
Estimating HIV incidenc
e from case-report data:
method and an application in Colombia

Juan Fernando Vesgaa, Anne Coria, Ard van Sighemb and

Timothy B. Halletta
aDepartment of In
Amsterdam, the N

Correspondence to
Imperial College L

E-mail: j.vesga10@
Received: 21 Aug

DOI:10.1097/QAD

ISSN 0269-9370 Q

of the Creative Com
provided it is prope
Objective: Quantifying HIV incidence is essential for tracking epidemics but doing this
in concentrated epidemic can be a particular challenge because of limited consistent
high-quality data about the size, behaviour and prevalence of HIV among key
populations. Here, we examine a method for estimating HIV incidence from routinely
collected case-reporting data.

Methods: A flexible model of HIV infection, diagnosis and survival is constructed and
fit to time-series data on the number of reported cases in a Bayesian framework. The
time trend in the hazard of infection is specified by a penalized B-spline. We examine
the performance of the model by applying it to synthetic data and determining whether
the method is capable of recovering the input incidence trend. We then apply the
method to real data from Colombia and compare our estimates of incidence with those
that have been derived using alternative methods.

Results: The method can feasibly be applied and it successfully recovered a range
of incidence trajectories in synthetic data experiments. However, estimates
for incidence in the recent past are highly uncertain. When applied to data from
Colombia, a credible trajectory of incidence is generated which indicates a much
lower historic level of HIV incidence than has previously been estimated using other
methods.

Conclusion: It is feasible, though not satisfactory, to estimate incidence using case-
report data in settings with good data availability. Future work should examine the
impact on missing or biased data, the utility of alternative formulations of flexible
functions specifying incidence trends, and the benefit of also including data on deaths
and programme indicators such as the numbers receiving antiretroviral therapy.
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Introduction

In any setting, one of the most important pieces
of information in responding to an HIV epidemic,
evaluating past efforts, and planning for the future is
the time-course of the HIV incidence rate.

Direct observation of new infections, whether through
cohort studies or via the use of incidence assays and
algorithms [1], is unfeasible in most national settings.
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Mathematical modelling provides an alternative mean
to infer incidence using other more readily available
data. Currently, UNAIDS estimates of HIV incidence
trends in generalized epidemics are derived through
fitting a simple model to HIV prevalence measurement
among pregnant women and prevalence measurements
in national household surveys [2,3]. This approach has
been less satisfying in settings with concentrated
epidemics because of a combination of factors: incon-
sistencies in the measurements of prevalence over
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time, scarce prevalence measurements among hard-to-
reach groups and lack of robust estimates on the size
of these groups. For this reason, it is important to
explore other means of estimating HIV incidence in these
settings, which would not exclusively rely on estimates of
HIV prevalence and size estimates of key populations.

Other sources of available data, which could potentially
be combined with models to draw inference on incidence
in concentrated epidemics, include time-series data on
AIDS deaths and reported cases. The use of estimated
death time series is investigated in another article in this
collection (Stover et al. in this supplement). Here, we
focus on the use of reported cases.

In many settings, especially in Latin America and Europe,
systems are in place to centrally record the number of
persons newly diagnosed with HIV. In many settings, it is
believed that the coverage of this system (the proportion
of newly diagnosed cases that are counted) could be as
high as 80% [4,5]. However, the interval between an
infection and a diagnosis is not known and may change
over time, and this would confound all estimates of
incidence unless further information could be included
on the interval between testing and diagnosis. Possible
candidates to inform the interval between infection
and diagnosis are the clinical stage and CD4þ cell count
[6]. Further, in the future, measurement of a well
characterized biomarker of recent infection may also be
available [7].

