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Alzheimer’s disease (AD) is associated with changes in large-scale functional brain network organization. Individuals
with AD exhibit less segregated resting-state brain networks compared with individuals without dementia. However,
declines in brain network segregation are also evident as adult individuals grow older. Determining whether these
observations reflect unique or overlapping alterations on the functional connectome of the brain is essential for
understanding the impact of AD on network organization and incorporating measures of functional brain network or-
ganization toward AD characterization. Relationships between AD dementia severity and participant’s age on resting-
state brain system segregation were examined in 326 cognitively healthy and 275 cognitively impaired human individ-
uals recruited through the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (N5 601; age range, 55–96 years; 320
females). Greater dementia severity and increasing age were independently associated with lower brain system segre-
gation. Further, dementia versus age relationships with brain network organization varied according to the processing
roles of brain systems and types of network interactions. Aging was associated with alterations to association systems,
primarily among within-system relationships. Conversely, dementia severity was associated with alterations that
included both association systems and sensory-motor systems and was most prominent among cross-system interac-
tions. Dementia-related network alterations were evident regardless of the presence of cortical amyloid burden,
revealing that the measures of functional network organization are unique from this marker of AD-related pathology.
Collectively, these observations demonstrate the specific and widespread alterations in the topological organization of
large-scale brain networks that accompany AD and highlight functionally dissociable brain network vulnerabilities
associated with AD-related cognitive dysfunction versus aging.
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Significance Statement

Alzheimer’s disease (AD)-associated cognitive dysfunction is hypothesized to be a consequence of brain network damage. It is
unclear exactly how brain network alterations vary with dementia severity and whether they are distinct from alterations asso-
ciated with aging. We evaluated functional brain network organization measured at rest among individuals who varied in age
and dementia status. AD and aging exerted dissociable impacts on the brain’s functional connectome. AD-associated brain
network alterations were widespread and involved systems that subserve not only higher-order cognitive operations, but also
sensory and motor operations. Notably, AD-related network alterations were independent of amyloid pathology. The research
furthers our understanding of AD-related brain dysfunction and motivates refining existing frameworks of dementia charac-
terization with measures of functional network organization.

Introduction
Adult aging is the greatest risk factor for Alzheimer’s disease
(AD). AD prevalence doubles every 5 years after the age of 65
years (Hebert et al., 2013). AD is characterized by a wide range
of cognitive difficulties, which include deficits in memory
and executive function but also sensory and motor process-
ing (Salmon and Bondi, 2009; Albers et al., 2015; Murphy,
2019). The clinical manifestations of the disease are hypothe-
sized to be a consequence of the failure of multiple distrib-
uted and functionally specialized brain systems, which are
interconnected within a large-scale brain network (Delbeuck
et al., 2003; Stam, 2014; Yu et al., 2021). Gaining a deeper
understanding of these brain network changes and determining
how they differ from the brain network changes that accom-
pany typical aging are critical steps toward establishing the eti-
ology of AD-related brain and cognitive dysfunction.

The functional network organization of the brain can be
measured at rest (Petersen and Sporns, 2015). In healthy young
adults, the resting-state functional connectome exhibits a modu-
lar organization, which is defined by the segregation of large-
scale brain systems (Tononi et al., 1994; Sporns and Betzel, 2016;
Wig, 2017). Brain system segregation supports the functional
specialization of distinct brain regions and individual differences
in brain system segregation are related to variability in brain
function and cognitive ability (Wig, 2017).

Multiple lines of evidence have demonstrated that resting-
state brain system segregation is altered in AD. First, AD patients
exhibit fewer modular networks when compared with healthy
control participants (Brier et al., 2014a). Second, higher brain
system segregation attenuates the effect of AD severity on cogni-
tion among both autosomal-dominant AD and sporadic AD
patients (Ewers et al., 2021). Finally, among healthy adult indi-
viduals, longitudinal changes in brain system segregation are
prognostic of dementia independent of AD-related genetic risk,
the presence of AD-related pathology (cortical amyloid and CSF
tau burden) and structural deterioration (Chan et al., 2021).
Collectively, these observations support the idea that the impacts
of AD on brain function may not be limited to a small subset of
regions or even a single brain system, but rather involve a more
extensive set of brain network interactions that span across mul-
tiple distributed brain systems, which can be quantified by sys-
tem segregation.

However, system segregation also changes over the course of
healthy adult aging in the absence of AD: brain system segrega-
tion declines with increasing adult age (Betzel et al., 2014; Chan
et al., 2014; Sala-Llonch et al., 2015; Geerligs et al., 2015b; Han et
al. 2018). Further, aging-accompanied changes in brain system
segregation are linked to alterations in brain function (Chan et
al., 2017), relate to the cognitive changes that accompany adult

aging (Chong et al., 2019; Pedersen et al., 2021), and are moder-
ated by environmental exposures during adulthood (Chan et al.,
2018, 2021).

Altogether, it is evident that AD and adult aging are asso-
ciated with reductions in resting-state brain system segrega-
tion. What is less clear is whether the functional network
changes observed in AD reflect common or unique patterns
of reorganization relative to those occurring with normal
aging, as comparisons of summary network measures alone
can occlude meaningful differences in network topology
(Wig, 2017). Untangling the large-scale network correlation
patterns associated with AD from those associated with aging
would not only advance the ability to discriminate between
healthy and pathologic aging but would also accelerate the
application of measures of large-scale brain network organi-
zation toward AD characterization and staging. Here we set
out to resolve the ambiguity by assessing whether there exist
distinct relationships between AD dementia severity versus
aging on functional brain system segregation and the specific
sets of network interactions that comprise the measure.

Materials and Methods
Participants
Participants included in the current study were recruited through the
Alzheimer’s Disease Neuroimaging Initiative (ADNI; for detailed informa-
tion on the project, see http://www.adni-info.org). Data were collected
under ADNI GO, ADNI 2, and ADNI 3 studies, and data were
downloaded directly from the ADNI database, all before December
1, 2022 (https://ida.loni.usc.edu/login.jsp?project¼ADNI). Written
consent was obtained from all participants, and each study was
approved by the Institutional Review Board at each participating
institution.

The diagnosis status of each participant was assessed at the initial visit
using the Wechsler Memory Scale, Mini-Mental State Exam (MMSE;
Folstein et al., 1975), clinical dementia rating (CDR; Hughes et al., 1982;
Morris, 1993), and the degree of subjective memory concerns (Petersen
et al., 2010). The participants categorized as AD were required to
meet the NINCDS-ADRDA (National Institute of Neurological and
Communicative Disorders and Stroke and the Alzheimer’s Disease
and Related Disorders Association) criteria for probable AD (McKhann et
al., 1984; Petersen et al., 2010). It is important to note that participants en-
rolled in ADNI included both cognitively healthy subjects and individuals
with cognitive impairments. In addition, as enrollment was based on clini-
cal symptoms rather than the presence of specific AD-related neuropa-
thology (Jack et al., 2018), it is possible that a number of cognitively
impaired participants may not have AD. However, the majority of partici-
pants were categorized as having probable AD based on their set of clinical
symptoms (McKhann et al., 1984; Petersen et al., 2010). In keeping with
this, the enrichment of the ADNI sample with participants exhibiting AD-
related genetic risk and pathologic markers has been confirmed (Aisen et
al., 2010; Jagust et al., 2015; Kang et al., 2015) and was also evident in the
present report. As such, we refer to participants as having AD-related
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dementia, but acknowledge here that a small set of participants may not
go on to be confirmed for AD. For the detailed inclusion criteria of partici-
pant groups, see the general clinical protocols of ADNI (https://adni.loni.
usc.edu/methods/documents/).

