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Modeling transcriptomic age using knowledge-primed artificial
neural networks
Nicholas Holzscheck 1,2✉, Cassandra Falckenhayn1, Jörn Söhle1, Boris Kristof1, Ralf Siegner1, André Werner3, Janka Schössow3,
Clemens Jürgens3, Henry Völzke3, Horst Wenck1, Marc Winnefeld1, Elke Grönniger1 and Lars Kaderali 2✉

The development of ‘age clocks’, machine learning models predicting age from biological data, has been a major milestone in the
search for reliable markers of biological age and has since become an invaluable tool in aging research. However, beyond their
unquestionable utility, current clocks offer little insight into the molecular biological processes driving aging, and their inner
workings often remain non-transparent. Here we propose a new type of age clock, one that couples predictivity with interpretability
of the underlying biology, achieved through the incorporation of prior knowledge into the model design. The clock, an artificial
neural network constructed according to well-described biological pathways, allows the prediction of age from gene expression
data of skin tissue with high accuracy, while at the same time capturing and revealing aging states of the pathways driving the
prediction. The model recapitulates known associations of aging gene knockdowns in simulation experiments and demonstrates its
utility in deciphering the main pathways by which accelerated aging conditions such as Hutchinson–Gilford progeria syndrome, as
well as pro-longevity interventions like caloric restriction, exert their effects.
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INTRODUCTION
In recent years the increasing availability of large-scale molecular
biological data from high-throughput experiments, in parallel with
technological advancements in machine learning and bioinfor-
matics, have greatly accelerated the discovery of biomarkers and
fueled the use of computational modeling to unravel complex
biological phenomena. In aging research particularly, the dis-
covery of the ‘epigenetic clock’—a machine learning model
predicting individual age using genome-wide DNA methylation
data—as a highly accurate and reliable biomarker of biological
age, has understandably sparked immense interest in the research
community. Since then, numerous age clocks have been devel-
oped and the concept expanded to further levels of biological
data, using transcriptomic, proteomic, and metabolic features1–9.
While no other data type thus far allowed prediction accuracies
quite on par with those achievable using DNA methylation data,
features based on metabolite production or gene expression are
arguably causally a step closer to the aging phenotype, thereby—
at least conceptually—increasing the interpretability of the
biomarker. Previously published age clocks based on these data
types have not been capitalizing on this conceptual advantage
however. On the contrary, interpretability has frequently been
neglected as a property in these models so far, no matter the type
of data used.
We argue that increasing the interpretability of age clocks may

unlock unprecedented utility of these machine learning models in
aging research and help expand their use in applied research, e.g.
in a human cell-culture-based screening setting, where finding
suitable holistic cellular read-outs for the biological aging state is
not an easy task and added interpretability could offer additional
insight on potential mechanisms of action for given treatment
approaches. The concept we propose to achieve this is based on a
knowledge-primed artificial neural network, in which information
on biological pathways in the form of gene-pathway annotations

is incorporated into the architecture of the model. A similar
approach has recently been shown to be effective in the modeling
of yeast growth from transcriptomic data10. Normally, artificial
neural networks feature densely connected layers of neural units,
in which every neuron in a given layer is connected to every
neuron of the next layer. As the information flow through the
network is not linked to any particular processes and connections
between neurons are essentially interchangeable, it is inherently
hard to interpret, which is why deep learning models are
frequently quoted as examples of ‘black box’ models. A defining
feature of artificial neural networks however, is the flexibility they
offer to implement architectures with unique properties. Omitting
the fully connected design and restricting the connections
between neurons as implemented for the proposed new age
clock can be used to guide the flow of information within the
network, thereby augmenting and controlling the way the model
learns. Importantly, this allows for the embedding of prior
information on biological processes, such as the pathway
annotation of genes, directly into the model architecture and
therefore ties the model’s learning process to known biological
processes. Such a design thus enables the model to learn
pathway-based representations of the molecular data, which—
through the inspection of neuron activations in the pathway layers
—allows the monitoring of pathway aging-states and delivers
interpretability to the clock’s inner workings.
In order to evaluate the utility of this approach for aging

research, we constructed a pathway-based artificial neural net-
work and trained it for age prediction based on a large
transcriptomic dataset from epidermal skin samples (n= 887).
Skin represents an extraordinarily well-suited tissue for studying
aging, owing to its well-documented aging phenotype and the
ease of sampling using non-invasive procedures. As it represents
the body’s outermost layer, shielding other tissues from hazardous
external influence, it also offers the unique possibility to study
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extrinsically accelerated aging, phenotypically well-documented in
the form of photoaging11. The data used to construct the model
was derived from the latest iteration of the ongoing Study of
Health in Pomerania (SHIP), SHIP-TREND, a longitudinal cohort
study generating a broad population-based picture of health and
disease in northeastern Germany12. Owing to its unbiased
observational design, the study is particularly well-suited to
investigate the natural aging progression.

RESULTS AND DISCUSSION
Architecture of the neural age clock
The architecture of the artificial neural network was modeled
based on the ‘Hallmark’ pathway collection, a selection of 50
conserved and highly refined gene sets, capturing essential
biological processes, created to improve pathway inference by
reducing variance and gene overlap, as it is often found in larger
pathway collections such as GO terms13. The pathway-guided
design generates a compartmentalized neural network, in which
different parts of the network model distinct pathways, enabling
the activations of intermediate neurons to be interpreted to
generate insight on the aging states of diverse biological
processes. As such the network consists of a single input layer
for the gene expression data, followed by four hidden pathway
layers and two separate output layers (Fig. 1a), the main output
generating the final age estimate, the auxiliary output providing
summarized information on the aging states of the respective
biological pathways.
To improve both reproducibility and accuracy of the age clock,

an ensemble learning approach was implemented. For the final
model, a stacked ensemble was constructed from 10 individually
trained networks, which shared input and output layers (Fig. 1b).
Ensemble stacking is a popular approach to improve the
generalization ability of machine learning models by combining
the strengths of different model instances, such as those awarded
by different weight configurations learned in individual training
reboots of neural networks14. We found that stacking several
models improved prediction accuracy by around 0.3 years, and
importantly further cemented the reproducibility of the learning
process.

