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Abstract 

The Jumonji domain-containing protein-3 (JMJD3) is a histone demethylase that regulates the trimethylation of 
histone H3 on lysine 27 (H3K27me3). H3K27me3 is an important epigenetic event associated with transcriptional 
silencing. JMJD3 has been studied extensively in immune diseases, cancer, and tumor development. There is a com-
prehensive epigenetic transformation during the transition of embryonic stem cells (ESCs) into specialized cells or the 
reprogramming of somatic cells to induced pluripotent stem cells (iPSCs). Recent studies have illustrated that JMJD3 
plays a major role in cell fate determination of pluripotent and multipotent stem cells (MSCs). JMJD3 has been found 
to enhance self-renewal ability and reduce the differentiation capacity of ESCs and MSCs. In this review, we will focus 
on the recent advances of JMJD3 function in stem cell fate.
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Background
In the human genome, the sequence of DNA and epi-
genetic mechanisms such as DNA methylation, histone 
modification (methylation, phosphorylation, acetyla-
tion, adenylation, ADP ribosylation, and ubiquitination), 
and chromatin remodeling are thought to alter gene 
expression [1, 2]. It has been discovered that the aber-
rant expression of histone methylation leads to dem-
ethylation and abnormal histone methylation, which 
contributes to migration, invasion, and carcinogenesis, 
during cancer development [3, 4]. The trimethylation 
of histone H3 at lysine-27 (H3K27me3) is an epigenetic 
modification that contributes to epigenetic silencing and 
influences the development of normal and abnormal 
cells [5–7]. The accumulation of H3K27me3 is essen-
tial for the recruitment of transcription factors (TFs) to 
DNA [8, 9]. The Jumonji domain-containing protein-3 

(JMJD3, also known as KDM6B) is a histone demethyl-
ase that regulates H3K27me3-mediated gene repression 
and removes H3K27me3 [10, 11]. JMJD3 has been stud-
ied extensively in immune diseases, cancer, and tumor 
development [12–16]. Recent studies have illustrated that 
JMJD3 plays an important role in cell fate determination 
of pluripotent and multipotent stem cells [11, 17, 18]. 
Human pluripotent stem cells (PSCs), including embry-
onic stem cells (ESCs) and induced pluripotent stem cells 
(iPSCs), have the ability to divide and give rise to all cells 
of the tissues of the body under specific conditions [19, 
20]. Human PSCs are very useful in the field of disease 
modeling, drug screening, and cell-based regenerative 
medicine for many diseases [21–23]. Human ESCs can 
be derived from the inner cell mass (ICM) of the human 
blastocyst [24]. Human iPSCs are generated by introduc-
ing exogenous factors (OCT4, SOX2, KLF4, and c-MYC) 
into somatic cells [25]. Mesenchymal stem cells (MSCs) 
are multipotent stem cells with the capacity to differenti-
ate into various cell types such as adipocytes, osteocytes, 
neurocytes, hepatocytes, and chondrocytes [26, 27]. 
MSCs can be obtained from bone marrow (BM), dental 
pulp (DP), adipose tissues (AT), and umbilical cord blood 
(UCB) [28, 29]. Several recent studies have shown that 
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JMJD3 plays an important role during the transition of 
ESCs and MSCs into specialized cells or the reprogram-
ming of somatic cells to iPSCs [11, 30]. JMJD3 has been 
found to enhance self-renewal ability and reduce the 
differentiation capacity of pluripotent and multipotent 
stem cells [12, 31, 32]. In this review, we will focus on the 
recent advances of JMJD3 function in stem cell fate.

Structure and function of JMJD3
There are at least 6 families of histone demethylases. 
KDM4B (JMJD2B) and KDM6B (JMJD3) are two impor-
tant histone demethylases [35–37]. Human JMJD3 or 
KDM6B (lysine-specific demethylase 6B) gene is located 
at 17p13.1 and encodes a polypeptide that contains 
1682 amino acids with an average molecular weight of 
176,632 Da [10, 38]. JMJD3 belongs to a subfamily of the 
UTX/UTY JmjC-domain protein [12]. UTX1 (KDM6A) 
and JMJD3 are the KDM6 family members that demeth-
ylate H3K27me3 [39, 40]. JMJD3 contains a Jumonji C 
(JmjC) domain (demethylates histones) and a C-terminal 
segment that is embedded with a GATA-like (GATAL) 
domain [41, 42]. The KDM6A protein has a catalytic 
JmjC domain at the C terminus and six tetratricopeptide 
repeat (TPR) domains at the N terminus [43] (Fig. 1).