A total of 783 participants (age range, 55–96 years) were submitted
through structural and functional magnetic resonance imaging (fMRI)
processing. Participants’ data were only included in the final sample if
they had available (1) a resting-state fMRI and a structural MRI scan
that passed all quality control (QC) procedures for resting-state fMRI
and structural MRI processing (described below), (2) CDR score
assessed within 6months of the resting-state fMRI scan (mean, 19 d;
range, 0–203 d; SD, 33 d), and (3) demographic (age and self-reported
gender) and education information. Variables associated with clinical
status (i.e., CDR) were measured in separate clinical sessions. Some
participants had multiple resting-state scans available, collected at dif-
ferent dates, and the scan associated with the highest CDR rating was
included. Based on the above criteria, a total of 601 participants were
included in the final sample (female, n ¼ 320; age range, 55–96 years;
mean age, 74.70 years; SD, 8.11 years). Additionally, 550 participants in
the final sample had scores from the Alzheimer’s Disease Assessment
Scale—Cognitive Subscale (ADAS-Cog; Rosen et al., 1984) available,
each collected in the same session as when their CDR scores were
measured.

Data acquisition and preprocessing
Structural MRI. Under the ADNI protocol, MRI scans were

obtained on 3 T scanners in multiple scanning sites using standard
scanning protocols. General information about scanning protocols can
be found at https://adni.loni.usc.edu/methods/mri-tool/mri-analysis/.
The current study included structural MRI scans collected at the same
session as resting-state fMRI scans. Each structural MRI was recorded
using a 3D T1-weighted magnetization-prepared rapid acquisition gra-
dient echo sequence (TR, 2300 ms; TE, minimum full echo; voxel size,
1� 1�1 mm).

T1-weighted images were processed using FreeSurfer 6.0 to create
cortical surface images. The preprocessing steps included brain extrac-
tion, tissue segmentation, generation of white matter and pial surfaces,
inflating surfaces to a sphere, and surface shaped-based spherical regis-
tration of the participant’s native surface to the fsaverage surface (Dale et
al., 1999; Fischl et al., 1999a). A single deformation map was created for
each participant. The map combined two different deformation maps:
one was generated when registering an individual’s native surface to
FreeSurfer’s fsaverage atlas, and the other was generated through regis-
tering fsaverage-aligned data to a hybrid left–right fsaverage surface
(fs_LR; Van Essen et al., 2012). Each individual’s native FreeSurfer-gen-
erated output was registered to fs_LR using the single deformation map
in a one-step resampling procedure.

Amyloid pathology. A subset of participants had available informa-
tion related to presence of amyloid pathology. The level of cortical
amyloid-b (Ab ) uptake was used to categorize a participant’s Ab pa-
thology. Cortical Ab was preprocessed and analyzed by ADNI PET
core. For general protocols, see https://adni.loni.usc.edu/methods/pet-
analysis-method/pet-analysis/. In the current sample, cortical Ab uptake
was measured with either 18F-florbetapir or 18F-florbetaben imaging tracer.
The Ab uptake values were calculated using the whole cerebellum as the
reference region and considered as a continuous measure. In addition, the
presence of Ab pathology was considered categorically, based on cutoff
values that were provided by the ADNI PET Core (18F-florbetapir, global
standardized uptake value ratio (SUVR). 1.11; 18F-florbetaben, global
SUVR. 1.08; Landau et al., 2012, 2013). Based on these cutoff values, the
sample included 216 Ab1 participants (CDR 0, N¼ 93; CDR 0.5, N¼ 83;
CDR 1 and 2, N¼ 40) and 238 Ab – participants (CDR 0, N¼ 160; CDR
0.5,N¼ 72; CDR 1 and 2,N¼ 6).

Resting-state functional MRI. Resting-state fMRI scans were collected
under ADNI GO, ADNI 2, and ADNI 3 studies. Detailed information about
scanner protocols can be found at https://adni.loni.usc.edu/methods/
documents/mri-protocols/. Functional brain images from ADNI GO
that were included used an echoplanar imaging (EPI) blood oxygen-
ation level-dependent (BOLD) sequence (TR, 3000ms; TE, 30ms; flip

angle, 90°; 48 interleaved axial slices per frame). Each imaging session
included one run of a resting-state scan session, and each session con-
sisted of 140 frames. Functional brain images from ADNI 2 that were
included used an EPI BOLD sequence (TR, 3000ms; TE, 30ms; flip
angle, 90°; 48 interleaved axial slices per frame). Each session had one
run of resting-state scan session, and each session consisted of 140,
197, or 200 frames, depending on the scanning site. Functional brain
images from ADNI 3 that were included used an EPI BOLD sequence
(TR, 3000ms; TE, 30ms; flip angle, 90°; 48 interleaved axial slices per
frame). Each imaging session included one run of resting-state scan
session, and each session consisted of 200 frames.

BOLD images (resting state) corresponding to the same session as
each of the structural images were processed using a standard fMRI pre-
processing pipeline using Nipype 0.8.0. The preprocessing steps included
the following: (1) slice-timing correction because of interleaved slice ac-
quisition, using the middle slice as the reference slice; (2) rigid body cor-
rection for estimating and correcting head movement between frames;
and (3) realignment to the T1-weighted image from the same session.
All steps were performed using FSL 6.0, except for realignment between
frames and rigid body correction. SPM8 was used for realignment and
rigid body correction, as it provided more accurate estimates in our
processing stream.

Following standard fMRI preprocessing, additional resting-state
functional connectivity (RSFC)-specific processing steps were imple-
mented to reduce spurious variance that was unlikely to reflect neuronal
activity in the data. Considerable evidence has shown that older age is
associated with greater amounts of head movement (Mowinckel et al.,
2012; Van Dijk et al., 2012; Savalia et al., 2017), which has been shown to
systematically alter the correlation structure of resting-state signals (Van
Dijk et al., 2012; Satterthwaite et al., 2013; Yan et al., 2013; Power et al.,
2014, 2015; Zeng et al., 2014). To this end, while a part of the global sig-
nal may contain variance related to general levels of arousal and neural
activity (Schölvinck et al., 2010; Keller et al., 2013), a major component
of the global signal includes spatially nonspecific signal artifacts related
to head motion, cardiac signals and breathing (Satterthwaite et al., 2013;
Power et al., 2014, 2015, 2017). Removing the global signal thus helps
control these known influences of artifact (Yan et al., 2013; Power et al.,
2014, 2017). As no method presently exists for denoising known artifac-
tual signals while retaining all remaining “real” signals, the alternate
option of retaining the global signal in each participant is likely to result
in misestimation of correlations and the resultant network measures.
Based on these considerations, we used a series of motion-processing
procedures, including global signal regression (GSR) together with data-
censoring (“scrubbing”) and signal-processing procedures, as these pro-
cedures have been shown to best reduce global and distance-dependent
artifacts (Power et al., 2014; Ciric et al., 2017).

RSFC-specific processing steps involved the following steps and
order: (1) demeaning and detrending BOLD time series; (2) performing
multiple regression of the BOLD data to remove variance associated
with whole-brain gray matter signal (GSR), ventricular signal, white
matter signal, their derivatives, and the “Friston 24” motion regressors
(Friston et al., 1996); (3) removing and interpolating motion-contami-
nated frames that have frame-by-frame displacement (FD). 0.3 mm
(“scrubbing”; Power et al., 2014); (4) bandpass filtering (0.009–0.08Hz);
and (5) removing the interpolated frames that were used to preserve the
time series during regression and bandpass filtering.

Preprocessed resting-state data were registered to the fs_LR (32k) left
and right hemisphere surfaces because of improvement in alignment of
cortical anatomy in comparison with volume-based registration (Fischl
et al., 1999b). Using the transformation matrix and deformation maps
generated during preprocessing of the corresponding structural data,
volumetric functional data were resampled to the fs_LR surfaces through
a one-step transformation. Functional data on fs_LR surfaces were
smoothed using a Gaussian smoothing kernel (FWHM, 6 mm).