Model training and testing
As a basis for model training, gene expression data were
generated via RNA sequencing from epidermal skin samples
collected from 887 subjects aged between 30 and 89 years in the
SHIP-TREND cohort study (Supplementary Fig. 1a and b). The data
were randomly split into independent training and test sets (70/
30), with the test set of 267 samples reserved for accuracy
assessment and further in silico experiments, leaving 640 samples
for model training. The 10 neural networks making up the final
model were trained separately for 200 epochs each (Fig. 2a) until
no further substantial improvements were detectable without
risking overfitting, and then combined into an ensemble by fusing
their input and output layers. Assessment of the final age clock’s
accuracy on the independent test set revealed a median absolute
error of 4.7 years (Fig. 2b). This is similar in performance to
published ‘black box’ clocks on transcriptomic data5,7,8,15,16, which
generally tend to perform worse in terms of pure accuracy
compared to their DNA methylation-based counterparts17. We
additionally trained a fully connected “black box” neural network
with a comparable number of parameters in the same ensemble
approach on the same data, which slightly outperformed its
pathway-based counterpart with a median absolute error of 4.4
years (Supplementary Fig. 2a). Based on our data, this suggests
that there is a small trade-off between transparency and precision,
albeit at a rate that might well be tolerable in practice.

Transcriptomic age is associated with visual age estimates
As the skin presents a well-suited tissue to observe the phenotypic
manifestations of aging, we investigated if the transcriptomic age
estimates generated by our pathway-based age clock were
associated with any phenotypic markers of age. For this, we used
standardized portrait images of a random subset of 154 subjects
from the test set and generated visual age estimates using a
blinded expert panel, tasked to assess the age of the test subjects
from the portrait photographs. Linear modeling identified a
significant association between the average visual age estimates
of this panel and the transcriptomic age predictions (p= 0.016)
after adjusting for chronological age and gender (Supplementary
Table 1), delivering not only a validation of the clock’s capabilities
to detect biological aging state but also evidence of a direct link
between phenotypic manifestations of aging and the molecular
alterations in aging skin, captured by the model.

Model reveals the wide-spread impact of aging on the global
pathway landscape
Visualizing the intermediate pathway neuron activation for
samples of different ages in the pathway-based age clock shows
increasing activations for older subjects, allowing not only a
general glimpse into the inner workings of the clock but also the
detailed assessment of aging states of single biological pathways
(Fig. 2c). Ranking the pathways based on a correlation analysis of
the intermediate neuron outputs with the actual ages of the
subjects revealed p53- and TNFa/NFkB-signaling as the pathways
that most clearly captured the aging state out of all modeled
processes (Fig. 2d and Supplementary Table 2). However, the
margin to the rest of the pathways was rather small and most of
the processes showed a significantly higher age association than
an artificially introduced control pathway consisting of randomly
sampled genes, indicating that the impact of age on gene
expression is indeed a global phenomenon, rather than being
restricted to a few pathways. The most notable exception to this
finding was the low correlation of the pancreas beta-cell pathway
at the other end of the spectrum. This might be explained by the
low overlap in gene function between pancreas and skin however,
given that this gene set mainly describes the differentiation
process of beta cells.
The wide-spread impact of increasing age on biological

processes meanwhile is in line with the general aging hypothesis
of the deleteriome18. The deleteriome hypothesis attempts to
unify a variety of previous theories of aging under a common
motif, the eponymous accumulation of deleterious effects over
the lifetime, which are amplified by the inherent imperfection of
biochemical processes and reactions. The theoretical framework
encompasses previously proposed theories such as the free radical
theory of aging19 but further expands the scope to include
observations and theories from evolutionary biology such as the
existence of antagonistically pleiotropic genes20. The key feature
of the theory, despite managing to unify the various explanatory
approaches to how the process of aging arises, is that it
importantly predicts no single ‘master switch’ gene or biological
process that drives the natural aging progression, but rather a
plethora of small individually detrimental alterations to cellular
and organismal function accumulating over time. The model’s
estimates on biological pathway relevance would seem to
support this.

In silico gene knockdowns recapitulate associations from the
literature
Seeing that the performance of our clock compared reasonably
well to ‘black box’ models and achieved transparency on the
biological processes affected, we next set out to test how well the
clock actually captured known aging mechanisms and
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associations through a series of in silico experiments. As discussed
above, past research has not identified a single ‘master switch’
gene or pathway driving aging, nonetheless, several genes have
been identified over the years, whose deregulation is associated
with changes in lifespan in model organisms or the manifestation
of aging phenotypes. To test if the model could recapitulate such
associations, we performed virtual gene knockdowns of known
aging target genes with a history of experimental data available
from model organisms and human genome-wide association

studies, to evaluate if the predictions accurately replicated the
effects of the perturbation (Fig. 3a). The knockdown of SIRT1 for
example, a widely studied NAD-dependent deacetylase with
various conserved pro-longevity functions, has been shown to
have detrimental effects on the lifespan of several models
organisms21–24. Indeed, simulation of a decreased SIRT1 regulation
by a log2 fold-change of −2 using our model predicted a
significant age increase for all subjects in our test set, in
concordance with expectations and data from the literature. In

