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Abstract 

Background:  Understanding the drivers of Lyme disease incidence at broad spatial scales is critical for predicting 
and mitigating human disease risk. Previous studies have identified vector phenology and behavior, host community 
composition, and landscape features as drivers of variable Lyme disease risk. However, while the Lyme disease trans-
mission cycles in the eastern and western USA involve different vector species (Ixodes scapularis and Ixodes pacificus, 
respectively), the role of vector-specific differences in transmission efficiency has not been directly examined. By 
comparing the performance of traits involved in vector competence between these two species, this study aims to 
identify how vector competence contributes to variable Lyme disease risk.

Methods:  We used a suite of laboratory experiments to compare the performance of traits related to vector com-
petence for the two USA Lyme disease vectors. For each species, we measured the rate of attachment to a common 
rodent host, the engorgement weight, and the efficiency of pathogen acquisition (host to tick) and pathogen trans-
mission (tick to host) from laboratory mice. In measuring pathogen acquisition and transmission, we used two differ-
ent pathogen strains, one sympatric with I. scapularis and one sympatric with I. pacificus, to assess the importance of 
vector-pathogen coevolutionary history in transmission dynamics.

Results:  We found I. pacificus had significantly higher host attachment success and engorgement weights, but 
significantly lower pathogen transmission efficiency relative to I. scapularis. Molting success and pathogen acquisition 
did not differ between these two species. However, pathogen acquisition efficiency was significantly higher for both 
sympatric vector and pathogen strains than the allopatric pairings.

Conclusions:  This study identified species-specific vector traits as a potential driver of broad scale variation in Lyme 
disease risk in the USA. In particular, the exceedingly low rates of pathogen transmission from tick to host observed 
for I. pacificus may limit Lyme disease transmission efficiency in the western USA. Further, observed variation in patho-
gen acquisition between sympatric and allopatric vector-pathogen strains indicate that vector-pathogen coevolu-
tionary history may play a key role in transmission dynamics. These findings underscore the need to consider vector 
traits and vector-pathogen coevolution as important factors governing regional Lyme disease risk.
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transmission
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Background
Tick-borne diseases pose serious threats to public health 
in the USA as many diseases are increasing in incidence 

and geographical distribution, new pathogens are 
emerging, and new vector species are introduced [1, 2]. 
Despite efforts to manage tick populations and pathogen 
transmission, the most effective method for preventing 
human disease still relies on tick avoidance and prompt 
removal [3], necessitating a strong understanding of the 
spatial and temporal patterns of disease risk. Efforts to 
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understand and predict spatial trends in tick-borne dis-
ease typically focus on regional disease systems as ticks 
are highly sensitive to local microhabitat conditions and 
host communities [4–8]. However, substantial spatial 
heterogeneity in human incidence exists at broad spa-
tial scales. For example, reported cases of Lyme disease, 
the most common vector-borne disease in the USA, are 
scattered throughout the continental USA, but approxi-
mately 93% of cases occur in ten states in the Northeast 
and upper Midwest [9]. Despite the high spatial cluster-
ing of cases in these regions, the tick species responsible 
for vectoring Lyme disease are present in nearly half of 
all USA counties [10]. Identifying the factors underly-
ing incidence across space, rather than vector presence 
alone, is thus critical for improved prediction and mitiga-
tion of human disease risk.

The divergent Lyme disease cycles in the eastern and 
western USA present an ideal system for studying eco-
logical drivers of human incidence at broad spatial scales. 
While Lyme disease is endemic in both regions, the path-
ogen, Borrelia burgdorferi (sensu stricto), is maintained by 
different vector species in distinct enzootic cycles com-
prised of different reservoir hosts [11, 12]. In the eastern 
USA, B. burgdorferi transmission is maintained by a suite 
of small mammal hosts, most notably white-footed mice, 
least chipmunks, long-tailed and short-tailed shrews 
and bushy-tailed squirrels; and transmitted between 
hosts by the blacklegged tick, Ixodes scapularis [13]. In 
the western USA, B. burgdorferi is maintained primarily 
by the western gray squirrel, dusky-footed woodrat and 
deer mice, and vectored by the western blacklegged tick, 
Ixodes pacificus [14].

