formation during oxidative phosphorylation in ETC are shown
in the bottom right (e) and include complexes I and III, which are the primary sources of ROS in
mitochondria, as well as complex II. The most prevalent ROS in mitochondria are superoxide anions,
extremely reactive free radicals that are easily changed into other ROS such as hydrogen peroxide
(H2O2) and hydroxyl ions (OH). The indirect ROS-mediated effect of IR is enhanced in the presence
of oxygen: under aerobic conditions, oxygen reacts extremely rapidly with DNA radicals, fixating the
damage and ensuring an unrepairable strand break (f); in the absence of oxygen, DNA radicals can
be reduced, and DNA repairs to its original form, preventing strand damage. Abbreviations: ETC,
electron transport chain; IMS, intermembrane space; IR, ionizing radiation; mtDNA, mitochondrial
DNA; nDNA, nuclear DNA; ROS, reactive oxygen species.

Mitochondria, being the hub of energy generation, are a key supplier of reactive
species, especially when metabolic stress disrupts oxidative phosphorylation processes [26].
Depending on the cell type, they may constitute about 4% to 25% of the cell volume,
therefore representing a sizeable target for IR [27].

In mammalian cells, under physiological conditions, mitochondria represent the most
important source of ROS [28], with ATP synthesis producing them during normal oxygen
metabolism and accounting for about the great majority (more than 90%) of the total cellular
ROS generation [29,30]. As summarized in Figure 1, ROS are produced, when oxygen
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is reduced during aerobic respiration, spotted from complexes I, II, and III [31], within
the ETC in the inner mitochondrial membrane (IMM), or by oxidoreductase enzymes and
metal-catalyzed oxidation throughout the lifetime of the cell cycle [32]. As a result, about 5%
of the oxygen consumed by mitochondria gives rise to ROS, ultimately leading to oxidative
stress affecting both mt- and nDNA alongside with all the other cellular constituents [33,34].

In different malignancies, mitochondria enable a higher proliferation rate of cancer
clones by increasing their energy metabolism through multiple mechanisms, including
the switch to glycolysis (instead of OXPHOS) for ATP production [35,36] as well as other
metabolic changes, conferring both the ability to evade apoptosis as well as protection from
chemical- or radiation-induced damages [37].

Notably, mitochondria not only produce most of a cell’s ROS, but they are also more
susceptible than the nucleus to their own deleterious effects, due to the short half-lives of
ROS in cells (≤1 µs) which limit their diffusion [38]. Since the respiratory chain located
in IMM is the main site for generating ROS, high levels of oxidative stress in cells may be
caused by mitochondria targeting drugs, causing oxidative damage to cellular components
and leading to cell death [39].

Given the increased metabolic activity of cancer cells, mitochondrial hyperactivity in
malignant transformation makes them preferential targets in anticancer therapy. Because of
the increased production of ROS and the absence of robust protective mechanisms, cancer
cells’ mitochondria result particularly susceptible to oxidative stress from other external
factors such as IR [40]. In addition, leakage of the exceeding ROS from mitochondria
induces oxidative stress affecting both n- and mtDNA and other cellular constituents [34].
As a result, therapeutic IR doses are able to increase mitochondrial oxidative stress, affect-
ing their bioenergetic and biosynthetic metabolism and, in turn, inducing programmed
cell death.

3. Effect of Radiation Quality on ROS Generation

It should be noted that the amount of ROS produced by a cell depends on the radiation
type, and compared with low-LET and high-LET particles, e.g., carbon ions or protons
toward the distal edge of the spread-out Bragg peak (SOBP), are much more effective
in triggering diverse biological effects in mammalian cells, including genomic instability
and malignant transformation [41]. This phenomenon is well-described by the relative
biological effectiveness (RBE) parameter, which for instance for protons increases along
with LET at the end of the SOBP [42]. A possible explanation for the higher efficiency of
high LET radiations in increasing cellular ROS levels could be a stronger impairment of
the antioxidative capacities of the exposed cells, as recently observed in human fibroblasts
exposed to photons and carbon ions [43].