Structural and functional data processing quality control. All 783
participants’ structural and resting-state scans underwent structural and
fMRI preprocessing, motion processing, and surface mapping (if possi-
ble); 601 participants passed all structural and functional image QC
steps. Of the participants who were excluded from subsequent analysis,
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157 participants failed the fMRI motion-processing QC (i.e., they had
,100 frames remaining after motion scrubbing), 25 participants failed
structural processing QC (e.g., because of poor structural skull stripping)
or surface-mapping QC.

Individuals who failed motion processing (i.e., had ,100 clean
frames remaining after motion scrubbing) were not significantly older
than those that passed (t(781)¼ 0.19; p¼ 0.84), but exhibited higher CDR
scores (t(781)¼ 3.75; p, 0.001). As indicated earlier, some individuals
had a greater number of resting-state BOLD frames collected. Because
our criteria of excluding individuals with high head motion was based
on the absolute number of frames remaining (100), individuals who had
fewer frames collected may be more likely to be excluded than individu-
als who have more frames collected. To evaluate whether individuals
with higher CDR indeed lost a greater proportion of frames because of
head motion, we examined the effect of CDR on the percentage of frame
loss relative to the amount originally acquired. Controlling for age, CDR
scores were significantly associated with the percentage of frame loss
[b ¼ 0.08; t(780)¼ 3.34; partial r¼ 0.12; 95% confidence interval (CI) ¼
0.03, 0.13; p, 0.001]: more demented individuals had a greater percent-
age of frames lost. This difference in movement-related frame loss is
consistent with the observation that before scrubbing, mean head
motion during BOLD data acquisition differs as a function of CDR.
Critically however, these differences are no longer evident following
RSFC motion processing (Table 1). Age was not associated with the per-
centage of frame loss when controlling for CDR scores (b ¼ 0.001;
t(780)¼ 0.69; partial r¼ 0.02; 95% CI ¼ �0.002, 0.003; p¼ 0.49).
Individuals who failed structural QCs or surface-mapping QC were
younger than individuals who passed preprocessing and surface map-
ping (t(623) ¼ �1.67; p¼ 0.02), but showed no difference in CDR rating
(t(623)¼ 0.51; p¼ 0.89). Notably, the number of subjects who failed
structural processing QC was substantially small given that most individ-
uals were successfully preprocessed (passed, N¼ 601; failed, N¼ 25), so
these age differences should be interpreted with caution.

Brain network construction
Following surface mapping, a functional correlation matrix was con-
structed for each participant. To control for the variable number of clean
frames across participants, for each participant, the first 100 clean frames
were used in brain network analyses. The correlation matrix was gener-
ated with 441 surface-based nodes that were defined with boundary-based
analyses (Chan et al., 2014; Wig et al., 2014). Nodes were generated with
the following steps: (1) identifying putative area centers that were the local
minima of a previously published RSFC-boundary map (Cohen et al.,
2008; Wig et al., 2014); (2) creating disks with a radius of 3 mm around
the identified area centers to avoid area borders that may exhibit more
variance between individuals. All vertices within a node disk were identi-
fied based on their spatial overlap with an a priori vertex-wise community
map in the same fs_LR space (Power et al., 2011), where each disk was la-
beled with a functional system based on a winner-take-all approach.

The BOLD time series of all vertices within each node were averaged
to obtain the mean time series of the node. A correlation matrix (brain

network) was constructed by computing the pairwise Fisher’s z-trans-
formed Pearson’s correlation of each of the 441 nodes (Zar, 1996).
Because GSR may introduce spurious negative correlations (Murphy et
al., 2009), negative correlations were excluded from the correlation ma-
trix (i.e., setting all negative values to zero). Edge density thresholding
was not applied to the correlation matrix, as calculating brain system
segregation (described below) does not require a sparse network matrix.

System segregation calculation
Brain system segregation is defined as a measure of how segregated each
functional brain system is from each other (Chan et al., 2014; Wig,
2017). For each participant, brain system segregation was calculated as
the difference between the mean within-system correlation of all systems
and the mean between-system correlation of all systems in relation to
the mean within-system correlation.

The general formula of brain system segregation is as described in
the previous report (Chan et al., 2021), as follows:

Brain System Segregation ¼

XW

w
Zw

W �
XB

b
Zb

BXW

w
Zw

W

:

In the above formula, Zw represents the mean within-system correla-
tion and Zb represents the mean between-system correlation. W is the
number of within-system correlations across all brain systems, and B is
the number of between-system correlations across all brain systems.
Positive or higher segregation values reflect higher within-system corre-
lations compared with between-system correlations, indicating higher
separation (or “differentiation”) of brain systems. When a brain system
is disconnected from all other systems, it obtains the maximal segrega-
tion value of 1. Conversely, negative or lower values reflect lower within-
system correlations in relation to between-system correlations, indicat-
ing lower separation (or differentiation) of brain systems.

The segregation of specific types of brain systems (i.e., sensory-motor
system segregation, association system segregation; Fig. 1A, system cate-
gorization) were also calculated for each participant. Sensory-motor sys-
tems are primarily involved in processing sensory inputs and motor
outputs. Association systems are involved in more “higher-order” inte-
gration of information (Mesulam, 1990; Petersen and Posner, 2012). For
segregation of specific system types, within-system and between-system
correlations are pooled from specific functional systems. First, for each
functional system that is classified in a given system type (Fig. 1A), the
mean within-system correlation (Ws; average correlations between
nodes that belong to the same system S) and the mean between-system
correlation (Bs, average correlations between a single system, S, to all
other systems) is calculated. Then, system type-specific segregation is
calculated as the difference between the grand mean of mean within-sys-
tem correlationsWs and the grand mean of mean between-system corre-
lations �B, in relation to the grand mean ofWs (Chan et al., 2014).

Table 1. ADNI dataset demographic, imaging, health, and AD-related information

Variables CDR¼ 0 (n¼ 326) CDR¼ 0.5 (n¼ 220) CDR¼ 1 and 2 (n¼ 55) Total (n¼ 601) p

Age, years (SD) 73.96 (7.75) 74.98 (8.60) 77.95 (7.48) 74.70 (8.11) 0.001
Female, n (%) 186 (57.06%) 108 (49.09%) 26 (47.27%) 320 (53.24%) 0.12
Education, years (SD) 16.97 (2.17) 16.08 (2.69) 15.42 (2.41) 16.50 (2.45) ,0.001
Pulse rate, beats/min (SD) 64.56 (10.52) 64.13 (10.35) 64.45 (8.92) 64.39 (10.31) 0.76
Respiration rate, breaths/min (SD) 15.94 (2.30) 16.29 (2.45) 16.22 (2.24) 16.09 (2.36) 0.14
APOE41, n (%) 90 (27.61%) 76 (34.55%) 32 (58.18%) 198 (32.95%) ,0.001
MMSE, mean score (SD) 29.12 (1.17) 27.37 (2.43) 20.40 (4.70) 26.68 (3.31) ,0.001
Prescrubbing motion, mean FD (SD) 0.16 (0.06) 0.16 (0.06) 0.19 (0.06) 0.16 (0.06) 0.001
Postscrubbing motion, mean FD (SD) 0.12 (0.03) 0.12 (0.03) 0.13 (0.03) 0.13 (0.03) 0.61

The mean (SD) and counts (%) of numerical and categorical variables are shown for each CDR group and the entire sample. Statistical differences among the CDR groups were calculated using one-way ANOVA for continuous
variables and x 2 tests for categorical variables (p values reported). Participants included were identified with their maximum CDR level during the study. The resting-state scans included were acquired within 6 months from
their clinical sessions when CDR was measured. MMSE scores were measured in the same clinical session as CDR score evaluation, available for 598 participants. Vital signs including pulse and respiration rate were measured
at the same session as CDR, available for 591 participants. APOE4 status available for 517 participants: participants with at least one copy of APOE4 were categorized as APOE41.
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Statistical analysis
The present study used a cross-sectional design to determine the rela-
tionship between age and dementia severity on functional brain network
organization. Multiple linear regression models were used to examine
the effects of age and CDR scores on brain system segregation. CDR rat-
ing was coded as a continuous variable to model dementia severity on a
linear scale for the primary analyses. A subset of participants had avail-
able a measure of cortical Ab deposition or their apolipoprotein «4 al-
lele (APOE4) status, which were each treated as independent variables in
separate multiple linear regression models. Additional variables included
participant’s gender, head motion (i.e., postscrubbing mean FD) and
years of education; all reported linear regression models controlled for
these covariates. A subset of participants had available measures of pulse
rate and respiration rate (Table 1, caption); these latter variables were
also included as covariates in secondary analyses.