While both of these systems feature small mammal 
pathogen reservoirs and ixodid tick vectors, Lyme dis-
ease incidence in the eastern and western USA differs 
by orders of magnitude [15]. Prior reports suggest that 
ecological drivers of broad-scale differences in incidence 
include variation in tick host community composition 
[16, 17], vector phenology [18, 19] and differences in vec-
tor questing behavior [20, 21]. These factors may contrib-
ute to differences in incidence between the eastern and 

western USA, however, more fundamental differences 
in the competence of the two vector species involved, I. 
scapularis and I. pacificus, remain to be explored.

Prior comparisons of I. scapularis and I. pacificus indi-
cate these species are genetically and morphologically 
similar [22, 23], have similar feeding and reproductive 
strategies [24], and similar host preferences in the labora-
tory [22]. Despite these similarities, these species exhibit 
key differences in their life histories, likely driven by the 
differing evolutionary and ecological conditions of their 
disjoint distributions. The distribution of I. scapularis 
extends across the eastern USA, with recent geographi-
cal expansions observed in the northeastern, north-
central and midwestern USA, while the distribution of I. 
pacificus covers the far western USA and has remained 
relatively stable in recent decades [10]. Thus, the host 
communities and climatic conditions experienced by 
each species differ markedly, generating differences in 
their host usage [25–27], phenology [24] and climate 
sensitivities [28]. The impact of these life history differ-
ences on vector traits related to competence is largely 
unexplored but may help further explain broad scale geo-
graphical differences in Lyme disease incidence.

Vector competence, the ability of a vector to acquire, 
maintain, and transmit pathogens underlies the efficiency 
of pathogen transmission [12, 29, 30]. Establishing vec-
tor competence for a particular tick species and pathogen 
requires successful execution of a sequence of steps [30] 
(Fig. 1, Table 1). Namely, a tick must find and attach to 
a competent host, acquire the pathogen during feeding, 
molt and maintain the pathogen during molting, then 
attach and transmit the pathogen to another host [31]. 
Given the number of steps involved, many vector-specific 
traits and extrinsic factors influence vector competence, 
enabling large variation in competence even in closely 
related species [32, 33]. However, comparisons of vector 
competence between species typically focus on one or 
two of the above steps [22, 34–36], obscuring the over-
all impact of vector competence on disease risk and hin-
dering our ability to identify bottlenecks in transmission 
[37].

host attachment engorgement pathogen acquisition molting pathogen transmission
(host to tick) (tick to host)

Fig. 1  Vector traits involved in vector competence. The panels depict, in order, an unengorged larva (I. scapularis or I. pacificus) seeking a rodent 
host, an engorged larva on a rodent host, an engorged larva transmitting B. burgdorferi to a rodent host, an engorged larva molting to the nymphal 
life stage, and a nymph transmitting B. burgdorferi to a rodent host. Tick and mouse graphics illustrated by Mona Luo
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To investigate the role of vector competence in Lyme 
disease transmission at broad spatial scales, we compared 
the performance of the two USA vector species, I. scap-
ularis and I. pacificus, in various ecological and physi-
ological processes involved in pathogen dynamics. Using 
controlled laboratory manipulations, we measured the 
host attachment and feeding rate, engorgement weight, 
larval molting success, and efficiency of pathogen acqui-
sition (tick to host) and pathogen transmission (host to 
tick) (Fig. 1).