Regarding high-LET exposures, their specificity appears to rely on two main factors,
namely the precise targeting of tumors associated with a high local energy deposition and
the ability to induce mitochondrial dysfunction associated with non-irreversible apoptosis.
Both factors contribute to the higher RBE typical for high-LET radiation. It is thought that
the destructive power of highly dense ionization tracks causes mitochondrial dysfunction,
metabolic distress, and widespread ROS that can overwhelm cancer cell defenses. Such an
efficiency could be explained by the fact that particles could trigger an enhanced bystander
effect since mitochondria are the main contributors to the regulation of innate and adaptive
immunity, playing a crucial role in immunogenic antitumor response [44–46]. Indeed,
the activation of neighboring cells and of circulating active immune cells enables more
efficiently recognizing and eliminating aberrant cancer clones, in turn affecting tumor
growth and metastasis formation. To support this hypothesis, several studies on patients
with radioresistant solid tumors reported that particle therapy (in particular with carbon
ions) is more beneficial in long-term outcomes with fewer side effects or fewer metastases
and secondary cancers [47,48]. Interestingly, very recent data reveal that somewhat similar
results may be obtained with conventional photon therapy in combination with DNA repair
and immune checkpoint inhibitors [49–51]. On this basis, it could result in great interest to
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further explore the effect of radiation-induced mitochondrial dysfunction by employing
low- and high-LET radiations.

4. Radioresistance and Mitochondria: Roles of Hypoxia and Metabolic Alterations

Radioresistance represents the main cause of RT treatment failure, ultimately lead-
ing to recurrence and metastatic progression. Although the mechanism underlying the
development of radioresistance is fogged by a number of cellular signaling pathways and
factors that contribute to such a complex process [52], an increasing number of studies
demonstrates its close relation to alterations in tumor metabolism [53,54]. The development
of tumor hypoxia and the associated metabolic pathways are one of the most important
contributors [55], and, from a clinical standpoint, the main cause of cellular radioresistance
is conferred by glycolytic/mitochondrial metabolic changes [56]. The decrease in oxygen
availability means that cells must adapt their metabolic program to maintain the catabolic
and anabolic reactions that rely on the availability of ATP normally supplied by OXPHOS.
In this context, the metabolic reprogramming under hypoxia is mainly dependent on
hypoxia-inducible factor 1-alpha (HIF-1α) transcription factor activity [57,58]. In general,
HIF-1α signaling supports anaerobic ATP production and downregulates OXPHOS, thus
reducing the cell’s reliance on oxygen-dependent energy production [59]. Since mitochon-
dria are fundamental for oxygen-dependent metabolism, HIF-1α-dependent adaptation to
hypoxia affects mitochondrial functions at many levels [60].

As a consequence of oxidative metabolism, which occurs in tumor cells, elevated
amounts of ROS are produced from the mitochondrial ETC. High levels of mitochondrial
ROS in turn activate signaling pathways proximal to the mitochondria to promote tumor
cell proliferation and tumorigenesis [61]. However, if ROS are allowed to accumulate, cells
undergo apoptosis [62]. Therefore, cancer cells generate an abundance of nicotinamide
adenine dinucleotide phosphate (NADPH) in the mitochondria and cytosol to support high
antioxidant activity and prevent the accumulation of potentially harmful ROS [63,64]. Thus,
both glucose-dependent metabolic pathways and mitochondrial metabolism are essential
for cancer cell proliferation.

The high rate of glycolysis in tumor cells is a consequence of deregulated signaling
pathways, such as the phosphatidylinositol 3-kinase (PI3K) pathway and activation of
oncogenes such as MYC and KRAS. In turn, this allows the generation of glycolytic inter-
mediates that can funnel into multiple subsidiary biosynthetic pathways necessary for cell
proliferation, such as the pentose phosphate pathway (PPP) for NADPH and nucleotide
production [65]. The majority of cancer cells are known to produce energy primarily
through accelerated glycolysis, followed by lactic acid fermentation even under normoxic
conditions. This metabolic phenomenon, known as the Warburg effect, results less efficient,
in terms of the amount of ATP for molecules of glucose produced, when compared with
mitochondrial OXPHOS. However, the PPP-accompanying pathway can favor cancer cells
by producing numerous substrates required for malignant proliferation and radioresis-
tance [66]. Because many malignant cells are found themselves under hypoxic conditions
during tumor growth, the metabolic reprogramming from OXPHOS to accelerated gly-
colysis is a key aspect of cancer cells’ adaptive response to hypoxia. In addition, under
hypoxic circumstances, DNA free radicals can be reduced to their original form, decreasing
ROS production and weakening radiation-induced DNA damage [67]. Hence, damage to
cancer-cells DNA is greatly reduced at low oxygen levels, especially with low-LET sparse
IR (e.g., photons) [68], since the influence of oxygen pressure increases as LET decreases,
resulting in a condition called hypoxia-induced radioresistance, a common feature of solid
tumors [69]. The influence of oxygen is well-defined by the OER, which compares the ratio
of doses in hypoxic and normoxic conditions to obtain the same endpoint from a biological
point of view, with values of ~2.5–3 for photons and ~1 (no oxygen effect) for high-LET
radiations [70].