m
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Fig. 1 Model architecture and setup. a Schematic of the artificial neural network architecture. Gene expression data is fed to the input layer,
which is connected to the following hidden layer through gene-specific edges that are constructed based on pathway affiliation. In the
following hidden layers, information is processed by the network in a pathway-centric manner culminating into a final linear pathway layer
with one neuron per pathway, which also serves as an auxiliary output to monitor pathway aging states. Finally, the information from all
pathway neurons is aggregated in the main output neuron, which generates the age prediction. b Ensemble setup. To improve the stability
and accuracy of the final model, an ensemble model was constructed from individually trained networks by joining the separate models to
the common input and output layers.
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contrast, the knockdown of thioredoxin-interacting protein TXNIP,
a major player in maintaining cellular redox-status and recently
implied in the induction of senescence by its role in antagonizing
AKT-signaling25, reduced predicted ages significantly, in line with

experimental data that shows that knockdowns of TXNIP increase
life-span by reducing reactive oxygen species (ROS)-mediated
stress in model organisms26. Moving away from model organisms,
a null-mutation of SERPINE1 is one of the few causal associations
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Fig. 2 Training and performance testing of the neural age clock. a Training history of the 10 individual neural networks. Depicted is the loss
on the held-out testing set, over the full range of 200 training epochs. b Predicted against actual chronological age for the held-out test set,
with observations colored by absolute prediction error. c Heatmap showing distinct activations of pathway neurons for the test set samples
stratified by age quantiles. d Pathway ranking based on Pearson correlation coefficients of pathway neuron activations and chronological age
over the test set. The results shown are based on 100 permutations calculated for a model including an artificial control pathway consisting of
150 randomly sampled, unrelated genes as a baseline. Significance was determined using one-sided Wilcoxon rank-sum tests comparing the
correlation estimates of the various pathways to the introduced control pathway, adjusted for multiple testing.
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discovered so far, that links a single gene loss-of-function
mutation directly with increased longevity in humans27. In line
with the literature, simulated knockdown of the senescence-
associated gene lead to a significant decrease in transcriptomic
age predicted by the model. These simulations, while intended
mainly as validation of the associations learned by the model, also
highlight the utility of computational models for translational

research, in this case, the ability to test the relevance of target
genes identified in a systemic context or in other tissues to the
biology of aging skin, which the model was trained on. An
example of a gene association more specific to the skin however,
is the knockdown of Krueppel-like Factor 4. KLF4 is, among others,
a stemness factor and direct regulator of telomerase expression28,
as well as importantly a regulator of keratinocyte senescence29. As
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Fig. 3 Identifying relevant aging target genes through simulated gene perturbation. a Predicted effects of the in silico knockdowns of
SIRT1, TXNIP, SERPINE1, and KLF4. Effect on age is stratified by chronological age quantiles of the test subjects. Significance was determined
using one-sample Wilcoxon rank-sum tests, testing for the difference in medians from an effect size of 0, with p-values adjusted for multiple
testing. Error bars show standard deviations. b Distribution of the predicted age effects of the in silico knockdown of all genes covered by the
model. Genes at the upper and lower extremes can be regarded as the most important features of the model. c Predicted age effect of the
simulated continuous knockdown and overexpression of HK2, one of the most important genes in the model. d Effects of simulated gene
knockdowns by the most important genes according to impact on age estimation upon the activation of pathway neurons. e Two-
dimensional embedding of the aging pathway landscape. The map was generated by assessing the effects of all gene knockdowns on
pathway neuron activation and calculating a lower-dimensional embedding of the data using the tSNE algorithm. Genes are colored by the
overall impact of their knockdown on the final age estimate. Thereby clustering of genes according to strength and direction of correlation to
age, as well as functional pathway annotation, can be observed.
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such, KLF4 silencing alone has been shown to be sufficient to
induce a senescent phenotype in human keratinocytes29. In line
with these findings, the simulated knockdown resulted in an
increased age prediction across subjects of all ages.

Systematic knockdown simulations identify known and novel
aging target genes
As the knockdowns of selected literature-based aging target
genes had recapitulated experimental findings, we then extended
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Fig. 4 Assessing the impact of age- and disease-related gene expression signatures on transcriptomic age and pathway aging states.
a Overview of the average predicted effect of the transcriptomic perturbation using multiple age- and disease-related signatures. b Predicted
effect of the transcriptomic perturbation using a signature of chronically sun-exposed skin, stratified by chronological age quantiles.
Significance was determined using one-sample Wilcoxon rank-sum tests, testing for the difference in medians from an effect size of 0, with
p-values adjusted for multiple testing. Error bars show standard deviations. c Predicted effect of the transcriptomic perturbation using a
caloric restriction signature, stratified by chronological age quantiles. Significance was determined using one-sample Wilcoxon rank-sum tests,
testing for the difference in medians from an effect size of 0, with p-values adjusted for multiple testing. Error bars show standard deviations.
d Effect of the transcriptional signature of Hutchinson–Gilford progeria syndrome on pathway neuron activation. Shown are the five most
strongly affected pathways. Error bars show standard deviations. e Heatmap showing the effects of tissue-specific caloric restriction signatures
on pathway neuron activation. f Effect of the transcriptional signature of photoaging on pathway neuron activation. Shown are the five most
strongly affected pathways. Error bars show standard deviations. g Impact of actinic keratosis (AK) and cutaneous squamous cell carcinoma
(SCC) signatures on pathway neuron activations.
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the knockdown to the rest of the transcriptome, at least insofar as
it was covered by the Hallmarks pathway annotation database and
therefore represented in the model. Simulating the knockdown of
all genes by a log2 fold-change of −2 revealed an approximately
equal distribution of age increasing and decreasing knockdowns,
ranging from around +1 to −0.5 years in effect sizes (Fig. 3b).
Among the highest-scoring knockdowns of all genes were several
well-described aging marker genes, such as SERPINE1, IGFBP3,
CDKN2A, and TIMP1, as well as some less intensely studied genes
such as HK2, a hexokinase whose expression has previously been
reported to diminish with increasing age in the skin, with
potentially detrimental effects on energy metabolism and
epidermal cell proliferation30. The simulated overexpression of
HK2 on the other hand was concordantly predicted by the model
as a rejuvenating intervention (Fig. 3c), highlighting the utility of
interpretable machine learning models to discover novel angles
and targets for potential intervention strategies.
Observing the effects of the most influential gene knockdowns