For all analyses, including the effect of imaging sites as an additional
covariate did not alter the conclusions presented throughout the report.

Higher-order interaction terms were included in linear regression
models. In several cases, there was an absence of a significant effect of
the interaction terms, and the total variance explained by the model was
either comparable to or lower than a corresponding model in which the
interaction terms were removed. Considering this, together with the
demonstration that including all possible interaction terms can lead to
increasing rates of false negatives and false positives of other effects
included in the model (Quinn and Keough, 2002; Engqvist, 2005;
Huitema, 2011), under this scenario we removed these higher-order
terms and recalculated the models, limiting the estimation to main
effects of the variables.

Where applicable, multiple-comparison correction on post hoc tests
was performed with a Bonferroni correction.

To examine relationships within and across specific systems, for each
participant, block matrices were computed from their node-by-node

RSFC matrix, based on predefined system labels (Power et al., 2011). For
each system, within-system blocks were computed as the average corre-
lation across relationships among nodes in the same system, and
between-system blocks were computed as the average correlation across
relationships among nodes between pairs of different systems. Given
that the distributions of node-by-node correlations in some blocks can
be skewed, statistical significance was evaluated using a permutation test
(N¼ 1000) by randomly shuffling CDR labels across participants. The
permutation test was computed by controlling for all covariates in the
original model. Blocks that exhibited statistically significant regression
coefficients were visualized [p, 0.05 uncorrected and false discovery
rate (FDR) corrected].

We also directly tested whether the effects of age and CDR on system
segregation varied according to system type using linear mixed-effects
models. Three separate models were used to test the interactions between
age and system type, CDR and system type and their three-way interac-
tions. System type was considered as a within-subject effect, and other var-
iables were included as between-subject effects. The effect of age was
controlled in the model that tested the interaction between CDR and sys-
tem type, while the effect of CDR was controlled in the model that tested
the interaction between age and system type. Parallel analyses were per-
formed to evaluate differences in mean network interactions for within-
system network interactions versus between-system network interactions.

Software availability
Multiple linear regression models and linear mixed-effects models
were performed in Python 3.8 using statsmodels (version 0.12.0).
Data visualization was conducted in Python 3.8 using seaborn (ver-
sion 0.11.1). Block-level matrix comparisons were conducted in
MATLAB R2020b using in-house scripts. Visualization of nodes on
cortical surfaces were generated using Connectome Workbench (ver-
sion 1.4.2).

Figure 1. Resting-state brain system segregation decreases as a function of both age and dementia severity. A, Resting-state functional brain networks of each participant were constructed based on
nodes (Chan et al., 2014) that are labeled by corresponding functional systems (Power et al., 2011). B, Brain system segregation is plotted for each individual as a function of their age and CDR rating (de-
mentia severity). Older adult individuals exhibit lower brain system segregation than younger adults, reflecting a disrupted modular organization. This relationship is evident across all levels of CDR scores
(p, 0.001). Irrespective of age, increasing dementia severity (measured with the participant’s CDR score) is associated with lower brain system segregation (p, 0.001). For the scatterplot, colored lines
reflect the linear regression between age and system segregation as a function of CDR ratings. The shading of each color line depicts the 95% confidence interval for the regression estimates between age
and system segregation. C, Brain system segregation is plotted for each individual as a function of their CDR rating (dementia severity) and PET Ab status. Higher dementia severity is associated with lower
brain system segregation, which remains evident across both the Ab – and Ab1 groups of individuals [note that there are very few individuals that are classified as Ab – who have CDR ratings of either
1 or 2 (N¼ 6)]. Asterisks between bars indicate a significant difference in brain system segregation revealed by post hoc t tests; ***p, 0.001, corrected for multiple comparisons.
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Code availability
The code of multiple linear regression and linear mixed-effects
models is available at https://github.com/ziweizhang2405/python_
statsmodel_brain_network. The calculation of brain system segre-
gation is available at https://gitlab.com/wiglab/system-segregation-and-
graph-tools.

Data availability
Data used in the study are available to investigators on request and ap-
proval from the ADNI Data and Publications Committee. Instructions
for making a request can be found at https://adni.loni.usc.edu/data-
samples/access-data/.

Results
Participants characteristics
Participant’s ages ranged from 55 to 96 years at the time of their
fMRI data acquisition (N¼ 601; 320 females; Table 1, additional
participant characteristics). Individuals designated as cognitively
normal, mildly cognitive impaired (MCI), and demented were all
included in the sample. Given that the CDR system is more
sensitive and reliable in measuring cognitive dysfunction than
alternate cohort labels and rating systems (Balsis et al., 2015),
dementia severity was defined by the participant’s CDR
scores, which were measured close in time to their brain imag-
ing session (mean time, 19 d; time range, 0–203 d; Hughes et
al., 1982; Morris, 1993). As the number of participants with a
CDR status of 1 and 2 (corresponding to mild and moderate
dementia, respectively) were substantially fewer than those
with scores of 0 and 0.5, these former two groups were com-
bined. Age varied across CDR scores thus allowing us to
untangle the relationships among age, dementia severity, and
patterns of brain network organization.

Age and dementia severity independently relate to brain
system segregation
Brain networks were constructed for each individual using a pre-
defined atlas of nodes and functional system assignments (Fig.
1A; Power et al., 2011; Chan et al., 2014). To determine the rela-
tionship between age and dementia severity on brain system seg-
regation, we examined the effects of age and CDR scores on
cortex-wide brain system segregation, controlling for partici-
pant’s gender, head motion (i.e., postscrubbing mean FD) and
years of education (all reported linear regression models con-
trolled for these covariates).

First, a statistical model demonstrated the absence of a sig-
nificant interaction between participant age and CDR status
on brain system segregation (age � CDR: b ¼ 0.0007; 95% CI ¼
�0.001, 0.003; t(594)¼ 0.60; partial r¼ 0.02; p¼ 0.55).

A separate multiple linear regression model that included
the main effects of age and CDR status explained a significant
amount of variance in brain system segregation (R2 ¼ 0.13;
adjusted R2 ¼ 0.12; F(5,595)¼ 16.98; p, 0.001). As depicted in
Figure 1B, age exhibited a significant relationship with brain
system segregation (b ¼ �0.002; 95% CI ¼ �0.002, �0.0001;
t(595) ¼ �4.18; partial r ¼ �0.17; p, 0.001); older adults
exhibited less segregated functional brain networks than their
younger counterparts. Notably, CDR status also exhibited a
significant relationship with brain system segregation (b ¼
�0.04; 95% CI ¼ �0.06, �0.03; t(595) ¼ �4.90; partial r ¼
�0.20; p, 0.001); greater dementia severity was associated
with lesser brain network segregation, independent of the var-
iance explained by age.

In the preceding analyses, CDR status was included as a
continuous variable to examine the relationship between
increasing dementia severity and brain network organization.
Treating CDR status as a categorical variable yielded similar
results. The model explained a significant amount of variance
in brain system segregation (R2 ¼ 0.13; adjusted R2 ¼ 0.12;
F(6,594)¼ 14.74; p, 0.001). Patients with CDRs of 1 and 2 did
not show a difference in cortex-wide system segregation from
individuals with CDR¼ 0.5 (t(273)¼ 1.01; p¼ 0.94), but indi-
viduals with CDRs of 0.5 (t(544)¼ 5.17; p, 0.001, corrected for
multiple comparisons) and CDRs of 1 and 2 (t(379)¼ 4.46;
p, 0.001, corrected for multiple comparisons) exhibited sig-
nificantly lower cortex-wide system segregation than cogni-
tively normal participants (i.e., CDR¼ 0).