JMJD3 catalyzes the transition from a repressive status 
(H3K27me3) to active status (H3K27me1) [44]. JMJD3 
in a demethylase-dependent or independent manner 
can regulate gene transcription [45]. Polycomb repres-
sive complex 2 (PRC2, composed of the enzyme EZH2, 
SUZ12, and EED) is a transcriptional repressor that 
interacts with PRC1 and adds methyl groups to histone 
H3K27 [46, 47]. JMJD3, which opposes the enzymatic 
activity of the PRC2, regulates the expression of specific 
genes [48, 49]. JMJD3 as a transcription factor (inde-
pendent of demethylase activity) can interact with co-
activators and regulate the transcription of target genes 
[45]. JMJD3 by impacting RNA polymerase II (Pol II) 
promotes transcriptional elongation and gene expres-
sion [50]. The molecular mechanisms of JMJD3-mediated 
transcription of target genes are shown in Fig. 1.

It has been reported that JMJD3 participates in the 
regulation of cell cycle arrest, apoptosis, tumorigenesis, 

immune diseases, and cell differentiation by targeting 
distinct transcription factors and epigenetic proteins 
[51–54]. JMJD3 by reducing H3K27me3 enrichment 
negatively regulates the transcription of Sestrin2 (SESN2) 
and induces cardiomyocyte apoptosis [55]. JMJD3 also 
negatively mediates inflammatory response, blood-spinal 
cord barrier (BSCB) disruption, and apoptosis after spi-
nal cord injury (SCI) [56]. JMJD3 is positively correlated 
with tumor diameter, differentiation, and microvascular 
infiltration [10, 57, 58]. Therefore, JMJD3 is involved in 
cellular plasticity and inhibits abnormal tissue growth by 
regulating unlimited cell proliferation [59].

JMJD3 function in embryonic stem cells
JMJD3 plays a critical role in undifferentiated ESCs 
and ESC-derived cell gene expressions [60]. GSK-J4 by 
suppressing the enzymatic activity of JMJD3 triggers 
cell cycle arrest, DNA damage, and cell death in ESCs-
derived cells but not in undifferentiated ESCs [60].

The expression profile of JMJD3 suggests that it may 
contribute to the regulation of ectoderm, mesoderm, and 
endoderm differentiation in murine and human ESCs 
[11, 17, 18] (Fig. 2).

•	 Differentiation of ESCs into ectoderm lineage

During differentiation of ESC to the neuronal lineage, 
JMJD3 can modulate the expression of key markers of 
neurogenesis (Pax6, Nestin, and Sox1) and enhance neu-
ral commitment [61].

Vitamin C is a critical micronutrient that improves 
the rate of ESC proliferation and the efficiency of iPSC 
formation [62]. In mouse ESC differentiation, vitamin C 
can impact JMJD3 and induce a pluripotent state [63], 
but during the differentiation of dopamine neurons in 
the fetal midbrain, vitamin C upregulates JMJD3 and 
decreases the H3K27m3 of dopamine phenotypic to 
facilitate dopamine neuron differentiation [64].

•	 Differentiation of ESCs into mesoderm lineage

(See figure on next page.)
Fig. 1  The molecular mechanisms of JMJD3-mediated transcription of target genes. The Jumonji domain-containing protein-3 (JMJD3) belongs 
to a subfamily of the UTX/UTY JmjC-domain protein. UTX1 (KDM6A) and JMJD3 (KDM6B) are the KDM6 family members. JMJD3 is a histone 
demethylase that regulates H3K27me3-mediated gene repression and removes H3K27me3. JMJD3 has a JmjC domain (demethylates histones) 
and a C-terminal segment that is embedded with a GATA-like (GATAL) domain. The KDM6A protein has a catalytic JmjC domain at the C terminus 
and six tetratricopeptide repeat (TPR) domains at the N terminus. JMJD3 in a demethylase-dependent or independent manner can regulate gene 
transcription. Polycomb repressive complex 2 (PRC2, including EZH2, SUZ12, and EED) is a transcriptional repressor that interacts with PRC1 and 
adds methyl groups to histone H3K27. JMJD3, which opposes the enzymatic activity of the PRC2, regulates the expression of specific genes. JMJD3 
as a transcription factor can interact with co-activators and regulate the transcription of target genes



