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ABSTRACT

Recombinase mediated cassette exchange (RMCE)
is a process in which site-specific recombinases
exchange one gene cassette flanked by a pair of in-
compatible target sites for another cassette flanked
by an identical pair of sites. Typically one cassette is
present in the host genome, whereas the other gene
cassette is introduced into the host cell by chemical
or biological means. We show here that the fre-
quency of cassette exchange is dependent on the
relative and absolute quantities of the transgene
cassette and the recombinase. We were able to suc-
cessfully modify genomic targets not only by electro-
poration or chemically mediated gene transfer but
also by using an adenovirus vector carrying both
the transgene cassette to be inserted and the recom-
binase coding region. RMCE proceeds efficiently in
cells in which the adenovirus vector is able to repli-
cate. In contrast, insufficient quantities of the trans-
gene cassette are produced in cells in which the virus
cannot replicate. Additional transfection of the trans-
gene cassette significantly enhances the RMCE fre-
quency. This demonstrates that an RMCE system in
the context of a viral vector allows the site directed
insertion of a transgene into a defined genomic site.

INTRODUCTION

Foreign DNA can be transported into eukaryotic cells by
physical, chemical or biological methods (e.g. microinjec-
tion, liposomes, electroporation, gene-gun or viral vectors)
(1). Stable integration of the foreign DNA will only occur
in a small proportion of the cells that have taken up the

DNA. Integration of the foreign DNA is mediated by
cellular DNA repair enzymes and occurs at random sites
of the host genome. If the foreign DNA contains se-
quences that are identical to the host genome, it can be
inserted by homologous recombination in a small fraction
of the transduced cells. Retroviral vectors integrate their
DNA into the host genome efficiently and murine
leukemia virus (MLV) and lentivirus-based vectors are ex-
cellent tools for both animal transgenesis and gene therapy
(2,3). However, retroviral vectors suffer from some limita-
tions. In the context of animal transgenesis, the limited
packaging capacity of retroviral vectors dictates the use
of small transgene expression cassettes, which often lack
the regulatory elements required for the tissue-specific and
abundant expression of the transgene (4). The integration
at random sites often places the transgene into an envir-
onment that is not supportive of its expression.
MLV-based vectors are additionally silenced by epigenetic
mechanisms. In the context of gene therapy, retroviral
vectors also carry the risk of insertional mutagenesis
(2,5). If a transgene or a therapeutic gene would be
inserted into the host genome at a pre-selected site,
abundant and continuous expression of the foreign
DNA could be accomplished in the absence of genome
mutagenesis. In principle targeting of a defined site in a
eukaryotic genome can be achieved by using either
DNA-base pairing or sequence-specific DNA-protein
interactions (6). Site-specific recombinases can insert
transgenes, introduced into the host cell by chemical,
physical or biological means, into defined genomic
sites. If the transgene cassette is flanked by a pair of in-
compatible recombinase target sites, it can be inserted into
a genomic target which carries the same arrangement of
two incompatible target sites without the introduction of
excess plasmid sequences. This process is termed recom-
binase mediated cassette exchange (7-9). The molar
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excess of the newly introduced cassette leads to an effect-
ive exchange of the cassette in the genome (pre-
sent in one copy) with the transfected transgene cassette
(present as multiple copies per cell). The recombinase
target sites themselves can be inserted into the host
cell genome at random or by homologous
recombination (3).

We show here that the site-specific recombinase Cre is
able to mediate integration of a transgene into a prede-
fined genomic site not only in the form of naked DNA but
also in the context of a viral vector. However, the integra-
tion efficiency is highly dependent on the relative and
absolute amounts of transgene DNA and recombinase
protein present in the cell. In addition, in order to
achieve suitable concentrations of the transgene cassette,
the viral vector needs to be replication competent. The
experiments shown in here demonstrate that the
elements of a recombinase mediated cassette exchange
approach can be delivered in the context of a viral
vector (i.e. adenovirus) which is regularly used for gene
therapy. Whereas adenovirus DNA remains episomal
throughout the viral life cycle a transgene embedded in
the viral DNA can be mobilized by Cre such that it inte-
grates site-specifically into the host genome. This strategy
will pave the way for a safer approach to gene therapy and
also for the targeted delivery of transgenes to specific
genomic loci in transgenic animals.