Hypoxia generally presents as a consequence of the rapid proliferation of malignant
cells that exceeds their blood supply, therefore diminishing nutrients and oxygen available
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for the cells [71]. Hypoxic tumors have been reported to be highly aggressive, resistant to
common strategies such as chemotherapy and RT, and associated with poor prognosis [72].
In fact, as stated above, the hypoxic microenvironment represents a significant barrier
and affects the clinical outcome of RT requiring a higher radiation dose (up to three times
the normal radiation) to achieve the desired apoptotic effect with respect to normoxic
malignancies [73]. In this context, several efforts to improve clinical response by targeting
cellular glucose and mitochondrial metabolism have been attempted [54,74]. In 2014,
Shimura et al. reported how radioresistance is influenced by serine/threonine kinase (AKT)-
mediated enhanced aerobic glycolysis acquired by tumor cells [54], demonstrating that
radioresistant cells have higher lactate production rates and enhanced aerobic glycolysis
compared with parental cells, thus suggesting that tumor cell metabolic pathway, in which
mitochondria play a key role, is an attractive target to eliminate radioresistant clones and
improve RT efficacy. On the other hand, Bol and colleagues investigated the impact of
inhibition of the mitochondrial oxygen uptake on the tumor sensitivity to RT [74]. Their
results underlined that even a subtle change in oxygen availability, due to cellular oxygen
consumption, could modulate the response of malignant clones to radiation. These results
provide a relevant rationale for combining therapeutic interventions aimed at decreasing the
oxygen consumption rate of tumor cells during RT, resulting in anti-metabolic approaches.

5. Mitochondria and Epigenetics

In radiation oncology, past research has mainly focused on the direct damaging effects
of IR on the DNA. However, chronic disruptions in mitochondrial metabolism and other
redox-sensitive pathways, initiated during irradiation, also provide fundamental changes
in the intracellular signaling environment to elevate oxidative injury and alter cellular
physiology, prompting genomic instability [22,75].

In this regard, mitochondria play a major role in the radiation-induced genomic
instability through epigenetic mechanisms.

As widely known and reported elsewhere, epigenetics is the study of heritable phe-
notype alterations not related to a change in DNA sequence [76]. Its regulation is largely
reported as an important biological process involved in cancer development and spread,
enabling adaptation to the microenvironment and growth advantage for tumor clones
over normal cells [77]. Epigenetic modifications in nDNA have been well described and
characterized and comprise different layers of regulation, including covalent modifications
of DNA bases, post-translational histones modifications, and RNA and non-coding RNA
(ncRNA) modulation [78–81]. Similar to its nuclear counterpart, mtDNA is under epigenetic
regulation, the so-called mitoepigenetics [82,83]; mtDNA is mostly hypomethylated with
respect to the nDNA and shows a slightly different epigenetic regulation, mainly related to
the methylation activity [84] of the mitochondria-specific DNA methyltransferase (mtD-
NMT1) [85]. In particular, RT-derived oxidative stress deeply affects mtDNA methylation,
by impairing methylation sites availability (by oxidizing CpG islets), as well as inhibiting
mtDNMT1 activity, in turn altering mtDNA transcription and mitochondrial functions.

While the above-mentioned relationship among persistent oxidative stress, epigenetics,
and mitochondrial function describes how RT acts on mtDNA, arguably it is also important
to consider a further perspective, in which the RT-induced redox perturbations of mitochon-
drial functions represent the driving force affecting the whole epigenetic machinery, and
in turn the regulation of gene expression, and finally genome integrity [22,86,87]. Accord-
ingly, the physiologic mitochondrial activity involves the production of several cofactors
crucial for epigenetic marks (e.g., ATP and acetyl-CoA) [82,88] and for the functioning
of the whole epigenetic machinery [10,86,89]. Overall, as reported in a recent review by
Baulch and colleagues, metabolic activities in the mitochondria are essential to provide
the ATP required for phosphorylation and the acetyl coenzyme A (acetyl-CoA) needed
for acetylation of histone tails [88]. Therefore, RT-derived redox perturbation of normal
mitochondria functioning can, thus, affect the whole gene expression through different and
yet-tobe unraveled layers of regulation [78–81].
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6. Mitochondria-Targeting Strategies to Improve RT Effects