Page 3 of 9Ding et al. Cell Commun Signal           (2021) 19:72 	

Fig. 1  (See legend on previous page.)
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Fig. 2  JMJD3 function in pluripotent stem cells. JMJD3 plays a critical role in the differentiation of ESCs and iPSCs. The expression profile of JMJD3 
suggests that it may contribute to the regulation of ectoderm, mesoderm, and endoderm differentiation in murine and human ESCs. JMJD3 as an 
epigenetic barrier is thought to increase during the reprogramming of differentiated cells into iPSCs
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JMJD3 also displays an important role in cardiac dif-
ferentiation [65]. JMJD3 may be involved in the deter-
mination of the cardiomyogenic lineage from mouse 
ESCs and enhanced the expression levels of Jmjd3, 
Jmjd2a, and Jhdm1d [66]. The transcription factor insu-
lin gene enhancer-binding protein 1 (ISL1) plays a key 
role in cardiac lineage differentiation [67]. It has been 
found that ISL1 cooperates with JMJD3 to alter the 
cardiac epigenome and regulate cardiac differentiation 
of ESCs [65]. JMJD3 by regulating the Wnt/β-catenin 
signaling pathway at early and DKK1 (WNT antagonist 
gene) at a late stage, facilitates differentiation of human 
ESCs toward mesendoderm and definitive endoderm 
[32, 68]. Ectopic expression of the JMJD3 has recently 
been uncovered to facilitate the conversion of hESCs 
and hiPSCs into skeletal muscle cells and hepatic cells 
[69].

•	 Differentiation of ESCs into endoderm lineage

NODAL is the central transcription factor of TGF-β 
signaling and a target for repression by Polycomb pro-
teins and accumulation of H3K27me3 [70]. SMAD2/3 
proteins that transduce signals from TGF-β signal-
ing are capable of recruiting JMJD3 to remove the 
H3K27me3 repressive mark on the NODAL promoter 
and facilitate human ESCs differentiation into endo-
derm [71].

The role of JMJD3 in reprogramming
JMJD3 as an epigenetic barrier is thought to be increased 
during the reprogramming of differentiated cells into 
iPSCs [72] (Fig.  2). It was recently reported that JMJD3 
interacts with KLF4 and decreases H3K27me3 in pluri-
potency genes [34]. A recent study has shown that the 
Jmjd3-PHF20 axis plays a key role in the reprogramming 
of somatic cells [33]. PHF20 (plant homeodomain fin-
ger protein 20 or glioma-expressed antigen 2) is a criti-
cal epigenetic regulator that enhances reprogramming 
and stemness through activation of Oct4 and Sox2 [73]. 
JMJD3 by recruiting an E3 ligase Trim26 causes the ubiq-
uitination and degradation of PHF20 [33, 74]. JMJD3 
through its H3K27me2/3 demethylase activity enhances 
the expression of Ink4a/Arf and P21. Thus, a decrease 
in PHF20 leads to reduce endogenous Oct4 expression, 
cell proliferation, and the outcome of reprogramming 
[33]. JMJD3 by removing the H3K27me3 mark from the 
hepatic transcription factors (HTFs) promoter is partici-
pated in the reprogramming of bone marrow progenitor 
cells (BMPCs) to hepatic cells. In contrast, GSK-J4 can 
effectively repress the activity of JMJD3 and the loss of 
the H3K27me3 chromatin mark in BMPCs [75].

JMJD3 function in multipotent stem cells

•	 Neural stem cells

It has been reported that JMJD3 interacts with the acti-
vated SMAD3 and enhances the differentiation of neural 
stem cells (NSCs) [76]. JMJD3 is required to interact with 
neural promoters, regulate neurogenic gene expression, 
and activate neurogenesis from the adult subventricular 
zone (SVZ)-derived NSCs [77]. Following differentiation 
of NSCs to neurons, SMRT (NCoR2, nuclear receptor 
co-repressor 2) inhibits JMJD3 and maintains the NSCs 
state [78]. STAT3 as an important component of the LIF 
signaling pathway is necessary for stem cell self-renewal 
[79, 80]. STAT3 binds to the JMJD3 promoter, prevents 
the demethylase activity of JMJD3, and suppresses the 
activity of differentiation-specific genes [81–83]. It has 
been shown that inhibition of STAT3 in glioblastoma 
stem cells (GBM-SC) can promote the levels of histone 
H3K27 demethylation and the expression of neural-spe-
cific genes, such as FGF21, GDF15, and Myt1 [52]. The 
p53 tumor suppressor has a key role in mouse neuro-
genesis [84, 85]. In response to differentiation inducers, 
the recruitment of JMJD3 to p53 responsive elements 
is increased [86]. During mouse NSCs differentiation, 
JMJD3 is thought to act as a tumor suppressor and 
increase the expression of the INK4a/ARF (or CDKN2a) 
locus, and then stabilize the nuclear distribution of P53 
[87].