Methods
Sample collection
Larval I. scapularis and I. pacificus used for vector com-
petence comparisons were obtained from BEI Resources 
(BEI Resources, Manassas, VA, USA; NR-44115, 
NR-44387). Colonies of I. scapularis and I. pacificus 
originated from ticks collected from vegetation in Rhode 
Island in 2003, and California in 2000, respectively. Both 
species were then reared under identical, standard lab 
conditions, entailing maintenance in sterile polystyrene 
containers in environmental incubators at a relative 
humidity of 90%, temperature of 22 ± 1  °C, and a 16:8 h 
light:dark photoperiod [38, 39]. Deer mice, Peromys-
cus maniculatus, were used for all host feeding assess-
ments as this species is a common tick host found in the 
ranges of both I. scapularis and I. pacificus [39, 40]. Rel-
ative feeding on P. maniculatus is generally lower for I. 
pacificus relative to I. scapularis [27, 41, 42] but in some 

regions such as the Midwest, the absolute mean bur-
dens are similar [43, 44]. Further, I. pacificus will readily 
parasitize P. maniculatus when available [41–43] and the 
lower natural parasitism rates are likely due to a prefer-
ence for lizards rather than physiological incompetence 
for mice-feeding [43]. Adult female P. maniculatus bar-
dii were obtained from the Peromyscus Genetic Stock 
Center at the University of South Carolina and were iden-
tical in age, sex and prior husbandry. Statistical compari-
sons of vector competence measurements were assessed 
via two-proportion Z-tests or Kruskal–Wallis tests, con-
ducted in R v3.4.3.

Host attachment and feeding rate
The host attachment success of I. scapularis and I. pacifi-
cus was measured through laboratory feeding on P. 
maniculatus. Larval I. scapularis and I. pacificus were 
manually placed on naïve P. maniculatus that had been 
anesthetized with isoflurane. Two P. maniculatus were 
used for each tick species and 150 larvae were used per 
mouse for a total of 300 larvae of each tick species. After 
the initial placement of ticks on the mouse ears and neck, 
each mouse was held within a cloth bag for 16 h to pro-
vide increased opportunity for tick attachment [44]. After 
16  h, mice were removed from the bag and maintained 
in a wire cage held above a water dish into which ticks 
dropped off and were collected daily. Replete ticks were 
transferred to sterile polystyrene containers as described 
above. During these procedures, room temperature was 

Table 1  Vector competence traits measured in I. scapularis and I. pacificus 

Trait Ecological significance Result

Host attachment success Successful attachment to a competent host, typically 
a small mammal, is necessary for potential pathogen 
acquisition [110]

I. pacificus had significantly higher host attachment 
success than I. scapularis

Feeding rate Longer attachment to hosts can facilitate pathogen 
transmission, but may also stimulate host immune 
responses [111–113]

I. scapularis fed to repletion significantly faster than I. 
pacificus

Engorgement weight Higher engorgement weights may reflect higher 
resource uptake and be associated with greater molt-
ing success and/or survivorship [76] but see [59]

I. pacificus had significantly higher engorgement 
weights than I. scapularis

Molting success Successful larval molting is a prerequisite for pathogen 
transmission during the nymphal life stage [110]. 
Transstadial transmission is also required but has 
previously been measured at high rates for both I. 
scapularis [114, 115]

An equal proportion of I. scapularis and I. pacificus suc-
cessfully molted

Pathogen acquisition (host to tick) As B. burgdorferi is not vertically transmitted, pathogen 
acquisition by larvae is crucial for B. burgdorferi main-
tenance and amplification [12]

An equal proportion of I. scapularis and I. pacificus 
acquired their respective sympatric pathogen strain, 
and an equal but lower proportion of I. scapularis and 
I. pacificus acquired their allopatric pathogen strain

Pathogen transmission (tick to host) As the adult vector life stages typically feed on non-
competent reservoir hosts, efficient pathogen trans-
mission by nymphs to hosts is critical for B. burgdorferi 
maintenance and amplification [12]

I. scapularis transmitted the pathogen to a greater 
number of hosts than I. pacificus which did not 
transmit to any hosts, although unequal numbers of 
infected ticks were applied to hosts
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maintained at 22 ± 1 °C, and a 16:8 h light:dark photoper-
iod was used [39].