Due to their crucial role, mitochondria-targeting strategies in tumor cells have gained
increasing attention. For example, the anticancer agent Lonidamine (LND) has been
shown to selectively inhibit aerobic glycolysis in cancer cells and succinate:ubiquinone
reductase activity of complex II, resulting in increased ROS [90,91]. The effectiveness
of LND in combination with RT for the treatment of breast, brain, melanoma, prostate,
and ovarian tumors has already been tested [92–94]. Modifying chemotherapy/RT drugs
with mitochondria targeting units, such as LND, showed promising results also in radio-
resistant malignant melanoma cells [95], although additional information is needed to
clarify LND/RT therapeutic effectiveness before reaching the clinical side. Moreover,
increasing oxygen delivery to counteract hypoxic radioresistance (e.g., hyperbaric oxygen)
has been intensively explored; on the other hand, reduction in oxygen demand has attracted
considerable attention, particularly with clinically relevant agents that are reported to
overcome hypoxic radioresistance [96,97]. For example, nonsteroidal anti-inflammatory
drugs (NSAIDs), such as piroxicam, indomethacin, and diclofenac, were demonstrated to
increase tumor oxygenation when tested in murine transplantable liver tumor (TLT) and
fibrosarcomas by influencing mitochondrial respiration [98]. When irradiation was applied
at the time of maximal reoxygenation, the tumor radiosensitivity was enhanced (regrowth
delay increased by a factor of 1.7), equivalent to the radiosensitization effect generated
by hyperoxic gas breathing [55]. These results showed the potential utility of an acute
administration of NSAIDs for radiosensitizing tumors, providing a new potential rationale
for the treatment schedule when combining NSAIDs and radiotherapy. Such an effect
triggered by anti-inflammatory agents has been also confirmed with steroid agents such as
glucocorticoids, shown to promote tumor oxygenation by lowering oxygen consumption,
thus resulting in an increase in tumor radiosensitivity [99].

Glucocorticoids such as hydrocortisone, dexamethasone, and prednisolone were
tested, and when irradiation was applied, the tumor radiosensitivity was enhanced as
observed with NSAIDs.

Metformin, a commonly used anti-diabetes drug, improves tumor oxygenation by
inhibiting mitochondrial complex I [96], and the combination of radiation and metformin
is being studied in various clinical trials [100]. In a recent review, Rao et al. [101] analyzed
17 studies on metformin-enhanced RT in patients with diabetes and different sites of
tumor, showing that metformin correlated with improved tumor response to treatment,
thus suggesting that it might represent an effective and inexpensive means to improve
RT outcome with an optimal therapeutic ratio. Similar findings on the beneficial effect
of metformin in RT were reported by Zannella and colleagues [96]. In this retrospective
analysis, the authors found that metformin use was associated with a significant decrease
in early biochemical relapse rates in 504 patients with localized prostate cancer under RT.
In addition, Atovaquone, an anti-malarian drug and mitochondrial complex III-inhibitor,
showed promising activity, reducing oxygen consumption by more than 80% in a variety of
cancer cell lines and causing a delay in tumor growth [102]. The potential of this drug in
combination with RT is under investigation in the ARCADIAN trial at Oxford University,
with the aim to assess its safety and treatment improvements in the survival of patients
with non-small cell lung cancer. Finally, Auranofin, an anti-arthritis drug considered for
combined chemotherapy due to its ability to impair the redox homeostasis in tumor cells,
has shown to significantly improve tumor radioresponse, when combined with buthionine
sulfoximine, by arresting oxygen consumption in mitochondria [103]. A summary of the
above-mentioned mitochondria-targeting strategies is provided in Table 1.

Multiple other modalities involving the modification of already available strategies
with mitochondria targeting units to induce ROS formation, including photodynamic
therapy (PDT) and photothermal therapy (PTT), have been also investigated, resulting
promising in certain settings.

More in depth, PDT represents a clinically approved therapeutic procedure which
uses three essential components—a special photosensitizer drug, light, and oxygen—to



Int. J. Mol. Sci. 2022, 23, 11343 8 of 13

kill cancer and other abnormal cells [104]. The therapy consists in the administration of a
photosensitizing agent followed by irradiation of a specific wavelength: the absorption of
light by the photosensitizing drug results in the transfer of energy to molecular oxygen.
This leads to the formation of ROS, O2

−· (type I reaction), or O2 (type II reaction) only
in the light-exposed region [105], which destroys the cells in which they have developed,
leading to direct tumor cell death, damage to the microvasculature, and induction of a local
inflammatory reaction.