on pathway neuron activation revealed that interestingly all of
them mediated their effect via at least two distinct pathways (Fig.
3d), indicating that genes at the crossroads of several pathways
might exert a larger influence on the final age estimate, which was
confirmed by association testing (Supplementary Fig. 3a) for both
positive (p= 2.6e−116) and negative impact genes (p= 2.4e
−153). This indicates that the network architecture organically
increases the impact of master regulators and genes which act as
effectors in several different biological processes. This emergent
property is very much desirable, as it reflects the underlying
biology more closely than other machine learning models that
tend to weight features purely based on predictivity or correlation
to the modeled phenotype, rather than by the breadth of their
biological impact. We subsequently expanded the pathway
impact analysis to all genes covered by the model and found
that using the single-gene knockdown data allowed reconstruc-
tion of the aging pathway landscape, with genes arranged by
similarity in effect as well as capturing the structure of the diverse
biological motifs and processes. The resulting map (Fig. 3e)
demonstrates the gain in interpretability awarded by this new
type of clock, allowing the visual inspection of gene–pathway
relationships in the context of aging, unlike any previous
age clock.

Predicting the impact of complex transcriptional signatures
on biological aging state
We then set out to evaluate the impact of more complex aging-
related transcriptional signatures on model prediction. This
analysis served two purposes: (i) investigate if the model
recapitulates the overall effect of the signature and (ii) demon-
strate the use of an interpretable machine learning model in
deciphering the biological processes driving accelerated aging or
rejuvenating conditions. For this, we searched the literature for
gene expression data or published signatures of diverse aging-
related conditions and simulated their impact on the predicted
age of the test set (Fig. 4a).
The most prominent example of an accelerated aging disorder

is the Hutchinson–Gilford progeria syndrome (HGPS). HGPS is a
rare autosomal dominant genetic disorder that manifests very
early in life, with symptoms that strikingly resemble those of
natural aging particularly in regards to the skin, including wrinkle
formation, the emergence of dyspigmentations (age spots), and a
general thinning of the skin including a loss of subcutaneous fat,
as well as alopecia31. The condition is caused by mutations leading
to incorrectly processed forms of lamin A that weaken the nucleus
structure with diverse detrimental consequences. The overall
effects of this are severe, and the average life expectancy for
patients is only between 13 and 15 years31,32. Simulating the effect
of the transcriptomic signature of HGPS33 likewise has a heavy

impact on age estimation, with the clock putting out predictions
beyond 1200 years after signature application (Fig. 4a). Though
these numbers might at first seem absurdly high, they are easily
explained considering the clock was trained on data of a natural
aging progression. The fact that predictions are exceeding this
scale is caused by the underlying learned mathematical model
and signals that, while the model clearly assesses HGPS or aspects
of HGPS as an accelerated aging condition, the transcriptomic
state seen in HGPS is shifted far beyond that of the natural
physiological aging progression. The effect size can therefore be
interpreted as a manifestation of the pathophysiology of the
underlying condition, in sync with the low life expectancy of
individuals suffering from HGPS.
A milder form of accelerated aging, one that specifically affects

the skin, can be observed in the form of photoaging. Caused by
the chronic exposure of the skin to solar irradiation, photoaging is
an extrinsically accelerated aging phenotype, characterized by
wrinkling, dyspigmentation, and a leathery appearance of the
skin11. Simulating the impact of the signature of chronically sun-
exposed skin34 increases the predicted age by around 2.1 years on
average (Fig. 4b). This result is again in line with expectations but
importantly demonstrates that the clock is sensitive enough to be
used to detect smaller transcriptional alterations caused by
exogenous stressors that affect aging, such as chronic sun
exposure.
Further unprotected from the damages of solar irradiation,

photoaged skin can over time develop into scaly pre-cancerous
lesions known as actinic keratoses (AKs). AKs, caused by the
intraepidermal proliferation of atypical keratinocytes, are a
frequently diagnosed skin condition in light-skinned individuals
with a history of sun exposure35. Although themselves often
asymptomatic, around 10% of all AK lesions progress into
cutaneous squamous cell carcinoma (SCCs) if left untreated35–37,
one of the most common types of cancer in developed countries
with predominantly fair-skinned populations38. Due to the direct
link between photoaging and the emergence of AKs, and the
direct progression path from AKs to SCCs, we decided to include
signatures from these pre-cancerous and cancerous tissues into
the analysis. Interestingly, both signatures39 induced substantial
increases in predicted age across all samples, on average by 54
and 52 years, respectively (Fig. 4a). Considering the hyperproli-
ferative traits of both disorders this might appear somewhat
counter-intuitive, then again, the relationship between aging and
cancer is complex, and several shared mechanisms between the
two have been identified over the years40, let alone the fact, that
age remains one of the greatest single risk factors for the
development of cancer overall41.
A key feature of aging that is lately receiving increasing