MATERIALS AND METHODS
Cells

Human embryonic kidney cells (HEK 293; ECACC No:
85120602) were cultivated in high glucose Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with
10% foetal calf serum, Penicillin/Streptomycin and
2mM Glutamine. Baby hamster kidney cells (BHK 21;
ECACC No: 85011433) were cultivated in minimum
essential medium (MEM) supplemented with 10% foetal
calf serum, Penicillin/Streptomycin, 2mM Glutamine,
0.1 mM non-essential amino acids and 1.0mM sodium
pyruvate. HM1 mouse embryonic stem cells (10) and
HCI11 mouse mammary gland cells (11) were cultivated
as described (12). The cell line HM1 RMCE2272-98 has
been described before and contains an HPRT selection
marker gene inserted into the murine f-casein gene by
homologous recombination (13). Cell culture reagents
were purchased from Invitrogen, foetal calf serum was
purchased from Sigma.

HEK?293 and HCI11 cells were transfected using
the Gene Juice Reagent (Novagen) according to the manu-
facturer’s recommendations. HM1 embryonic stem (ES)
cells were electroporated using a Bio-Rad Gene Pulser
using various conditions as indicated in Table 2. HCI1
cells were electroporated in a 4mm cuvette at 250 V and
950 uF. Protein transfections were carried out using the
ProteoJuice reagent (Novagen) as suggested by the
supplier.

All transfections were carried out using identical
amounts of plasmid DNA. In control reactions the
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plasmids pCMV-bgal (Clontech) or
(Stratagene) were co-transfected.

pBluescript

DNA constructs

The plasmid pBK2272-HPRT was derived from the
plasmid pPGK-HPRT (14) from which the 2.9-kb
EcoRI insert was excised and inserted into the plasmid
pBK-CMV-2272, which carries a pair of incompatible
lox sites (loxP and 1ox2272) at the fringes of its multiple
cloning site. pB2272-neo is based on the plasmid pB2272
(13) and carries the same pair of incompatible lox sites at
the fringes of its multiple cloning site. The PGK-neo
expression cassette is inserted as an FEcoRI/HindIII
1.8-kb fragment. The plasmid pB-lox1/2-hyg/luc2 was
described previously (15).

The plasmids used for the generation of adenovirus
vectors are based on the Stratagene AdEasy system and
the system was used as recommended by the supplier. The
plasmid pShuttle was used as basis for the generation of
vectors carrying (i) a Cre-expression cassette derived from
the plasmid pMCI1-Cre (16), (i) a PGK-neo expression
cassette derived from pB2272-neo and (iii) in case of the
plasmid pShuttle-G5 two copies of the chicken B-globin
insulator element (derived as a 2.5-kb EcoRI/BamHI
fragment from the plasmid pJCI3-1, a gift of Gary
Felsenfeld; NIH, Bethesda). Average virus titres were in
the range of 10° pfu/ml. Infections were performed at an
multiplicity of infection (MOI) of one unless stated
otherwise.

The vector pB-bcas7-2272-hytk carries a PGK-hytk
(hygromycin-phosphotransferase thymidine kinase fusion
gene) expression cassette flanked by a pair of incompatible
lox sites (lox2272 and loxP) embedded into the backbone
of a mouse B-casein gene. The construct was derived from
the plasmids pB-bcas6 and pB2272-hytk (13) by in vitro
Cre mediated recombination. In order to generate stable
cell clones an 8-kb Nhel/Sfil fragment was excised from
the vector and electroporated into HEK 293 cells (1 pg of
DNA in 1 x 107 cells in a 0.2cm cuvette at 110V). Cells
were selected in medium containing 100 pg/ml of
Hygromycin B.

The plasmid pDSred-mito-2272neo was derived from
the Clontech plasmid pDSred2-mito, which was cut with
Nhel and blunt ended using Escherichia coli DNA poly-
merase I. The PGK-neo cassette flanked by a tandem pair
of 10x2272 sites was isolated from pB2272-neo-2272 as a
1.9-kb Sacl/Kpnl fragment. The insert was also blunt-
ended using E. coli DNA polymerase I.