In this study, we build on prior work [8,9] to develop a
modelling framework that can be used to estimate HIV
incidence drawing primarily on HIV case-report data. We
then use synthetic data to test the performance in
recovering a wide range of possible incidence trajectories.
Finally, we apply the model to Colombia to derive HIV
incidence estimates, which are then compared with other
estimates available for Colombia.
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Fig. 1. Model of HIV infection and progression. Parameter values a
Methods

Mathematical model
The proposed model consists of a deterministic
mathematical model to simulate the process of HIV
infection and disease progression, death and diagnosis
(Fig. 1).

This structure is expressed through a set of six ordinary
differential equations as follows:

dUðtÞ
dt
¼ aðtÞ � UðtÞðsðtÞÞj þ dÞ; Eq: 1 : Susceptible

I1ðtÞ
dt
¼ SðtÞUðtÞ � I1ðdþ g1 þ r1ðtÞÞ; Eq: 2

: Acute infection

I2ðtÞ
dt
¼ I1g1e2 � I2ðdþ g2 þ r2ðtÞÞ; Eq: 3

: CD4þ count > 500 cell=ml

I3ðtÞ
dt
¼ I1g1e3 þ I2g2 � I3ðdþ g3 þ r3ðtÞÞÞ; Eq: 4

: CD4þ count 350� 500 cell=ml

I4ðtÞ
dt
¼ I1g1e4 þ I3g3 � I4ðdþ g4 þ r4ðtÞÞ; Eq: 5

: CD4þ count 200� 350 cell=ml

I5ðtÞ
dt
¼ I1g1e5 þ I4g4 � I5ðdþ g5 þ r5ðtÞÞ; Eq: 6

: CD4þ count < 200 cell=ml

Where UðtÞis the number of persons HIV susceptible at
time t; I1ðtÞ is the number of infected individuals in acute
infection at time t; IjðtÞ ðj ¼ 2; . . . ; 5Þ is the number of
infected individuals in CD4þ cell count category j at time
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nd prior distributions for calibration can be found in Table 1.
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t and sðtÞis the time-varying rate at which the population
of infected individuals transmits HIV to susceptible
persons. The rate at which new infections occur in this
population is given by sðtÞUðtÞ. All symbols and
parameters are described in Table 1.

At infection, individuals pass through a stage of
acute infection following which individuals enter one
of four CD4þ cell count categories (<200, 200–350,
350–500, 500þ cell/ml). Thereafter, individuals pro-
gress to lower CD4þ cell counts at rates which have
previously been estimated from European data [10].
Death due to AIDS in the model is assumed to occur at
a fixed rate only among individuals with CD4þ cell
count below 200 cell/ml. The overall median survival
time is 10.4 years, consistent with estimates from low-
income and middle-income countries [11]. In the
model framework, these parameters describing the
progression of HIV infections are considered to be
known perfectly.

At all times after infection, individuals can be diagnosed
with HIV. At that point they transition into a ‘diagnosed’
category. The number of HIV-infected persons that
transition to the diagnosed category in a given year in the
model is compared with the data on the number of
reported cases.
Table 1. Model parameters.

Symbol Description

a(t) Birth rate

N(t) Total population at any time t

E Average population growth per year
d Background mortality rate
u Fraction of AIDS-related deaths detected post mortem
g j

Progression rates (1/years) from CD4þ cell count stage k to
subsequent inferior CD4þ cell count category

ej Proportion moving to each CD4þ stage after acute infection

r5 Diagnostic rate at CD4þ <200cell/mL

m Slope scaling parameter. Is the slope for the line crossing (0,
and (0, r1)

v Relative slope variation factor.
sðtÞ Function for the variation of HIV detection over time

t50 Shape parameter in function sðtÞ
bi

Basis coefficients for spline function s(t)

mi Deviance of the ith b from the former two coefficients bi�1 a
bi�2, for i ¼ 7; . . . ;10
Model parameterization

HIV infection rate
Following Hogan et al. [2], the instantaneous hazard of
infection for susceptible individuals s(t) is specified as a
B-spline function of time. The B-spline is parameterized
by a vector of coefficients b1; . . . ; n, where n-3 is the
number of knots of the spline which were evenly spaced
on the time interval 1975–2015. This flexible functional
form allows many credible incidence trajectories while
constraining the trajectory to evolve smoothly with
respect to time. This does not attempt to provide a
mechanistic description of HIV transmission. Note that
in other formulations, the spline describes a force of
infection (which gives incidence when multiplied with
the product of U(t) and all infected individuals) rather
than a hazard of infection, but this is not possible here as,
for parsimony, we do not model the entire infected
population.