attention, and also happens to play an important role in
tumorigenesis, is the accumulation of senescent cells in aging
tissues. Likely evolved as a cancer protection mechanism,
senescence describes the cessation of cell division, induced by
extrinsic stress or replicative exhaustion. Senescent cells influence
their surrounding tissue by secreting a complex proinflammatory
mixture of cytokines, growth factors, and proteases42. This
senescence-associated secretory phenotype (SASP) plays an
important role in the recruiting of immune cells to the tissue,
and as such has beneficial functions in wound healing and tissue
regeneration43. In aging tissues however, the increasing accumu-
lation of senescent cells impairs normal tissue function, and SASP
has been proposed as one of the mechanisms that drive
inflammation, the chronic low-grade inflammatory state of aging
tissue44,45. As senescence is an important aspect of aging and also
a common in vitro model of aging, we tested the signature of
replicative exhaustion-induced senescence using the model. The
simulations showed an increase in age of over 100 years on
average (Fig. 4a), which is the strongest impact of any signature
we recorded apart from HGPS. It should be noted here, that
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previous experiments calculating the DNA methylation age of
fibroblasts in culture have estimated cells aging around 62× faster
in vitro46, which could factor into these predictions as well.
Irrespective of this, the data shows that the clock not only
accurately captures aging in vivo but also models processes that
define aging in vitro, adding to its utility. The sensitivity of the
model towards senescence also delivers one potential mechanism
explaining the pronounced age acceleration predicted by the
model for the AK and SCC signatures, as an accumulation of
senescent cells is not only a feature of aging tissues but also
frequently observed in precancerous and cancerous lesions,
including AKs and SCCs47,48.
Next, we were interested in seeing if the model was also

capable of recapitulating the positive effects of lifespan-extending
intervention strategies. Most data on pro-longevity interventions
stem from experiments with model organisms, but one of the
advantages of the presented in silico approach is the opportunity
to transfer such settings into a human model and simulate the
effects of such treatment in human tissue. The most reliable and
well-documented form of pro-longevity intervention is caloric
restriction49. The reduction of caloric intake has been shown to
increase health- and life span in a large number of organisms of
varying size and complexity, including roundworms, flies, mice,
rats, and even non-human primates50. It is therefore believed to
be a conserved mechanism among animals, although its
effectiveness in terms of lifespan extension has yet to be proven
in humans. Data from model animals are generally amply
available, we did however only identify a single recently published
dataset that included the transcriptional patterns triggered by
caloric restriction in skin tissue, which was based on Rattus
norvegicus samples51. Mapping the gene signatures from this
dataset to their human homologs allowed testing the signature
with the age clock and simulate its effects on human aging. The
signature indeed shifted the aging transcriptome landscape to a
younger state by around 0.2 years on average, although the effect
was only statistically significant for subjects above 50 years (Fig.
4c). Despite its low effect size, this indicates that caloric restriction
might indeed have beneficial effects in humans, and ones that
might favorably affect skin biology. The data also points to the
existence of an age-dependency of these effects, a theory that has
interestingly been proposed before and is backed by experimental
data from mice showing that the beneficial impact of the
intervention, while significant in adult animals, is lacking in
younger specimens52. Conceptually this has been explained with
caloric restriction largely mediating alterations to biological
processes that accumulate throughout age, therefore lacking an
impact on young organisms, when these processes still operate
smoothly, and scarcity is more likely to impair normal function-
ing53. The age-dependency predicted by our model would further
seem to support these hypotheses. As most molecular analyses of
the effects of caloric restriction have been performed in other
tissues though, we expanded our simulations to the signatures
generated from liver, fat, and brain tissue51. The predicted
rejuvenation of both liver, as well as fat signatures, was greater,
reducing age estimates by 0.4 and 1.5 years, respectively (Fig. 4a).
As these tissues are more immediately involved with and affected
by caloric restriction schemes, this appears plausible. Surprisingly
however, the brain signature lead to divergent results and caused
the model to predict a small but significant age acceleration by 0.4
years on average. While this may simply be an artifact of tissue-
specific gene regulation, one might speculate on the involvement
of a biological component as well. Being the most demanding
organ in terms of energy needs in most animals, it is conceivable
that the brain would be the organ most immediately affected by
negative repercussions of decreased caloric intake, which could
help explain the finding. This theory is supported by data from
non-human primates under caloric restriction, that—despite
showing significant life-span extension—suffered from an

accelerated loss of gray brain matter, albeit without affecting
cognitive performance54.

Decoding the pathways implicated in accelerated aging and
pro-longevity phenotypes
Seeing that the model was capable of recapitulating both
accelerated aging and pro-longevity interventions in the form of
caloric restriction, we were interested in establishing the network’s
utility in deciphering the biological processes by which these
conditions exerted their effects. For this, we analyzed the
activations of the pathway neurons in the intermediate pathway
output layer before and after perturbation with the respective
signatures and monitored the changes induced in neuron
activation.
The most substantial alterations to the pathway landscape were

caused by the transcriptional signature of HGPS (Fig. 4d). The
effects were dominated by a massively increased positive
activation in the epithelial–mesenchymal transition pathway
neuron, indicating a substantial shift in pathway states towards
an older transcriptome, but far surpassing the originally modeled
range. Epithelial–mesenchymal transition describes the process of
epithelial cells losing their polarity and gaining functions allowing
them to migrate and gain mesodermal character. This process,
while originally observed during embryogenesis, has since been
shown to be a crucial mechanism in the metastasis of cancers,
during wound healing, and—importantly—in the manifestation of
fibrosis55,56. The cause of death in patients suffering from HGPS is
usually found in cardiovascular complications from substantial
levels of atherosclerosis, but interestingly in the absence of typical
risk factors such as increased L-LDL or C-reactive protein57, and
with more prominent signs of vascular fibrosis than typically
observed in patients suffering from cardiovascular disease58.
Interestingly then, the most strongly affected pathway identified
by the model is one with a direct connection to the most severe
clinical feature of HGPS, which might warrant further investigation,
especially since this pathway has not received a lot of attention in
studying the disease progression of HGPS thus far. Other
noteworthy pathways that were strongly affected by the signature
were related to proteostasis and protein secretion, immune
signaling, and the estrogen response (Fig. 4d), several of which
are not only well described Hallmarks of Aging59 but have also
previously been associated with HGPS60.
In contrast to the HGPS signature, analyzing the pathways