To further account for potential sources of non-neuronal
variability across participants, participant’s heart rate and res-
piration were included in statistical models as additional cova-
riates (a subset of participants had these measures available;
N¼ 591). Similar to the initial findings, the multiple linear
regression model explained a significant amount of variance
in brain system segregation (R2 ¼ 0.13; adjusted R2 ¼ 0.12;
F(7,583)¼ 12.58; p, 0.001). The main effects of CDR status
and age remained significant (CDR: b ¼ �0.04; 95% CI =
�0.06, �0.02; t(583) ¼ �4.69; partial r¼ 0.19; p, 0.001; age:
b ¼ �0.001; 95% CI ¼ �0.002, �0.001; t(583) ¼ �4.25; partial
r¼ 0.17; p, 0.001). Pulse rate and respiration rate were not
significantly related to brain system segregation (pulse: b ¼
�0.0005; 95% CI ¼ �0.001, 0.0001; t(583) ¼ �1.86; partial
r¼ 0.08; p¼ 0.06; respiration: b ¼ �0.0008; 95% CI =
�0.003, 0.002; t(583) ¼ �0.67; partial r¼ 0.03; p¼ 0.51).

Given that the ADNI participant cohort is tailored toward the
presence of AD, it is important to consider the extent to which
the relationship between dementia severity and brain network
organization are related to the presence of AD-related pathology.
A subset of participants had available PET-based measures of
cortical Ab ; the mean cortical Ab SUVR was included together
with participants age and CDR scores, to evaluate their relations
to brain system segregation. The first statistical model included
higher-order interactions and demonstrated an absence of a
significant three-way interaction among cortical Ab deposi-
tion, age, and CDR status on brain system segregation (age �
CDR � Ab SUVR: b ¼ 0.007; 95% CI = �0.005, 0.02;
t(443)¼ 1.15; partial r¼ 0.05; p¼ 0.25). In addition, there were
no significant two-way interactions between any of the inde-
pendent variables on brain system segregation (all p values
. 0.10). A separate multiple linear regression model that
included the main effects of cortical Ab deposition, age, and
CDR status explained a significant amount of variance in brain
system segregation (R2 ¼ 0.13; adjusted R2 ¼ 0.11;
F(6,447)¼ 10.66, p, 0.001). The main effects of CDR and
age were significant (CDR: b ¼ �0.05; 95% CI ¼ �0.07,
�0.03; t(447) ¼ �4.54; partial r ¼ �0.21; p, 0.001; age: b ¼
�0.001; 95% CI ¼ �0.002, �0.0001; t(447) ¼ �3.06; partial r ¼
�0.14; p¼ 0.002), while cortical Ab deposition was not signifi-
cantly associated with brain system segregation (b ¼ 0.01; 95%
CI ¼ �0.02, 0.04; t(447)¼ 0.70; partial r¼ 0.03; p¼ 0.49).
Stratifying individuals based on established cut points of PET
Ab SUVR did not alter the significant effects of CDR and age
(R2 ¼ 0.13; adjusted R2 ¼ 0.11; F(6,447)¼ 10.60; p, 0.001; CDR:
b ¼ �0.04; 95% CI ¼ �0.07, �0.02; t(447) ¼ �4.34; partial r ¼
�0.20; p, 0.001; age: b ¼ �0.001; 95% CI ¼ �0.002,
�0.0001; t(447) ¼ �2.92; partial r ¼ �0.14; p¼ 0.004; cortical
Ab (Ab1 vs Ab –): b ¼ �0.003; 95% CI ¼ �0.02, 0.01; t(447) ¼
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�0.38; partial r ¼ �0.02; p¼ 0.70). Figure 1C depicts these rela-
tionships whereby participants were categorized as cortical Ab1

versus Ab – (based on cutoffs established by the ADNI PET Core;
Landau et al., 2012, 2013).

Likewise, a subset of participants had their APOE4 status
avaliable. The absence or presence of the APOE «4 allele
(i.e., at least one copy of the APOE «4 allele) was included
together with participant ages and CDR scores to evaluate
their relations to brain system segregation. The first linear
regression model included higher-order interactions and
indicated an absence of a significant three-way interaction
among CDR, age, and APOE4 status (CDR � age � APOE4
status: b ¼ 0.001; 95% CI ¼�0.001, 0.004; t(506)¼ 0.89; par-
tial r¼ 0.04; p¼ 0.38). In addition, there were no significant
two-way interactions between any of the independent varia-
bles on brain system segregation (all p values. 0.30). A sepa-
rate multiple linear regression model that included the main
effects of age, CDR status, and APOE4 status explained a
significant amount of variance in brain system segregation
(R2 ¼ 0.11; adjusted R2 ¼ 0.10; F(6,510)¼ 10.13; p, 0.001).
The effects of CDR and age remained significant (CDR: b ¼
�0.04; 95% CI ¼ �0.05, �0.02; t(510) ¼ �3.79; partial r¼ �0.17;
p, 0.001; age: b ¼ �0.001; 95% CI¼ �0.002, �0.0001; t(510) ¼
�2.92; partial r ¼ �0.13; p¼ 0.004), while APOE4 status was
not significantly associated with brain system segregation (b ¼
0.006; 95% CI ¼ �0.001, 0.01; t(510)¼ 1.74; partial r¼ 0.08;
p¼ 0.08).

Collectively, the observations indicated that adult aging and
dementia severity uniquely relate with the segregation of large-
scale resting-state brain systems. Importantly, the difference in
the segregation of brain systems between cognitively healthy and
demented individuals cannot be fully explained by the presence
of amyloid burden or AD genetic risk and does not seem to be
moderated by these factors. Advanced aging and the presence
of severe cognitive impairment are each associated with less
segregated resting-state network organization, possibly because
of the reorganization of distinct parts of the brain network.

Age and dementia severity are associated with modified
interactions among distinct functional systems
The measure of brain system segregation aggregates relationships
across all examined brain systems. It is possible that adult aging
and AD dementia are related to alterations in unique brain

systems and/or types of functional relationships that are not cap-
tured by the summary measure of brain network organization
(Wig, 2017). This possibility was confirmed by examining matri-
ces depicted in Figure 2, which revealed the mean system-to-sys-
tem relationships varying with age and CDR (while controlling
for the alternate measure, in addition to controlling for gender,
postscrubbing mean FD, and years of education). Increasing age
was most prominently associated with weakening of relation-
ships within several brain systems including the frontoparietal
task control, cingulo-opercular task control, default, and visual
and auditory systems. Increasing age was also associated with the
strengthening of relationships between the default and dorsal
attention system and between the default and the cingulo-oper-
cular task control system (Fig. 2A). Increasing dementia severity
was associated with a distinct set of alterations relative to aging.
These alterations were prominent among cross-system interac-
tions across the brain. In particular, there was a strengthening of
relationships between the default system with several major brain
systems, including the visual system, frontoparietal task control
system, ventral attention system and the cingulo-opercular task
control system (Fig. 2B). Higher dementia severity was also asso-
ciated with stronger relationships between the frontoparietal task
control system and multiple major brain systems, including the
visual system and the default mode system and between the
memory retrieval system and multiple sensory-motor systems.
Moreover, increasing dementia severity was also associated with
the weakening of relationships within the hand somato-motor
system, the mouth somato-motor system, and the cingulo-
opercular task control system. Together, it appears that adult
aging particularly modifies functional relationships among sys-
tems involved in more higher-order integration of information
(association systems), while dementia severity relates to func-
tional relationship differences across both association and sen-
sory-motor systems, which are involved in processing sensory
inputs and motor outputs (Fig. 1A, specific distinctions;
Mesulam, 1990; Petersen and Posner, 2012).