Engorgement weight
The weights of successfully fed larval I. scapularis and I. 
pacificus were measured using a Mettler Toledo analyti-
cal balance (Mettler Toledo, Columbia, OH, USA) with 
precision to 0.1 mg. Due to low individual larval weights, 
larvae were weighed in batches of 5 and the batch weight 
was divided by 5 to obtain individual weights (n = 200, 
40 I. pacificus batches; n = 230, 46 I. scapularis batches). 
Unengorged larval I. scapularis and I. pacificus from the 
same BEI stock as those used in the experiments were 
also measured to determine the weights for each species 
prior to feeding.

Molting success
Successfully fed larval I. scapularis and I. pacificus were 
maintained in plastic vials at a humidity of 98% [42] and 
a 16:8  h light:dark photoperiod until individuals either 
molted to the nymphal life stage or died. Engorged larvae 
took approximately 2 months to molt during which time 
freshly molted ticks were moved to clean vials. Those 
that had not molted after 2 months and were immobile 
appeared to be covered in tick waste (tick feces, exuviae), 
which is common in the high humidity environment, and 
were presumed dead [45].

Pathogen acquisition (host to tick)
Pathogen acquisition efficiency was measured in larval 
I. pacificus and I. scapularis through feeding ticks on 
infected C3H/HeN laboratory mice. To account for the 
potentially confounding effects of differences in regional 
B. burgdorferi strains, we conducted infection trials with 
mice infected with either CA4, a strain originally isolated 
from California [46], or B31, a strain from the Northeast 
[47] in a 2 × 2 factorial design. Both strains had been pas-
saged 4–6 times in the laboratory before use. Mice were 
needle-inoculated with 105 spirochetes/mouse [48] using 
live culture grown in BSK-II. To confirm mouse infec-
tion status, one 2 mm ear tissue biopsy was taken from 
each mouse, extracted for DNA using a Qiagen DNeasy 
extraction kit (Qiagen, Valencia, CA, USA), and tested 
for infection through a nested PCR targeting the 5S–23S 
intergenic spacer region of Borrelia [49]. Positive PCR 
results were typically obtained by 3–4 weeks post-inoc-
ulation. As described in the above section, I. scapularis 
and I. pacificus were fed on mice infected with CA4 or 
B31 and collected from drop-off containers. All ticks 
were then stored in 70% ethanol at − 80  °C and, within 
two weeks, individually extracted and tested for infection 
via the PCR described above.

Pathogen transmission (tick to host)
Pathogen transmission efficiency from ticks to a blood-
meal host was measured in nymphal I. scapularis and 
I. pacificus through feeding on naïve C3H/HeN mice in 
the laboratory. Transmission to more ecologically rel-
evant host species, such as Peromyscus spp., could not 
be achieved due to exceedingly low attachment rates 
of I. pacificus nymphs to Peromyscus under laboratory 
conditions (Chindy Peavey, personal communication). 
Putatively infected ticks used for this experiment were 
obtained through larval feeding on the B31 or CA4-
infected mice used in the pathogen acquisition experi-
ment, and maintenance at 98% humidity in plastic vials 
in the laboratory until successful molting. Due to vari-
able survival rates and numbers of successfully molted 
nymphs, we were unable to attach equal numbers of 
nymphs to mice (Additional file  1: Table  S1). Nymphs 
were then fed to repletion on uninfected C3H/HeN 
mice. Mice were tested for infection as described above. 
Because it is impossible to know the infection status of 
ticks prior to host attachment, we confirmed tick infec-
tion status after host feeding by nested PCR. Only mice 
fed with at least 1 post-hoc, PCR-confirmed, infected 
tick were included in the final tick-to-host transmission 
analysis.