impacted by caloric restriction revealed a number of processes
shifted towards a younger state (Fig. 4e). The effects were
generally similar between tissues, with the exception of the brain-
derived signature, which showed no substantially rejuvenated
pathways at all. The processes that were most prominently shifted
towards a favorable state were related to ROS, peroxisome
pathways, and to a lower extent mTOR-signaling and general
metabolism across all tissues. Reduced production of ROS through
a slowing of the metabolic rate, thereby reducing the load of
oxidative stress, is one of the very key mechanisms proposed by
which caloric restriction is believed to exert its life-span extending
effects, the observed changes in pathway states are therefore very
much in line with existing theories and reports61,62. Another well-
described effect of restricting caloric intake is the reduction of
mTOR activity, marking one of the most reliable single mechan-
isms to prolong lifespan in various model organisms from fruit
flies to non-human primates63–65. The rejuvenating impact on
mTOR-signaling predicted by the model is therefore again very
much in line with existing data, as are naturally the observed
effects on metabolic pathways, including oxidative phosphoryla-
tion and fatty acid oxidation in mitochondria and peroxisomes.
Interestingly though, the skin-derived signature appeared to have
a lower impact on metabolic pathways but instead showed a more
strongly rejuvenated profile associated with p53-signaling, which
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is an interesting finding considering its crucial role in cancer
protection in the skin66. Notably, caloric restriction has been
shown to delay carcinogenesis and tumor-related mortality in
rodents67,68 and rhesus monkeys69,70, this finding could therefore
be suggestive of another potential benefit of caloric restriction for
skin biology. It should be noted that as these results represent a
translation from rodents to human biology, so a margin of error is
to be expected. The analysis does however highlight the potential
of interpretable machine learning to use available data from
animal experiments and to explore the translation of findings to a
model of human biology in a virtual setting.
The effects of the photoaging signature were similarly diverse,

with the strongest impact also recorded on the ROS pathway (Fig.
4f), here substantially shifting the pathway towards an older state.
Further processes altered in this direction were related to Wnt and
Kras signaling, and metabolic pathways such as glycolysis.
Interestingly a couple of pathway states appeared shifted towards
a younger profile, most notably involving the G2 damage
checkpoint and the estrogen response pathways. The effects of
a chronic exposure to solar irradiation that over time lead to the
manifestation of photoaging, are believed to be primarily driven
by oxidative damage resulting from the UV-induced formation of
ROS11,71–73. The predominant pathway identified by the model
very much supports this hypothesis. Metabolic changes in
photoaged skin have likewise been reported34. Data on Wnt
modulation in association with photoaging is sparser, but recent
reports implicate the pathway in the response following UVB
irradiation in keratinocytes in vitro74. Given its function as an
important mediator of cell proliferation and differentiation and
importantly its essential role in regulating adult epidermal stem
cell reservoirs, regulatory alterations in Wnt signaling could
potentially be an important mechanism driving the gradual
thinning of the epidermis frequently observed in (photo-)aged
skin11,75.
Finally, we investigated the similarity in pathway neuron

activation following perturbation using the AK and SCC signatures.
Although the progression from AKs to SCCs, in general, is well-
described, only around 10% of all AK lesions develop into actual
carcinoma35–37. The exact mechanisms determining which AKs
progress meanwhile remain elusive. Analyzing the predicted
pathway perturbations revealed a substantial correlation between
pathway patterns induced by AK and SCC signatures (Fig. 4g).
Given the reported progression path, this finding seems
conclusive. The analysis also revealed a number of pathways that
were notably more strongly deregulated than others, mainly
related to IL6-JAK-STAT-signaling, immune pathways and coagula-
tion, a gene set that contains many genes related to the
complement system as well as senescence-associated genes such
as SERPINE1. The latter is particularly interesting, as the prolonged
expression of the senescence marker gene CDKN2A has very
recently been shown to induce hyperplasia in the epidermis of
mice very similar to the early stages of AKs by increasing
proliferation of surrounding keratinocytes, implicating senescent
cells as one of the early mechanisms in epidermal tumorigen-
esis76. The comparably lower activation in the SCC signature
suggests that the impact of senescence-associated genes is higher
in the early stages leading to AK lesions though, which fits the
experimental data available76. Among the processes that showed
notable divergences between AKs and SCCs as well were immune
and JAK-STAT-signaling, both found more strongly altered by the
SCC signature. The involvement of immune-related genes
contained in the allograft rejection gene set is of little surprise
given that alterations to immune signaling in cancer are well-
documented, the increased activation induced by the SCC
signature does however highlight a very important characteristic
of SCCs, which is their ability to evade immune surveillance,
setting it apart from pre-cancerous AK lesions77. Aberrant
activation of JAK-STAT-signaling is a frequently reported feature

in human cancers as well78, and SCCs are no exception79.
Constitutive activation of STAT3 has in fact been shown to be a
key event in the SCC tumorigenesis80, validating the model’s
predictions. Surprisingly little is known about the state of the IL6-
JAK-STAT axis in AKs however and seeing the diverging pathway
patterns uncovered by our model and the documented impor-
tance of the pathway in tumorigenesis would therefore encourage
further investigations into this pathway in AK lesions to help
explain the observed heterogeneity in AK to SCC progression.
Despite their popularity and unquestionable utility as biomar-