The apparent distinctions in functional system vulnerability
were tested directly by evaluating differences in brain system seg-
regation for sensory-motor systems versus system segregation
for association systems. Specifically, we tested whether the effects
of age and CDR on system segregation varied according to sys-
tem type, whereby system type referred to categorization of sen-
sory-motor versus association systems (Fig. 1A).

Figure 2. System-wide relationships vary in relation to increasing dementia severity and age. A, B, Matrices depict significant relationships between a participant’s age (A) and CDR scores
(B), while controlling for the alternate independent measure, on mean correlations between sets of nodes within and across individual brain systems (block level). Age-accompanied alterations
are most prominent among within-system relationships (on-diagonal), particularly reflecting a weakening of within-system relationships among association systems [e.g., default system, fron-
toparietal task control system, cingulo-opercular task control system (black arrows)]. In contrast, higher CDR is accompanied by widespread alterations that are most prominent among
between-system relationships (off-diagonal) and include both sensory-motor and association systems. These alterations are most notable in relationships involving the default system, fronto-
parietal task control system and memory retrieval system with other association and sensory-motor systems (black dotted borders). Each matrix depicts significant regression coefficients (darker
shading: p, 0.05, FDR corrected; lighter shading: p, 0.05, uncorrected).
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A linear mixed-effects model included a three-way interaction
among age, CDR, and system type on system segregation indi-
cated no significant three-way interaction between the three vari-
ables (age � CDR � system type: b , �0.001; 95% CI ¼
�0.001, 0.001; t(597)¼ �0.61; partial r¼ �0.02; p¼ 0.54).

A second linear mixed-effects model predicting system segre-
gation revealed a significant interaction between age and system
type, controlling for CDR and other covariates (conditional R2 ¼
0.68; marginal R2 ¼ 0.21; age� system type: b ¼ 0.001; 95% CI¼
0.0001, 0.001; t(599)¼ 4.68; partial r¼ 0.19; p, 0.001). As shown
in Figure 3, increasing age was associated with decreasing system
segregation of association systems (b ¼ �0.002; 95% CI ¼
�0.003, �0.001; t(595) ¼ �5.18; partial r ¼ �0.21; p, 0.001,
corrected for multiple comparisons; Fig. 3A,C), but not of sen-
sory-motor systems (b ¼ �0.0004; 95% CI ¼ �0.001, 0.0001;
t(595)¼�1.09; partial r¼�0.04; p¼ 0.98; Fig. 3B,C). In contrast,
an additional linear mixed-effects model predicting system segre-
gation revealed no significant interaction between CDR and
system type, controlling for age and other covariates (CDR �
system type: b , 0.001; 95% CI ¼ �0.008, 0.008; t(599)¼ 0.07;
partial r¼ 0.02; p¼ 0.94). As shown in Figure 3, increasing
dementia severity was associated with decreasing brain sys-
tem segregation for both association systems (b ¼ �0.04;

95% CI ¼ �0.06, �0.02; t(595) ¼ �4.64; partial r ¼ �0.19;
p, 0.001, corrected for multiple comparisons; Fig. 3A,D)
and sensory-motor systems (b ¼ �0.04; 95% CI ¼ �0.06,
�0.03; t(595) ¼ �4.50; partial r ¼�0.18; p, 0.001, corrected
for multiple comparisons; Fig. 3B,D). Post hoc t tests dem-
onstrated that individuals with CDR of 0.5 and CDR of 1
and 2 showed lower association system segregation than
individuals with CDR¼ 0 (CDR¼ 0.5 vs CDR¼ 0: t(544)¼ 3.42;
p, 0.001; CDR¼ 1 and 2 vs CDR¼ 0: t(379)¼ 5.20; p, 0.001;
both values were corrected for multiple comparisons).
Individuals with CDRs of 1 and 2 also showed lower association
system segregation than individuals with CDRs of 0.5 (t(273)¼
2.50; p¼ 0.04, corrected for multiple comparisons). Similarly,
individuals with CDRs of 0.5 and CDRs of 1 and 2 showed
lower sensory-motor system segregation than individuals
with CDRs of 0 (CDR¼ 0.5 vs CDR¼ 0: t(544)¼ 3.44;
p¼ 0.002; CDR¼ 1 and 2 vs CDR¼ 0: t(379)¼ 4.40, p, 0.001;
both were corrected for multiple comparisons). Individuals with
CDRs of 1 and 2 showed lower sensory-motor system segregation
than individuals with CDRsof 0.5 (t(273)¼ 1.99; p¼ 0.048, uncor-
rected), confirming that aging and dementia relate to alterations
in functional relationships among nonequivalent types of brain
systems.

Figure 3. Dementia severity and age exhibit different relationships with the segregation of sensory-motor system versus association system. A, Association system segregation is plotted
for every individual as a function of their age and CDR score. Increasing adult age is associated with lower association system segregation, regardless of CDR score. Similarly, increasing
CDR score is associated with lower association system segregation, regardless of age. B, Sensory-motor system segregation is plotted for every individual as a function of their age and
CDR score. Increasing dementia severity (CDR) is associated with lower sensory-motor system segregation, regardless of age. In contrast to association system segregation, sensory-motor
system segregation is not related to age. For the scatterplots, colored lines reflect the linear regression between age and system segregation as a function of CDR scores. The shading of
the colored lines depicts the 95% confidence interval for the regression estimates between age and system segregation. C, With increasing age, association system segregation decreases
more than sensory-motor system segregation. Colored lines reflect the linear regression between age and system segregation as a function of system types. The shading of the colored
lines depicts the 95% confidence interval for the regression estimates between age and system segregation for both types of systems. D, Greater dementia severity (higher CDR score) is
associated with lower segregation of both association system and sensory-motor systems. For the boxplot, the colored boxes denote the quartiles of the system segregation values of each
CDR group. The whiskers include values that fall outside of the interquartile range with individual dots denoting the outliers of each CDR group. Asterisks between bars indicate a signifi-
cant difference in brain system segregation revealed by post hoc t tests; *p, 0.05, **p, 0.01, ***p, 0.001, corrected for multiple comparisons. The group difference that did not sur-
vive Bonferroni correction is also denoted (;p, 0.05, uncorrected).
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Impacts of dementia severity and age vary for different types
of network interactions
In the matrices depicted in Figure 2, it is evident that aging and
dementia severity may be dissociable not only according to proc-
essing roles of functional systems, but also by the types of net-
work interactions. Specifically, age appears to be more related to
interactions among nodes within brain systems, while dementia
severity appears to be more related to the interactions spanning
across (between) brain systems. We tested the hypothesis of this
dissociation directly.

A linear mixed-effects model including a three-way interac-
tion among age, CDR, and network interaction on system segre-
gation indicated no significant three-way interaction among the
three variables (age � CDR � network interaction type: b ,
0.001; 95% CI = �0.0003, 0.001; t(597)¼ 0.81; partial r¼ 0.04;
p¼ 0.42).