Results
Host attachment success and feeding time
Of the 300 larvae of each tick species placed on P. man-
iculatus, 102 I. pacificus and 20 I. scapularis successfully 
attached and fed (Fig.  2). While I. pacificus had higher 
host attachment success, I. scapularis fed to repletion 
significantly faster (3.15 ± 0.37  days) than I. pacificus 
(3.73 ± 0.82 days) (t(63) = 4.98, P < 0.01).

Engorgement weight
Engorged I. pacificus larvae weighed significantly more 
(0.412 ± 0.185  mg) than engorged I. scapularis larvae 
(0.265 ± 0.007  mg) (t(29) = 5.47, P < 0.001) (Fig.  3, Addi-
tional file  2: Table  S2) after feeding on P. maniculatus. 
Prior to feeding, there was no difference in the weights 
of larval I. pacificus (0.028 ± 0.001 mg) and I. scapularis 
(0.033 ± 0.0002 mg) (t(47) = − 0.90, P = 0.37) (Fig. 3).

Molting success
Of the engorged ticks maintained for possible molting, 
an equal proportion of I. pacificus (60/100, 60%) and I. 
scapularis (11/18, 61.1%) successfully molted to the next 
life stage (χ2 = 0.001, df = 1, P = 1) (Table 1). These counts 
were taken 2  months after drop-off when all ticks had 
either died or molted.
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Pathogen acquisition (host to tick)
We measured the infection status of 30 engorged larval 
ticks from each of the treatment groups (I. pacificus or I. 
scapularis fed on a B31 or CA4-infected mouse) to cal-
culate pathogen acquisition percentages. We found 73% 
(22/30) of I. scapularis that fed on mice infected with 
B31, the northeastern pathogen strain, acquired infec-
tion, while only 20% (6/30) of I. scapularis acquired infec-
tion from mice infected with CA4, the western pathogen 
strain (Fig.  4). Similarly, 73% (22/30) of I. pacificus fed 
on CA4-infected mice acquired the pathogen, compared 
to 20% (6/30) of those fed on B31-infected mice (Fig. 4). 

Thus, pathogen acquisition was identical for each vector 
exposed to its sympatric pathogen strain, and identical 
but lower for allopatric pathogen strains.

Pathogen transmission (tick to host)
We measured the infection status of mice 10 days after 
feeding by infected ticks from each treatment group to 
calculate pathogen transmission percentages. Pathogen 
transmission was higher from I. scapularis than I. pacifi-
cus for both pathogen strains (χ2 = 8.55, df = 1, P = 0.003) 
(Table 2). For I. scapularis nymphs infected with B31 or 
CA4, transmission to naïve mice occurred in 100% (5/5) 
or 83% (5/6) of mice, respectively. For I. pacificus, no 
mice became infected from either B31- or CA4-infected 
nymphs (0/2 mice and 0/3 mice, respectively). However, 
unequal numbers of infected I. scapularis and I. pacificus 
nymphs were applied to each mouse due to experimen-
tal difficulties and sample limitations of infected nymphs 
(see Table 2), which may confound conclusions about the 
transmission efficiency of individual ticks of each species.

Discussion
Efficient vector-borne pathogen transmission cycles 
require competent vectors—arthropod species that can 
reliably acquire, maintain, and transmit pathogens [12, 
29]. We decomposed vector competence into measurable 
vector traits: host attachment and feeding success; larval 
molting success; pathogen acquisition (host to tick); and 
pathogen transmission (tick to host). We compared per-
formance of these traits between the two USA Lyme dis-
ease vectors, I. scapularis and I. pacificus, to investigate if 

Fig. 2  Host attachment and feeding rates of larval I. scapularis and 
I. pacificus. Bar heights indicate the number of ticks, out of 300 for 
each species, that fed to repletion on the subsequent 7 days after 
placement on P. maniculatus. Similarly, “Total” refers to the total 
number of larvae that successfully completed feeding