kers, age clocks have thus far generated little insight into the
processes that actually drive the aging progression or provoke
phenotypical manifestations of biological aging. Here we present
a new type of age clock, that delivers unprecedented interpret-
ability to its inner workings. Through the incorporation of prior
information on pathways into the structure of the model, the
learning process is tied to known biological processes, allowing
their states to be interpreted in the activation of intermediate
neurons in the neural network. While not surpassing other age
clocks in terms of sheer accuracy, the model’s performance is
comparable with other published as well as a ‘black box’
transcriptomic age clock trained on the same data and offers
greatly expanded utility beyond the use as a readout tool. We
would argue that this property is more desirable in a research
setting than mere predictivity and would like to see more efforts
to increase the interpretability of machine learning models
applied in aging research and biological research in general.
Neural networks, in particular, present themselves as a very
promising technology to fully unlock the potential of such
approaches in an area of research that, due to the inherent
breadth and complexity of the biological processes involved and
ever-increasing amounts of high-throughput data available, is
predestined to benefit from further technological advancements
in machine learning.

METHODS
Study of Health in Pomerania (SHIP)
SHIP was designed as a population-based study to assess the prevalence
and incidence of common clinical diseases, subclinical disorders, and risk
factors among the population of the Federal State of Mecklenburg/West
Pomerania in Northeastern Germany12. Examinations of the original cohort
of 4308 randomly sampled subjects between 20 and 79 years started in
1997, with two follow-up examinations being performed after intervals of 5
and 11 years. The second cohort (SHIP-TREND), comprising another
random sample of 4420 adults aged 20–79 years, started in 2008, again
designed with regular follow-ups. The data used in this study consisting of
887 epidermal samples were collected during the first follow-up of the
SHIP-TREND cohort, with subjects aged between 30 and 89 years
(Supplementary Fig. 1a and b). The study was approved by the ethics
committee of the University Medicine Greifswald (ethics approval number
BB 39/08). All participants signed an informed consent form and all
investigations were undertaken in accordance with the ethical principles
outlined in the Declaration of Helsinki.

Tissue sample preparation
The suction blister method applied in this study has been approved by the
Ethics Commission of the University of Freiburg (general approval
December 8, 2008; Beiersdorf AG No. 28857). Suction blisters of 7 mm
diameter were taken from the volar forearms of all subjects as previously
described81.

Nucleic acid extraction
As previously described16, tissue samples were suspended in the
respective lysis buffers for DNA or RNA extraction and homogenized
using an MM 301 bead mill (Retsch). DNA was then extracted using the
QIAamp DNA Investigator Kit (Qiagen) according to the manufacturer’s
instructions. RNA was extracted using the RNeasy Fibrous Tissue Mini Kit
(Qiagen) according to the manufacturer’s instructions.
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Transcriptome sequencing
Transcriptome libraries were prepared using the TruSeq Library Prep Kit
(Illumina) and sequencing performed at 1×50 bp on Illumina’s HiSeq
system to a final sequencing depth of 100 million reads per sample.
Sequencing data were processed using a custom pipeline including Fastqc
0.11.782 for quality control, Trimmomatic 0.3683 for trimming, and Salmon
0.8.184 for read mapping against the GRCh38 build of the human
transcriptome and read quantification in the form of transcripts per
million (TPM).

Pathway-based neural network architecture
The network was implemented using keras85 with a tensorflow86 backend
and fully coded in R 3.6.187. In the following and for the purpose of this
work, we will use the term “pathway” to denote any gene sets or
knowledge-guided collections of genes involved in distinct biological
processes. In order to embed this pathway information into the network,
first a binary ‘gene × pathway’ filter matrix was constructed based on gene
annotations to the Hallmark pathway collection13. This filter matrix was
used to set the crucial gene-specific connections between input neurons
and the neurons in the first pathway layer. The following hidden layers
operated in a pathway-centric manner. Neurons assigned to the same
pathway were densely connected to each other to allow the network
maximum flexibility to process and learn pathway representations from
the data, while no connections to neurons of other pathways were
allowed, as this would break the chain of interpretability. Information of
each pathway was then aggregated in a final neuron, serving a dual
purpose as both a step to condense the pathway information in one
neuron per pathway and as an auxiliary output of pathway neuron
activations to update the network loss during training and for further
analysis purpose during inference. Finally, this pathway output layer was
connected to a common output neuron in the last layer, tasked with
aggregating the information passed by the pathway neurons to a final age
estimate. The number of neurons within the hidden layers was adjusted to
the number of genes in each pathway and thus determined for every
pathway individually as shown in Eq. (1):

number of neurons ¼ 5þ number of genes
f

� �
(1)

This established a minimal size of 5 neurons per layer for each pathway,
with additional neurons awarded with increasing pathway size to
accommodate an increase in regulatory complexity. The neuron scaling
factor f that determined the number of neurons added per additional gene
was set to 2 in the final model (Supplementary Fig. 5a). The number of
hidden layers was set to 4, as testing with more layers showed no
additional gains in accuracy justifying a further increase in complexity
(Supplementary Fig. 5b). Taken together, this setup resulted in a final
network with 1,740,858 trainable parameters. In order to improve
generalization ability and control overfitting of the model, dropout layers
were inserted between the hidden layers, randomly dropping connections
between the hidden layers in the training phase. Furthermore, global
weight decay (regularization factor= 0.01) was implemented as another
form of regularization, improving generalization ability of the model.
The model used ‘elu’ (exponential linear units) activation functions88 in

all hidden layers, and was accordingly initialized using the He-initialization,
a weight initialization scheme optimized for ‘relu’-like activation
functions89.
The loss function for model training combined two individual losses,

calculated from the mean squared error (MSE) of the main and auxiliary
outputs of the network, joined together by a balancing hyperparameter
alpha as shown in Eq. (2):

loss ¼ 1� alphað Þ �MSEmain þ alpha �MSEauxiliary (2)