We set b1 ¼ b2 ¼ b3 ¼ 0 to anchor the incidence
trajectory at zero before 1975, whereas b4 to b6 were
independently specified with uniform priors:
b4�Uð0; 5Þ, b5�Uð�5; 5Þand b6�Uð�5; 5Þ. We
impose penalties [12] on the spline, in order to limit
over-fitting to potentially noisy data and to represent
our prior assumption that rapid large oscillations in the
Value/prior distribution Reference

NðtÞE þ ðdÞ
P

i IjðtÞ þUðtÞ
� �

þ I5ðtÞg5

UðtÞ þ
P

j Ij ; for j ¼ 1; . . . ; 4 –

2.7% [14]
1/72 years [14]
�Uð0;1Þ Assumption

the (1/yrs)
g1 ¼ 1

0:24

g2 ¼ 1
2

g3 ¼ 1
3

[10,15]

g4 ¼ 1
3

g5 ¼ 1
24

e2 ¼ 0:58
e3 ¼ 0:23 [10,16]
e4 ¼ 0:16
e5 ¼ 0:03
r5�U 1

10 ;
1

0:5

� �
Assumption

r5) m ¼ 0�r5ð0Þ
8:17�0

Assumption

v�Uð�1;1Þ Assumption
sðtÞ ¼ 1

1þe�rðt�t50Þ
; for r ¼ 0:003 Assumption

t50�Uð0:1; 1Þ Assumption
bi ¼ 0; for i ¼ 1; . . . ;3
bi �Uð0;5Þ; i ¼ 4
bi �Uð�5;5Þ; i ¼ 5; 6
bi ¼ 2bi�1 � bi�2 þ mi; For i ¼ 7; . . . ; n

nd mi �Nð0; t2Þ
t2�Uð0;2Þ Assumption



S492 AIDS 2014, Vol 28 (Suppl 4)
HIV incidence rate are unlikely. We use second-degree
difference penalties [12] expressed as:

bi ¼ 2bi�1 � bi�2 þ mi; . . . ; for i> 6

where the error mi is the amount of deviance from the
trajectory defined by the two previous coefficients.

The prior for mi is normally distributed with parameters
Nð0; t2Þ, where t2 is a hyper-parameter controlling the
overall smoothness of the function; small values of t2

result in little deviance from the previous trajectory and
large values in contrast produce more flexible curves.

HIV detection rates
The rate at which HIV-infected individuals are diagnosed
is rjðtÞ, and is allowed to vary by CD4þ cell count
category j and calendar time t:

rjðtÞ ¼ ðmvÞTj þ r5ð0Þ
� �

sðtÞ

where Tj is the average time (years) to reach CD4þ

cell count category below 200 cell/ml ( j¼ 5) for those in
CD4þ cell count category j ¼ 1; . . . ; 4ðT1 ¼ 8:17;
T2 ¼ 7:93; T3 ¼ 6:74; T4 ¼ 3:74; T5 ¼ 0Þ.

This parameterization sets the rate of detection to vary
linearly as the time to reach CD4þ <200 cell/ml
decreases. The slope of this line is specified by parameter
v, which allows the linear relationship to be either
positive or negative. With v> 0, individuals with high
CD4þ cell counts are more likely to be detected, which is
plausible scenario if exposure to HIV is suspected or
symptoms of acute infection drive testing; with v< 0,
individuals with low CD4þ cell counts are more likely to
be detected, which may be true if HIV testing is
prompted by increasing experience of illness. The prior
on v reflects that both of these possibilities are equally
likely: v�Uð�1; 1Þ. Parameter m is a constant scaling
parameter which ensures that the diagnosis rate is greater
than zero for all CD4þ categories, irrespective of the
value of v.