Fig. 3  Larval I. scapularis and I. pacificus weights pre- and 
post-feeding to repletion on P. maniculatus. Horizontal bar and star 
denote statistically different weights (P < 0.01)

Fig. 4  Percent of larval I. scapularis and I. pacificus acquiring B. 
burgdorferi from an infectious mouse blood meal. Mice were infected 
with B. burgdorferi strain B31 or CA4, the pathogen strains sympatric 
for I. scapularis or I. pacificus, respectively. Errors bars denote 95% 
credible intervals



Page 6 of 11Couper et al. Parasites Vectors           (2020) 13:29 

variation in vector competence may contribute to broad 
geographical differences in Lyme disease incidence. 
Despite high genetic similarity between these two spe-
cies, we detected significant differences in host feeding 
and pathogen transmission abilities, but no difference 
in larval molting success or pathogen acquisition rates 
(Table 1).

The choice and success of larval host feeding is a 
critical factor in Lyme disease transmission efficiency 
[22] as it presents the first opportunity for pathogen 
acquisition, and dictates the infection status of the 
nymphal stage, responsible for the majority of human 
Lyme disease cases [50, 51]. Natural host usage by I. 
scapularis and I. pacificus is known to be markedly dif-
ferent, with immature I. scapularis feeding more com-
monly on small mammals such as the white-footed 
mouse, Peromyscus leucopus [52, 53], and immature I. 
pacificus feeding predominantly on the western fence 
lizard, Sceloporus occidentalis [27, 43]. As small mam-
mal hosts are generally more highly competent for B. 
burgdorferi [53–55], the rate of vectors attaching and 
successfully feeding on these hosts is an important 
factor in the Lyme disease transmission cycle [56]. In 

our experimental manipulation, we detected a five-fold 
greater abundance of I. pacificus attaching to and suc-
cessfully feeding on a common small mammal host, 
Peromyscus maniculatus, compared to I. scapularis 
(Fig.  2). This finding supports previous observations 
that I. pacificus readily parasitize rodents when availa-
ble [22, 43], despite more frequently parasitizing lizards 
in the field. These findings suggest that B. burgdorferi 
transmission in the western USA is not limited by I. 
pacificus host feeding abilities. Further, host commu-
nity shifts favoring small mammals, or I. pacificus pop-
ulation expansions to areas with greater small mammal 
abundances relative to lizards, present opportunities 
for more efficient B. burgdorferi transmission cycles 
than currently observed. The relatively low attachment 
rates of I. scapularis on P. maniculatus observed here 
may not reflect I. scapularis attachment to all rodents, 
as I. scapularis more commonly parasitizes P. leucopus 
in the field [52, 53] rather than P. maniculatus used 
here. However prior laboratory experiments have dem-
onstrated that I. scapularis attaches at least as readily 
to P. maniculatus as to P. leucopus [57].

In addition to higher host parasitism rates, we found 
I. pacificus larvae remained attached to hosts for longer 
(Fig.  2) and obtained higher engorgement weights than 
I. scapularis (Fig.  3). Although not directly measured 
here, attachment duration and tick engorgement can 
reflect host immune resistance to tick infestation [58–
60]. Namely, tick feeding is known to induce a complex 
array of host immune responses [59, 61, 62]. These host 
immune responses can result in immunological resist-
ance to tick infestation which can also confer host pro-
tection to tick-borne pathogens [63–66]. Development 
of this host immunological resistance has been associ-
ated with shorter host attachment times [64, 67, 68], 
decreased tick engorgement [58, 64, 67, 69, 70], and 
decreased tick parasitism rates [69, 71], but see [57, 
72, 73]. Thus, the results obtained here may indicate 
enhanced host resistance to pathogens transmitted by I. 
scapularis than those from I. pacificus. Further, increased 
tick engorgement has been associated with greater tick 
molting success [74], fecundity [75], and larger molted 
body sizes or weights which may enhance survival [70, 
74, 75]. However, engorged larval I. scapularis and I. 
pacificus molted at equally high rates in this study, and 
downstream effects on survival and fecundity were not 
measured here. Thus, the lower attachment duration and 
engorgement of I. scapularis relative to I. pacificus had no 
measured impact on vector survival, but could negatively 
impact tick fitness and pathogen transmission to hosts.