Since ROS have a short half-life (40 ns) and diffusion ratio (<20 nm), the best effect is
achieved when PS is transported to mitochondria for in situ ROS generation, enhancing the
efficacy of PDT [106]. In particular, to increase the mitochondrial uptake in PDT, several
lipophilic and cationic groups are used to penetrate the negatively charged mitochondrial
membrane, such as organic phosphine/sulfur salt (e.g., triphenylphosphonium (TPP)), QA
salts (rhodamine and rhodamine derivatives and pyridinium) transition metal complexes,
guanidinium, and bisguanidinium [39].

TPP is also used in PTT, where it is the most common mitochondria-targeting unit
connected to photothermal agents. PTT, an efficient complement to standard cancer treat-
ments as RT and chemotherapy, relies on activation of PS by pulsed laser irradiation to
generate heat for thermal ablation of cancer by inducing apoptosis in tumor tissues, and
its advantages include deep penetration and minimal effects on the surrounding healthy
tissues [107].

In a study published in 2015, Jung and colleagues [108] designed and synthesized a
specific mitochondrion-targeting compound that was then tested according to its ability
to induce significant cell hyperthermia upon near-infrared (NIR) irradiation. The com-
pound was able to enhance the temperature of NIR-irradiated cells by more than 2 ◦C,
boosting the therapeutic efficacy of hyperthermia treatment. A subsequent publication by
the same group [109] described another TPP-based mitochondrion-targeting compound
which showed the capability to further increase the temperature up to 13.5 ◦C, therefore
confirming the potential of mitochondria-targeting modification and the subsequent ROS
production and representing a new generation of PTT system.

Overall, the above-described techniques hold the promise to overcome hypoxia-
induced radioresistance, and their combination with RT may open new avenues for novel
therapeutic approaches [39,110,111].

Table 1. Summary of the combined principal radiotherapy−mitochondria targeting strategies to
enhance radiosensitivity.

Compound Name Mitochondria-Targeted Unit Testing Models References

Lonidamine complex II

human glioma cell lines Prabhakara et al. [92], 2018

human glioma cell lines Kalia, V et al. [93], 2009

non-small cell lung cancer cell lines Meijer T W H et al. [94], 2018

Non-steroidal
anti-inflammatory drugs complex I murine TLT liver tumors and FSaII fibrosarcomas Crokart et al. [98], 2005

Glucocorticoids complex I and complex III murine TLT liver tumors and FSaII fibrosarcomas Crokart et al. [99], 2007

Metformin complex I

prostate cancer Zannella VE et al. [96], 2013

prostate cancer Taira AV et al. [112], 2014

rectal cancer Skinner HD et al. [113], 2013

esophageal cancer Spierings et al. [114], 2015;

liver cancer Jang et al. [115], 2015

head and neck cancer Spratt et al. [116], 2016

Atovaquone complex III

FaDU and HCT116 xenografts in nude mice Ashton et al. [102], 2016

non-small cell lung cancer ARCADIAN TRIAL
(currently in recruiting phase)

Auranofin mitochondrial thioredoxin reductase H1299 tumor cell lines xenografted in
murine models Wang et al. [103], 2017
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7. Conclusions and Future Perspectives

It is still a matter of debate how mitochondrial dysfunction contributes to radiation-
derived genetic instability through epigenetic changes, metabolic reprogramming, and/or
ROS generation. Unfortunately, partly due to differences in experimental design (e.g.,
dosage or quality of radiation and types of the tissue or model system), there is a lack of
clarity about the precise role of the above-mentioned points, and the present literature
review might provide many worthwhile observations to be further explored.

As of today, mitochondria have attracted considerable attention as targets for the
development of novel anticancer agents, essentially for their central role in the pathways
regulating cell death and chemio- and radio-resistance of cancer cells. Overall, a bet-
ter understanding of mitochondria-dependent mechanisms of cancer cell resistance, also
expanding the current knowledge on mitochondrial epigenetics, would lead to the develop-
ment of more effective therapeutic strategies, allowing the design of combination therapies
using mitochondria-targeting agents in association with current therapeutic regimens.
Notably, the role of mitochondria in radiation-induced DNA instability via epigenetic
mechanisms is a new subject with potentially significant and far-reaching implications.
Arguably, studies supporting a direct link among IR exposure, genomic instability, and
mitochondrial dysfunction are still lacking, and future efforts are warranted for unifying
such three components.

Finally, further insights into the context of hypoxia and ROS generation could be
derived from the use of protons and hadrons, which bring a smaller OER and a greater RBE
as compared with photons, and from the analysis of their interaction with mitochondria.
Refined strategies for modulating mitochondrial functions in selected tumor types are
warranted to fully exploit the therapeutic potential of mitochondria-targeting drugs, with
the final goal of enhancing RT effects or tackling radioresistance.
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