Rate of testing for those in CD4þ cell count category
below 200 cell/mL (r5) has a prior distribution such that
the average interval from infection to diagnosis is
uniformly distributed between 0.5 and 10 years:
�U 1

10 ;
1

0:5

� �
.

s(t) describes the change in the rates of diagnosis over
time. Here we assume that this change can be represented
by the logistic function: sðtÞ ¼ 1

1þe�rðt�t50Þ
; where r is the

rate of increase, and t50 is the time to reach half the upper
limit rate. Parameter r is set at 0.003 and a prior was placed
on t50 that allows a wide range in shapes in s(t) from a
stable trend over time (t50¼ 1) to a sharp increase in the
rate of diagnosis from close to zero at the start of the
epidemic ðt50 ¼ 0:1Þ : t50�Uð0:1; 1Þ.

Model validation and calibration procedures
The inference on the HIV incidence rate is done in a
Bayesian framework. The likelihood is given by the
probability of observing the number of HIV cases without
AIDS reported in a year, the number of HIV cases with
AIDS reported in a year (i.e. symptomatic illness or CD4þ

cell count <200 cell/ml) and the number of persons
diagnosed with HIV after death in a given year, each
modelled as Poisson process. We used the Metropolis
Hastings algorithm with component-wise updating to
sample from the posterior distribution of the model. We
used an adaptive proposal density variance in order to
achieve an acceptance rate of approximately 30%. Three
chains were run in parallel for 500 000 iterations after
which chains were visually inspected for convergence and
50% of the initial runs were discarded.

Models are estimated that use B-spline functions with
number of knots n¼ 7, 8, 10, and with hyper-prior for
t2 variously given as �U(0.001,0.1), �U(0.1,0.5),
�U(0.5,1.0), �U(1.0,1.5) or �U(1.5, 2.5), giving a
total of 20 models runs for each estimation problem.
Among these, a model is chosen that has the greatest
agreement to data, given its number of effective
parameters, as measured by the model with smallest
deviance information criterion (DIC) [13]. For that
chosen model, a sample from the joint posterior
distribution is formed by randomly sampling 1000
iterations across all its chains. Medians and 95% credible
intervals are reported for the posterior samples.

Assessment of model performance using
synthetic data
The performance of model in recovering the ‘correct’
incidence trajectory from sets of synthetic data was
assessed. One major concern was that the specification of
this estimation method would render it unable to
correctly discern all possible trajectories with different
amounts of variation over time or timing of inflections.
For this reason, we created three ‘challenge datasets’ using
the same assumptions as the estimation model about
natural history but varying the number in the spline
function that generates that incidence rate (n¼ 7, 8, 10).
Synthetic data were generated under the assumption of
constant rates of diagnosis over time and CD4þ cell
count.

Application of the model to Colombia
Between 1983 and 2010, Colombia reported 78 999
HIV/AIDS patients, the vast majority coming from urban
areas and major cities [17]. Overall prevalence was
estimated at 0.22% in 2009 in the adult population [18],
but HIV prevalence appears to be substantially concen-
trated among MSM, among whom prevalence has been
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estimated to be between 5.6 and 24.1% in different cross-
sectional studies in 2010 [19]. In our method, we assumed
equivalence between an AIDS diagnosis in the data and a
diagnosis for a patient with a CD4þ cell count below 200
in the model.

There have been official records of the number of deaths
that were classified as AIDS deaths among persons who
had not previously been recorded as HIV-infected (i.e.
post-mortem HIV diagnosis) since 1985 [20]. No
reporting bias or misclassification in this is assumed.