In contrast, results from the pathogen transmission 
experiment indicate that B. burgdorferi transmission 
was much higher from I. scapularis than I. pacificus 

Table 2  Pathogen transmission rates from I. scapularis and I. 
pacificus to naïve C3H/HeN mice

Note: Rows in bold indicate ticks fed on these mice were infected, while non-
bold rows indicate ticks were uninfected
a  Number infected/total number

Mouse ID Tick species Pathogen strain No. of 
feeding 
ticksa

Mouse infection 
status

1 I. scapularis B31 7/10 Infected
2 I. scapularis B31 9/11 Infected
3 I. scapularis B31 6/7 Infected
4 I. scapularis B31 8/9 Infected
5 I. scapularis B31 5/5 Infected
6 I. scapularis CA4 3/6 Infected
7 I. scapularis CA4 4/5 Infected
8 I. scapularis CA4 2/6 Infected
9 I. scapularis CA4 1/8 Infected
10 I. scapularis CA4 5/5 Infected
11 I. scapularis CA4 2/6 Not infected
12 I. pacificus B31 0/3 Not infected

13 I. pacificus B31 0/4 Not infected

14 I. pacificus B31 0/3 Not infected

15 I. pacificus B31 0/3 Not infected

16 I. pacificus B31 1/1 Not infected
17 I. pacificus B31 1/1 Not infected
18 I. pacificus CA4 2/2 Not infected
19 I. pacificus CA4 2/2 Not infected
20 I. pacificus CA4 5/5 Not infected
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(Table 2). Infected nymphal I. pacificus did not transmit 
either pathogen strain (B31 or CA4) to naïve laboratory 
mice, while I. scapularis transmitted B31 and CA4 to 
nearly all mice. As pathogen transmission from nymphal 
to vertebrate hosts is a key determinant of Lyme disease 
maintenance and human disease risk [17, 76, 77], the low 
transmission rates from I. pacificus represent a potential 
bottleneck in pathogen dynamics in the western USA. 
However, transmission to C3H/HeN laboratory mice 
used in this experiment may not reflect transmission 
dynamics to Peromyscus or other small mammal spe-
cies naturally encountered by I. scapularis and I. pacifi-
cus. Specifically, pathogen reservoir hosts for I. pacificus 
transmission cycles include species such as western gray 
squirrels and dusky-footed woodrats [78]; transmission 
to these hosts was not measured in the present study 
but may be higher given the higher infection prevalence 
measured for these species relative to P. maniculatus [42]. 
Further, as we could not test the infection status of each 
tick prior to loading on a host, the number of infected 
ticks applied to each C3H/HeN mouse, when measured 
after feeding, were incidentally higher for I. scapularis 
than I. pacificus and varied between mouse replicates 
(Table 2). Thus, variation in infected tick abundance and 
lack of shared history between host and vector species 
may confound the results obtained here or limit their 
ecological relevance. However, the C3H/HeN mouse 
model is routinely used in B. burgdorferi transmission 
studies as this species is highly capable of acquiring infec-
tion [79–82] and does not develop resistance to I. pacifi-
cus infestation in laboratory trials [83]. Further, heavier 
tick infestations can generate stronger host immune 
responses [84], thus the effect of loading more I. scapu-
laris on mice relative to I. pacificus, does not necessar-
ily favor higher transmission from I. scapularis. Overall, 
while the experimental conditions do not exactly mirror 
those of natural environments, the highly contrasting 
transmission efficiencies of I. scapularis and I. pacificus 
observed here highlight vector-to-host transmission as a 
vector trait potentially driving differences in transmission 
efficiency between the eastern and western USA.