The second linear mixed-effects model revealed a significant
interaction between age and network interaction type, control-
ling for CDR and other covariates (conditional R2 ¼ 0.88; mar-
ginal R2 ¼ 0.86; age � network interaction type: b , �0.001;
95% CI = �0.001, �0.0003; t(599) ¼ �5.41; partial r ¼ �0.22;
p, 0.001, corrected for multiple comparisons). There was a sig-
nificant effect of age on mean within-system network interac-
tions (b , �0.001; 95% CI = �0.001, �0.0001; t(595) ¼ �4.60;
partial r ¼ �0.19; p, 0.001, corrected for multiple comparisons;

Fig. 4A), which was not evident when comparing age with
between-system interactions (b , �0.001; 95% CI = �0.0001,
0.0001; t(595) ¼ �0.75; partial r ¼ �0.03; p¼ 0.98; Fig. 4B). This
distinction is summarized in Figure 4C. A separate linear mixed-
effects model also indicated a significant interaction between
CDR and network interaction type, controlling for age and other
covariates (conditional R2 ¼ 0.88; marginal R2 ¼ 0.85; CDR �
network interaction type: b ¼ �0.01; 95% CI = �0.01, �0.006;
t(599) ¼ �4.51; partial r ¼ �0.17; p, 0.001). CDR was signifi-
cantly associated with stronger mean between-system network
interactions (b ¼ 0.005; 95% CI = 0.002, 0.008; t(595)¼ 3.27; par-
tial r ¼ �0.13; p¼ 0.005, corrected for multiple comparisons;
Fig. 4B), and exhibited a weaker (and negative) relationship with
mean within-system network interactions (b ¼ �0.01; 95%
CI ¼ �0.02, 0.002; t(595) ¼ �2.45; partial r ¼ �0.10; p¼ 0.06;
Fig. 4A). This distinction is summarized in Figure 4D. Aging and
AD dementia relate with functional relationships among nodes
that show distinct types of network interactions.

Evaluation of relationships between dementia severity and
brain system segregation using alternate measures of
cognitive dysfunction
The CDR system is a clinically sensitive and reliable tool
for measuring cognitive dysfunction (Perneczky et al., 2006;
Fagundes Chaves et al., 2007; Balsis et al., 2015). However, to

Figure 4. Dementia severity and age are associated with alterations in distinct types of network interactions. A, Within-system network interactions averaged across all systems are plotted
as a function of the participant’s age and CDR score. Increasing adult age is related to lower mean within-system interactions, regardless of CDR score. CDR is less related to differences in within-sys-
tem interactions. B, Between-system network interactions averaged across all systems are plotted as a function of the participant’s age and CDR score. Increasing dementia severity (CDR) is associated
with higher mean between-system interactions, regardless of age. In contrast to CDR, age is not related to differences in between-system interactions. For the scatterplots, colored lines indicate the
linear regression between age and network interactions (i.e., within-system and between-system interactions). C, Older age is associated with decreasing within-system interactions. Colored lines
depict the linear regression between age and mean network interactions as a function of network interaction types. D, Greater dementia severity is associated with increasing between-system inter-
actions and to a lesser extent, decreasing within-system interactions (see text for details). For the boxplot, the colored boxes denote the quartiles of mean network interactions of each CDR group.
The whiskers include values that fall outside of the interquartile range with individual dots denoting the outliers of each CDR group. Asterisks between bars indicates a significant difference in net-
work interactions revealed by post hoc t tests; *p, 0.05, **p, 0.01, corrected for multiple comparisons. Nonsignificant comparisons are not denoted. In A, B, and C, the shading of the colored
lines indicates the 95% confidence intervals for the regression estimates between age and network interactions as a function of CDR score or types of network interactions.
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verify that the relationships among age, dementia severity,
and system segregation extend to other assessments of cog-
nitive dysfunction, we evaluated participant’s ADAS-Cog
scores. ADAS-Cog is a continuous measure that incorporates
multiple cognitive tasks including memory, attention, and
language function. Controlling for age, participant’s ADAS-
Cog scores were significantly related to brain system segrega-
tion (b ¼ �0.001; 95% CI = �0.001, �0.0001; t(544) ¼ �2.53;
partial r ¼ �0.11; p¼ 0.01). Higher scores, corresponding to
worse cognitive function, were associated with lower system
segregation. Likewise, paralleling the findings with CDR scores,
ADAS-cog scores were negatively associated with sensory-
motor system segregation (b ¼ �0.001; 95% CI = �0.002,
�0.0001; t(544) ¼ �3.45; partial r ¼ �0.15; p¼ 0.001, corrected
for multiple comparisons), association system segregation
(b ¼�0.001; 95% CI =�0.002,�0.0001; t(544) ¼�3.10; partial
r ¼ �0.13; p¼ 0.004, corrected for multiple comparisons), and
between-system network interactions (b ¼ 0.0001; 95% CI =
0.00,001, 0.00; t(544)¼ 2.18; partial r¼ 0.09; p¼ 0.03, uncor-
rected), but not within-system network interactions (b ¼
�0.0002; 95% CI = �0.001, 0.0001; t(544) ¼ �1.10; partial r ¼
�0.05; p¼ 0.27), supporting the hypothesis that AD-related
cognitive dysfunction is accompanied by alterations in brain
network interactions that span multiple large-scale brain sys-
tems that are not limited to higher-order operations. As with
the primary analyses, a participant’s gender, head motion (i.e.,
postscrubbing mean FD), and years of education were included
as covariates. Altogether, examination of the continuous mea-
sure of cognitive function reveals parallel relationships with
system segregation and explains the unique variance relative to
a participant’s age, as was observed with CDR scores.

Discussion
AD dementia severity and aging were independently associ-
ated with reductions in resting-state brain system segrega-
tion. Dementia severity-related brain network alterations
were evident regardless of the presence of amyloid burden or
AD-related genetic risk (presence of a copy of APOE4).
Closer examination revealed that greater dementia severity
and older age were associated with alterations in distinct sets
of resting-state correlations, which were dissociable in terms
of their functional roles and nature of network interactions.
These results demonstrate that aging-related and dementia-
related brain dysfunction can be untangled by examining
alterations in large-scale resting-state network organization
and that functional network organization can contribute a
valuable source of information for AD characterization and
staging.

Alzheimer’s disease dementia is associated with alterations
in functional network interactions involving both
association and sensory-motor systems
The present report dovetails with early reports implicating AD-
associated alterations in relationships among default system
regions (Greicius et al., 2004; Sorg et al., 2007; Binnewijzend et
al., 2012; Damoiseaux et al., 2012; Badhwar et al., 2017), but
demonstrates that AD dementia severity has more widespread
effects on functional relationships that are not limited to either
the default system or even association networks (Chhatwal et
al., 2018; Fountain-Zaragoza et al., 2023). Rather, increasing de-
mentia severity is associated with alterations in brain network
relationships that involve systems implicated in both higher-

order cognitive operations (association systems) and those
involved in sensory and motor processing. These alterations are
evident even in mild cases of impairment (i.e., CDR¼ 0.5), and
are distinct from aging-related functional network alternations
that tend to spare sensory-motor systems relative to association
systems (Chan et al., 2014; Wig, 2017).

AD is classically associated with cognitive deficits in proc-
esses involving long-term memory and executive function
(Salmon and Bondi, 2009; Weintraub et al., 2012). To this
end, the observed alterations in sensory-motor network rela-
tionships may be unexpected (but for parallel observations
see Strain et al., 2022). While appropriate data to make com-
parisons between brain network alterations and sensory and
motor processing were not available in the present dataset,
there is substantial evidence of early deficits in sensory proc-
essing among AD patients (Albers et al., 2015; Murphy,
2019). Compared with healthy individuals, individuals with
MCI or advanced dementia can exhibit impairment in visual
(Kirby et al., 2010), auditory (Loughrey et al., 2018), and ol-
factory processing (Wilson et al., 2009; Roberts et al., 2016).
Olfactory impairment and hearing loss have also been reported
to be preclinical markers for developing dementia symptoms in
healthy adults (Wilson et al., 2009; Lin et al., 2011; Loughrey et
al., 2018). Relatedly, both patients with MCI and dementia ex-
hibit impairments in even rudimentary motor function (Kluger
et al., 1997; Aggarwal et al., 2006; Zidan et al., 2012). Altogether,
it is clear that sensory and motor function are not spared in AD
dementia and that network alterations involving brain systems
subserving sensory and motor processing may be early indicators
of the disease.