We used data on the total number of HIV tests reported to
have been performed in Colombia to centre the prior on
the trend in the rate of diagnosis over time [21]. This trend
can be broadly described as a sigmoid increase with a
turning point in 1996 and a plateau in the more recent
years.

These data were used in the method outlined above to
estimate incidence over time. The results were compared
with reported estimates of incidence from UNAIDS [22],
which are based on fitting a model to prevalence data and
population size estimates for key populations [3].
Results

Assessment of model performance using
synthetic data
We created three challenge datasets with different
epidemic trajectories and the proposed method was able
to successfully recover each of them (Fig. 2). A part of the
method is to estimate multiple models and then select that
model with the lowest DIC; as expected, the model that
was favoured in each of these tests was the model which
has the same number of knots as that used to generate the
synthetic data. Also as expected, uncertainty becomes
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Fig. 2. Incidence estimation with three configurations of the sp
simulated incidence trend; the dashed red is the incidence estim
distribution); the shaded blue region gives a 95% credible interval
were created using a model with (a) 7 knots, (b) 8 knots or (c) 10
greater in more recent years as the data on case reports are
less informative on current incidence rates. Uncertainty
for estimates in the recent years is especially great when
the data indicate that trend in incidence has changed.

Estimating HIV incidence in Colombia
The model was applied to Colombian data using the
proposed method. Model estimates and data on HIV
cases, AIDS cases and post-mortem detection are
presented in Fig. 3a–c and resultant estimates of HIV
incidence are presented in Fig. 3d. For Colombia, the
model formulation with the lowest DIC was one with
eight knots and hyper-prior t2 �U(1, 1.5).

The model has a good fit with the observed data
(Fig. 3a–c) in the early years, whereas uncertainty is
widely propagated in the recent years as noted in the
experiments with synthetic data. The data for post-
mortem-detected cases and AIDS cases exhibit complex
patterns which the model is forced to reconcile with the
clear monotonic increase in reported HIV cases and with
our a priori belief that the incidence trajectory should
vary smoothly over time.

The resulting estimate of HIV incidence (Fig. 3d),
describes an early peak in new infections in 1990 and
resurgence in the epidemic since 2000. The period with
the highest incidence rate is estimated to be 2008–2009.

These incidence estimates can be compared with those
previously presented by UNAIDS and which are based on
an entirely different methodology whereby models are
fitted to observed prevalence data and estimated sizes of
key population (Fig. 4). In recent years, the estimates
derived through the proposed method and the UNAIDS
methods are in very close agreement. However, the
UNAIDS-estimated historical trajectory of incidence
suggests very high-peak incidence during 1995, of 0.3 per
1
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Fig. 3. Model fit to data in Colombia. Panels with data points (blue dots) as reported on a yearly basis by Colombian surveillance
system, in three categories: (a) cases previously undiagnosed and only detected after death, (b) cases detected during AIDS stage
and (c) cases detected and classified as non-AIDS at the time of diagnosis. In a–c, the grey shaded area are the posterior estimation
from the model chosen for Colombia. (d) The resulting HIV incidence trajectory in Colombia from the proposed method (red
dashed line) with 95% credible interval (shaded area).
100 person-years at risk (pyar), whereas the proposed
method suggests an incidence rate much lower, at 0.03
per 100 pyar.
Discussion

We examined a method for estimating HIV incidence
from case-report data. We have shown that it is capable of
correctly recovering a wide range of possible incidence
trajectories and have applied to data from Colombia to
give complementary estimates of incidence to that
derived from other methods. The present formulation
gives highly uncertain estimated for most recent years,
limiting its usefulness.