These same differences between I. scapularis and I. 
pacificus were not observed when comparing pathogen 
acquisition abilities. An identical proportion of I. scapu-
laris and I. pacificus acquired their sympatric pathogen 
strain (B31 and CA4, respectively) when fed on infected 
mice. Pathogen acquisition efficiency was also identical 
between I. scapularis and I. pacificus for their respec-
tive allopatric strain, although lower than that of their 
sympatric strain. These results indicate that I. scapularis 
and I. pacificus are equally capable of acquiring patho-
gens from infected hosts, and highlight the importance 

of coevolutionary history between vectors and pathogen 
strain in vector competence.

Given their overlapping life history strategies, vectors 
and pathogens form intimate relationships [85]. These 
tight relationships can evolve into positive [86–92] or 
negative [93–98] associations, with outcomes often vary-
ing based on the degree and duration of evolutionary 
association [89]. In laboratory experiments, B. burgdor-
feri infection has been shown to promote nymphal sur-
vival and host-seeking under suboptimal environmental 
conditions [99, 100], suggesting a co-evolved mutualistic 
relationship. Our finding that sympatric vector species 
and B. burgdorferi strains exhibit more efficient pathogen 
dynamics than allopatric pairings further supports this 
notion. However, recent genomic work found no support 
for coevolution between B. burgdorferi and its tick vec-
tor [101]. The results found in this study may thus reflect 
nascent mutualistic associations arising between B. burg-
dorferi and ixodid vectors not yet reflected in their phylo-
genetic structure. However, we did not directly measure 
the effect of pathogen infection on tick behavior, survi-
vorship, or reproductive fitness. Given the species-spe-
cific differences we document in this study, future studies 
should evaluate the pathogenic impact of B. burgdorferi 
infection on tick fitness. Further investigation of coevo-
lution between ixodid vectors and B. burgdorferi strains 
are needed to better understand the role of coevolution 
in current transmission dynamics.

While our common-garden laboratory experiments 
revealed significant differences in pathogen dynam-
ics and host attachment rates between I. scapularis and 
I. pacificus, these results may not reflect natural differ-
ences in these tick species in all regions and populations. 
In particular, as our I. scapularis and I. pacificus popu-
lations were sourced from Rhode Island and California, 
respectively, these results may not extend to southern 
populations of either species, as these are known to be 
genetically and ecologically distinct [102, 103]. However, 
northeastern and midwestern I. scapularis populations 
lack significant genetic structuring, as do northern I. 
pacificus populations [102, 103], suggesting the tick spe-
cies-specific differences detected in our study are likely 
applicable to tick populations in areas with higher Lyme 
disease incidence. Further, Lyme disease transmission 
to humans is rare in the southeastern and southwestern 
USA, as vector populations here are less likely to quest 
above the leaf litter due to warmer and drier climate con-
ditions and genetic differences in these populations [20, 
104–109]. Thus, our results indicating vector-specific 
differences also contribute to variation in Lyme disease 
transmission efficiency may be most relevant in regions 
that are otherwise climatically and ecologically suitable 
for disease transmission.
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Conclusions
Despite high genetic similarity between the two USA 
Lyme disease vectors, we found significant variation in I. 
scapularis and I. pacificus performance in traits related 
to vector competence. Ixodes pacificus displayed greater 
host feeding abilities, but far lower pathogen transmis-
sion rates relative to I. scapularis. Inefficient tick to host 
transmission may present a barrier to B. burgdorferi 
transmission cycles in the western USA, contributing 
to broad regional differences in Lyme disease incidence. 
Host to tick transmission rates were identical between 
tick species, but lower for allopatric tick species and 
pathogen strains than sympatric pairings. These find-
ings highlight the importance of vector-pathogen coevo-
lutionary history, as well as vector traits, in determining 
Lyme disease transmission efficiency.
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