•	 Osteogenic stem cells

JMJD3 by removing H3K27me3 plays an important 
role in the osteogenic commitment of MSCs [88]. JMJD3 
appears to induce osteoblast differentiation by stimulat-
ing transcription factors Runx2 and Osterix and control 
the expressions of bone-related genes [44, 89]. Ras-asso-
ciation domain family 5 (RASSF5) or novel Ras effec-
tor 1 (NORE1) is a pro-apoptotic protein that regulates 
a variety of key biological processes [90, 91]. JMJD3 was 
reported to reduce the expression of RASSF5 and sup-
press tumor necrosis factor-alpha (TNF-α)-induced oste-
oblast apoptosis [92].

MicroRNA‐99a by targeting JMJD3 is involved in oste-
ogenic differentiation of bone MSCs [93, 94]. In contrast, 
MIR146A is a negative regulator of JMJD3 and RUNX2 
that reduces MSCs capacity to differentiate into osteo-
blasts [95]. The PLZF transcription factor was previously 
shown to play an essential role in the osteogenic fate of 
human MSCs. At the pre-osteoblast stage of differentia-
tion (osteoblast commitment of progenitor cells), JMJD3 
enhances the expression of PLZF and controls osteoblast 
differentiation in MSCs [96]. Nuclear factor–activated 
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T cells c1 (NFATc1) is a key transcription factor that 
induces osteoclast differentiation in response to recep-
tor activator of nuclear factor‐κB ligand (RANKL) [66]. 
JMJD3 has been shown to remove the inhibitory 
H3K27me3 marker on the Nfatc1 gene and regulate 
RANKL-mediated osteoclast differentiation [97]. The 
inhibition of JMJD3 activity by GSK-J4 could be used as 
a non-invasive treatment for preventing the prefusion of 
cranial sutures in a patient with excessive osteogenic dif-
ferentiation of MSCs [98].

•	 Dental pulp-derived MSCs

JMJD3 by removing H3K27me3 from the promoters 
of osteogenic genes improves the odontogenic differ-
entiation in dental pulp-derived MSCs [44, 99]. Ethanol 
(EtOH) can suppress JMJD3 and alter DNA methylation. 
EtOH-induced DNA methylation influences odontogenic 
differentiation and reduces mineralization [100]. Insu-
lin‐like growth factor binding protein 5 (IGFBP5) is a 
multifunctional protein with anti‐inflammatory potential 
that promotes osteogenic differentiation in dental pulp‐
derived MSCs [101, 102]. A recent study showed JMJD3 
through the removal of H3K27me3 at the promoter of 
IGFBP5 mediated periodontal tissue regeneration [101].

•	 Hematopoietic stem cells

JMJD3 is necessary for the self-renewal properties of 
hematopoietic stem cells (HSCs) [103].

Unlike KDM6A, which is frequently mutated in hemat-
opoietic disorders, JMJD3 is necessary for HSC self-
renewal in response to stress conditions [104, 105]. The 
adaptor-related protein complex 1 (AP-1) transcription 
factors such as Fos and JunB are crucial for interleukin 
(IL)-17-producing T helper (Th17) cell development 
[106]. JMJD3 was found to modulate the MAPK pathway, 
suppress the expression of AP-1, and support leukemia 
initiation and maintenance [107]. Hence, targeted inhi-
bition of JMJD3 led to increaseing HSCs differentiation 
[74].

These studies suggest that JMJD3 might be a feasible 
and effective target for cell fate regulation of multipotent 
stem cells.

Conclusion
In this review, we summarize the roles of JMJD3 in pluri-
potency, reprogramming, and differentiation. JMJD3 
has been found in several biological processes, includ-
ing cell proliferation, differentiation, invasion, apopto-
sis, signaling regulatory pathways. Direct manipulation 
of epigenomes may be a suitable method for generating 
desired cell types from pluripotent or multipotent stem 

cells. Although JMJD3 via epigenetic modifications tar-
gets several signaling pathways, off-target effects could 
lead to minimize the applications of this enzyme in can-
cer. For example, JMJD3 by promoting cyclin D1 tran-
scription is involved in the development of cancer cells 
[108]. Also, JMJD3 can impact other histone modifiers 
and alter chromatin structure, activate the expression of 
oncogenes, and trigger the development of many types of 
human diseases [108]. Thus, further studies are required 
to determine the downstream targets of JMJD3 in pluri-
potent and multipotent stem cells.
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