Although it is promising that our method can broadly
identify a wide range of incidence trajectories, some small
inconsistencies remained. We believe these will be
because of the setting of the fixed placement of the
knots and the rigid ordering of unconstrained and
constrained knots. It will be possible to determine
whether the evaluation of a wider range of models that
incorporate these differences and model selection based
on DIC is sufficient to overcome these challenges. This
would inevitably increase the computational demands of
the estimation procedure and so alternative methods for
estimating the model will also be explored.

It will also be useful to examine how this method works
under different conditions of data availability. In the
challenges with synthetic data, we assumed that all
required data were present and unbiased. Although this
may be a reasonable assumption for some settings, it will
not be universally the case and small errors in early
estimates of number of cases may propagate to large errors
in the inferred incidence trajectory. We also used the same
assumption for the natural history of HIV (survival rates
and CD4þ progression) in the method that generated the
synthetic data as in the estimation model, which will
inevitably flatter the performance of the model. It will be
crucial to test the performance of the model when
alternative assumptions are made and the model cannot be
considered to have been fully tested until this step is done.
A further step would be to examine the impact of the
survival rates used to generate the synthetic data departing
from those assumed in the estimation model, as well as
propagating uncertainty in the assumptions about natural
history in the estimation procedure. Finally, we did not
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Fig. 4. Estimated number of new HIV infections in Colombia
from the proposed method (red dashed lines) and current
UNAIDS methods (blue dots). The orange shaded area shows
the 95% credible interval of the estimates of the proposed
method. Note that UNAIDS does compute uncertainty inter-
vals for most of its statistics but intervals were not retrievable
from online data sources for this statistic [22].
assess the impact of the use of inappropriate assumptions
on the trend in diagnosis rates over time.

Here, we allowed HIV detection rates to vary by different
CD4þ cell count stage, according to a prior which reflects
a wide spectrum of detection scenarios. It is possible that
unlikely detection configurations are allowed within this
approach, but the absence of evidence to support a more
restrictive parameterization led us to opt for the more
flexible assumption. Ideally, in a model-aggregation
framework specific detection rates by group of trans-
mission and stage of disease would be modelled separately,
but this will only be feasible for those contexts with highly
detailed case-report data and evidence of differential HIV
detection and linkage to care.

This method gives uncertain results, especially in recent
years, because there remains confounding by potential
changes in the interval between infection and death and
because numbers of cases and deaths are informative of
incidence rates sometime in the past rather than current
incidence. Therefore, in the current form, this method
cannot be expected to reliably detect recent changes in
incidence, which would be very important in monitor-
ing a national epidemic. We expect, however, that it
would be highly advantageous for this method to drawon
further data. It will be possible to extend this method to
incorporate data and/or estimates on deaths and numbers
on antiretroviral therapy (ART), which should contrib-
ute to discriminating the earlier part of incidence
trajectory in particular. Although it is not commonly
used at present, the addition of measurement of
biomarkers that relate to recency of infection at diagnosis
could also help discriminate current incidence levels,
though this would depend on the characteristics of the
biomarker and how well they are known (Bao et al. in
this collection).

Our estimates of HIV incidence for Colombia must be
interpreted with a high degree of caution and in light of our
method’s assumptions and present limitations.Of particular
note, the estimates from the proposed model suggest that
incidence was historically much lower than the levels the
previous UNAIDS estimate indicate. This could stem from
our assumption of complete case reporting and no
misclassification of AIDS deaths: if, in fact, some diagnoses
go unreported and some true AIDS deaths are misclassified,
then our estimates will be too low. Nevertheless, it seems
unlikely that these biases would fully explain the
discrepancy. Added to this, we note that the level of
incidence estimated here is in closer agreement with that
recently reported by Murray et al. [23].

In conclusion, this method is promising technique for
estimating HIV incidence trends that does not rely on
using prevalence data and size estimates of key
populations, and which leverages high quality routinely
collected data. Future work should focus on updating the
model structure to allow other forms of surveillance data,
such as AIDS deaths and people on ART, and further
scrutiny of model performance under circumstances of
missing or biased availability of data.
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