The advantages of this are two-fold: (i) It forces all parts of the network
to be trained, ensuring that the all encoded information is utilized, and all
pathway neurons are active. This is critical, as early testing showed that
without the added auxiliary loss, the network would heavily rely on only
one or few pathways, the selection of which varied greatly depending on
initial weight configuration (Supplementary Fig. 4a). This resulted in very
poor reproducibility between network reboots and only a fraction of the
available information being utilized. (ii) All pathway neurons now generate
a positive continuous output, which is essentially an age estimate based on
the information encoded in the pathway or ‘pathway age’. This has clear
benefits for the interpretability of the neuron activations, whose scale and
direction could otherwise vary greatly between network reboots and

which stabilized significantly through the addition of the auxiliary loss
(Supplementary Fig. 4b). Alpha was set to 0.4 in the final model after
testing different configurations (Supplementary Fig. 5c).
The training of the model was performed using stochastic gradient

descent with Adam90 and a learning rate of 0.001, with a mini-batch size of
16 samples for a total of 200 epochs. Table 1 summarizes the parameters of
the pathway-based neural network.

Ensemble setup
In order to further improve both reproducibility and accuracy of the model,
the final setup was designed as an ensemble of several individual
networks. For this, 10 single networks were trained separately, and then
joined to a common input layer and a shared main and auxiliary output. In
the shared output layers, individual outputs by the 10 networks are
averaged to generate the final model estimates. The ensemble setup
proved successful in further stabilizing the intermediate neuron activations
and thereby improving reproducibility (Supplementary Fig. 4c).

Fully connected neural network
To assess any potential trade-off between transparency and model
precision, we trained an ensemble of 10 fully connected neural networks
with the same number of layers per network, a comparable number of
parameters, trained for the same number of epochs on the same data with
the same training/test split as used for our pathway-based model. Table 2
summarizes the parameters of the fully connected neural network.

Assessment of visual age and association analysis
In order to generate estimates of phenotypic aging state to compare with
the transcriptomic age estimates by the model, we used portrait images of
154 randomly sampled subjects from the test set. The images were
captured in a standardized setup, taking evenly lit (through the use of a
flash diffuser), non-polarized and color-controlled frontal portrait images of
the test subjects with their eyes closed, any hair (except facial hair) covered
to reduce the impact of features unrelated to the skin, and any make-up
removed beforehand. The images were then presented to a blinded panel
of 31 experts that were asked to estimate the ages of the subjects based
on these photographs. The individual age estimates were then averaged
over the panel, which resulted in the final visual age estimates, which
showed generally very good concordance with chronological ages with a
median absolute error of 4.38 years. Linear models were then employed in
R87 to test for an association between transcriptomic and visual age
estimates, whilst adjusting for chronological age and gender (Supplemen-
tary Table 1).

Table 1. Pathway-based neural network parameters.

Parameter Value

Number of input genes 4359

Number of input pathways 50

Number of parameters 1,740,858

Activation function elu

Weight initialization He

L2-regularization (weight decay) 0.01

Dropout rate (drop probability) 0.1

Loss calculation Mean squared error (main and aux.
output)

Hyperparameter alpha 0.4

Optimizer Adam

Learning rate 0.001

Mini-batch size 16

Training epochs 200

Training samples 620

Test samples 267
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In silico gene knockdown and overexpression experiments
The perturbation of single genes was performed by up- or downregulating
gene expression by a common log2 fold-change (which was −2 for all
knockdown experiments, unless otherwise specified) in all samples of
the test set (n= 267) and comparing the model’s predictions with the
unperturbed baseline predictions per sample. For the assessment of age
impact, the changes in the main output neuron generating the overall
age estimate were analyzed. For assessing the impact on the aging state of
the biological pathways, the activity of the auxiliary output neurons was
monitored instead, and the generated outputs of these neurons were
similarly analyzed by comparing the ‘pathway age’ estimates with the
unperturbed baseline estimates per sample.
The map of the aging pathway landscape shown in Fig. 3e was

generated by embedding the perturbation effects from all gene knock-
downs on each of the auxiliary pathway neurons using t-distributed
stochastic neighbor embedding (tSNE) into two new dimensions91, using
the implementation of the algorithm in the routine R package92.

Mapping Rattus norvegicus genes to human homologs
Rattus norvegicus genes from the caloric restriction signatures (genome
build Rnor_6.0) were mapped to their human homologs (genome build
GRCh38) using the biomaRt R package93.

Perturbation experiments using complex gene expression
signatures
Assessing the impact of more complex transcriptional signatures was
performed by up- or downregulating each significantly differentially
regulated gene (cutoff was an FDR < 0.05) in the signature by the exact
effect size (determined by its log2 fold-change) recorded by the differential

gene expression analysis. The analysis was again performed using all
samples of the test set (n= 267) and comparing the predictions of the
perturbed data with the unperturbed baseline predictions per sample, as
with the single gene knockdowns. Significance of impact was determined
using one-sample Wilcoxon rank-sum tests, testing for the difference in
medians from an effect size of 0. When more than one comparison was
performed, p-values were adjusted for multiple testing using the
Holm–Bonferroni method94. Table 3 shows a summary of the signatures
used for the perturbation experiments.

General data analysis and visualization
Data analysis in R87 further included the usage of the packages data.table95

and dplyr96 for data handling, as well as the packages ggplot297 and
ggpubr98 for data visualization.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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