Interactions between functional systems are prone to
dementia-related alterations
The deterioration of structural connections in AD patients has led
to a “disconnection hypothesis” of AD dysfunction (Delbeuck et
al., 2003; Stoub et al., 2006). An aspect of the present results is
counterintuitive in this regard, whereby resting-state functional
relationships across distinct brain systems are strengthened
rather than weakened; earlier studies examining AD-associated
alternations in resting-state network interactions did not report
strengthening of between-system relationships (Brier et al.,
2012; Chhatwal et al., 2018). A subsequent study demonstrated
a relationship between increasing dementia severity and greater
between-system RSFC correlations, although this relationship
was specific to interactions between the default and frontopari-
etal task control systems (Contreras et al., 2019). Relatedly, AD-
related brain network alterations have been reported using
graph theory applied to several other brain-imaging techniques
(Gong et al., 2009; Stam et al., 2009; Zhao et al., 2015; Kabbara
et al., 2018; Cieri et al., 2021), and some of these observations
conceptually align with the present resting-state BOLD find-
ings. Nonetheless, the reason for the observed strengthening is
presently uncertain, but it is possible that these changes are a
maladaptive consequence of white matter structural disconnec-
tion (Grady et al., 2003; Dickerson and Sperling, 2008) and/or
damage to brain network hubs. Hub regions facilitate informa-
tion integration between distinct brain systems (Guimerà and
Nunes Amaral, 2005; Power et al., 2013), and several reports
have provided evidence that hub locations may be particularly
prone to AD-related damage (Buckner et al., 2005; Drzezga et
al., 2011; Crossley et al., 2014; Badhwar et al., 2017) and linked
to the clinical manifestation of dementia (Roussarie et al., 2020).
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Interestingly, descriptions of behavioral impairments in AD
dementia converge with the idea that cross-network interactions
may be particularly altered in the disease. Compared with
healthy control subjects, AD dementia patients show lower per-
formance in neuropsychological tasks involving integration of
information across multiple sensory modalities (Salmon and
Bondi, 2009; Vallet et al., 2013) but exhibit intact ability to pro-
cess sensory inputs of each modality separately (Delbeuck et al.,
2007). Notably, episodic memory impairments, a hallmark of
AD, are largely due to disruptions in integrative or relational
processing that are supported by medial temporal lobe structures
(Cohen and Eichenbaum, 1993). The present brain network
observations support the hypothesis that a primary deficit of AD
dementia is that of information integration.

In contrast to dementia, age-associated alterations were
prominent among within-system relationships. The weakening
of within-system interactions observed with increased age is
likely reflective of the progressive loss of brain area specializa-
tion (Park et al., 2004; Chan et al., 2017; Koen and Rugg, 2019).
Previous work by our group and others have reported that
increasing age is associated with both decreasing within-system
relationships and increasing between-system correlations
(Chan et al., 2014; Geerligs et al., 2015a; Grady et al., 2016). The
latter was not evident in the present comparisons. It is possi-
ble that these previous reports of aging-associated alterations
in between-system relationships were due to unaccounted
preclinical pathology that may exist in individuals categorized
as “healthy” (Brier et al., 2014b; Harrington et al., 2021).
Alternatively, the discrepancy may relate to the degree of sta-
tistical control for cardiac and respiratory signals. These sig-
nals have been shown to confound age-related differences in
functional correlations if appropriate steps are not taken to
ensure mitigation of the sources of variance (Geerligs et al.,
2017; Kong et al., 2020). However, the processing pipeline we
used here is similar to that used in our previous work, which
also demonstrated age-related alterations in between-system
correlations (Chan et al., 2014), including a combination of
techniques that both corrected the BOLD signal and covaried
measures accounting for respiration-related and cardiac-
related differences across participants. While both of the
explanations above are plausible, one additional consideration
is that the effects of age were estimated after adjusting for cog-
nitive impairment scores across a range of healthy and unheal-
thy adults (both using CDR and using ADAS-Cog), which is
different from previous reports that were conducted in largely
healthy participant samples.

Dementia-related alterations in brain system segregation are
independent of the presence of amyloid pathology
Greater dementia severity is associated with lower brain system
segregation, regardless of the presence of mean cortical amyloid
burden. In addition, the spatial pattern of the observed func-
tional network alterations is distinct from the distribution of
AD-related brain pathology, where deposition of amyloid is
most prominent in brain systems involved in memory and exec-
utive function operations but tends to spare sensory and motor
systems, at least in early stages of the disease (Buckner et al.,
2005; Jagust, 2013; Palmqvist et al., 2017). It remains to be seen
whether the extent to which the functional network alterations
reported here are more closely related to the presence of tau pa-
thology (Steward et al., 2023) and whether they are specific to
AD, especially as other forms of dementia typically impact unique
sets of brain regions and are accompanied by distinct types of

behavioral impairments (e.g., behavioral variant frontotemporal
dementia, vascular dementia, Parkinson disease, atypical AD;
Filippi et al., 2013, 2017; Gratton et al., 2019; Singh et al., 2023).

Importantly, the present results converge with several related
observations which altogether motivate efforts to closely examine
functional brain network organization in both preclinical and
more advanced stages of AD. First, longitudinal changes in brain
system segregation are prognostic of dementia independent of
the presence of AD-related pathology among cognitively healthy
individuals (cortical Ab and CSF tau burden; Chan et al., 2021).
Consistent with this, several other reports have also indicated the
absence of a relationship between cortical Ab and measures of
system segregation in cognitively healthy individuals (Yang et al.,
2022; Fountain-Zaragoza et al., 2023). Second, tau burden is
associated with worse global cognition and episodic memory
ability among AD patients, but this relationship is evident only
for individuals exhibiting lower system segregation (Ewers et al.,
2021). Relatedly, AD disease severity, measured as the estimated
number of years to symptom onset among autosomal-dominant
mutation carriers, is negatively related to brain system segrega-
tion (Ewers et al., 2021). The collective evidence indicates that
alterations in resting-state brain system segregation operate on a
path that is distinct from AD-related pathology and may be
more closely related to AD-related cognitive dysfunction, thus
providing a functional measure of cognitive resilience. Based
on these observations, we recommend pursuing the incorpora-
tion of functional measures (F), such as resting-state system
segregation into current AD biomarker frameworks [i.e., AT
(N) – F; Jack et al., 2018].

Limitations
There are several limitations of the current study that are impor-
tant to acknowledge. First, we used cross-sectional data to com-
pare the effects of adult aging and dementia. While these
comparisons are informative toward understanding how the
measures relate to one another, longitudinal analyses are needed
to examine the changes of brain system segregation in relation to
disease progression or healthy aging over time. Second, because
individuals with more advanced dementia were more likely to be
excluded because of poor data quality (e.g., they had a greater
percentage of frames lost), individuals with higher CDR scores
and more altered functional brain network organization may
have been systematically excluded from the study. This possible
selection bias could have resulted in underestimation of the rela-
tionship between greater dementia severity and lower brain sys-
tem segregation. Last, the current study examines AD under the
lens of its clinical manifestation. While we have incorporated
available PET-based measures of amyloid deposition into our
analysis (Fig. 1D), because of the imperfect agreement between
clinical diagnoses and the presence of AD biomarkers (Cousins
et al., 2021; Pascoal et al., 2023), it will be important to evaluate
whether the observed dementia-related brain network alterations
are specific to confirmed AD diagnosis.

Conclusion
Although aging is a primary risk factor for AD, AD-related cog-
nitive dysfunction and aging are associated with unique and dis-
sociable patterns of alterations in large-scale functional brain
networks. Our results indicate that the dementia-related brain
network alterations are distinct from aggregate measures of AD-
related amyloid pathology and may offer important clues and
signals toward identifying the types of behavioral deficits that are
most impacted at early stages of AD and other forms of
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dementia. Altogether, the current observations motivate refine-
ment of functional network-based biomarkers of AD, which
have the potential to contribute a unique source of information
toward AD diagnosis and staging.
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