PCR

polymerase chain reaction (PCR) amplifications were
done using Taq polymerase from various suppliers.
Oligonucleotides were purchased from MWG or
Sigma-Genosys. Primer sequences, amplicon size and an-
nealing temperatures are given in Table 1. Template DNA
for PCR analyses was isolated as described (12). Real-time
PCR amplifications were carried out using the Roche
Light-Cycler with Roche reagents as described (17).
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Table 1. Primer combinations used for PCR analysis
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Name Sequence Annealing temperature (°C) Amplicon length (bp)
beas10 5 GTA ACC ATA AAA CTT CTC CAG GGA CTT GG ¥

becas3 5 AGA GGA TCC GTA AGA CGT CAC CTG CTC ACC ¥ 55 1317
beas10 5" GTA ACC ATA AAA CTT CTC CAG GGA CTT GG ¥

bgalint.1 5 TGT TGG TCA AAG TAA ACG ACA TGG TGA CT 3 55 1203
neoint.4 5 GCG CAT CGC CTT CTA TCG CCT TCT TGA C 3’

beas3 5" AGA GGA TCC GTA AGA CGT CAC CTG CTC ACC ¥ 60 1023
PGK1 5 CGA GGC CCG GCA TTC TGC ACG C ¥

CMVseq.1 5" GGA CTT TCC AAA ATG TCG TA ¥ 50 2941
PGKS5 5 AAG CGC ATG CTC CAG ACT GCC TTG GGA AA 3

CMVseq.1 5 GGA CTT TCC AAA ATG TCG TA 3 51 421
PGK5 5 AAG CGC ATG CTC CAG ACT GCC TTG GGA AA 3

pBKpA 5" GCT ATT GCT TTA TTT GTA ACC ATT A ¥ 52 622
hytkl 5 AGA GCT GCA TCA GGT CGG AGA CGC TGT CG 3

beas3 5" AGA GGA TCC GTA AGA CGT CAC CTG CTC ACC ¥ 57 1147
becas6 5 TAA GGG CCA GAG TAG ATC ¥

hytk?2 5 TCC TGG ATT ACG ACC AAT CG 3 48 215
becas6 5" TAA GGG CCA GAG TAG ATC ¥

PGKS5 5 AAG CGC ATG CTC CAG ACT GCC TTG GGA AA 3 50 936
neoint.4 5 GCG CAT CGC CTT CTA TCG CCT TCT TGA C 3

pBKpA 5" GCT ATT GCT TTA TTT GTA ACC ATT A ¥ 51 1074
neoint.2 5 CCA GTC ATA GCC GAA TAG CCT CTC CAC CC ¥

pBKpA2 5" TTC ACT GCA TTC TAG TTG TGG TTT GTC 3 56 1106
DSred-1R 5" AGC GCA TGA ACT CGG TGA TGA C ¥

CMVseq.1 5 GGA CTT TCC AAA ATG TCG TA 3 59 529

Virus preparation

Adenovirus was prepared using the Stratage AdEasy
system as recommended by the supplier. The virus titre
was determined using a TCID50 protocol.

Immuno-histochemistry

Cells were seeded onto coverslips in a 24-well plate and
transfected with plasmid DNA and/or protein. 48h
post-transfection, medium was removed and the cells
were washed in PBS, fixed in 2% para-formaldehyde for
20 min and then washed again three times with PBS. Cells
were blocked in 3% BSA in 1xTBST overnight at 4°C. An
MBP-specific rabbit antiserum (New England Biolabs)
was added at a 1:200 dilution in 1xXTBST and incubated
at room temperature for 2 h. The cells were washed three
times for 10 min in 1x TBST. Then the second antiserum
(goat-anti-rabbit FITC linked) was added at a dilution of
1:100 and the cells on the coverslips were incubated at
room temperature for 2h in the dark. Cells were then
washed as before. The cover-slips were mounted in a
mounting medium containing DAPI (4',6-diamidino-2-
phenylindole; Vector Labs) and photographed at a mag-
nification of 100-fold on a Leica fluorescent microscope.

RESULTS

The Cre recombinase system can be used to insert genes at
predefined sites in the mammalian genome which have
been tagged with a lox target site. This has been
demonstrated in a number of cell types and also (albeit
at reduced efficiency) in fertilized mouse oocytes (7-9). We
have utilized the Cre recombinase to insert genes into the
murine -casein gene with a view to expressing these genes
in the milk of transgenic animals (4,18-20). Using recom-
binase mediated cassette exchange for this approach

allows the target specific insertion of a transgene in a
defined orientation without introducing any excess
vector sequences. In order to express proteins effectively
in the milk of transgenic animals, we have chosen the
B-casein gene as a target site which is able to equip an
inserted transgene with all required regulatory elements
to allow for abundant expression of the transgene in the
lactating mammary gland (3,18).

Electroporation conditions determine the frequency of
site-specific recombination

Electroporation is the method of choice for the transfer
of DNA into embryonic stem cells. However, different
electroporation conditions have been published for the
successful DNA transfer into mouse ES cells (21,22).
We therefore tried to delineate the parameters which
would best support site-specific recombination in HM1
ES cells. We set out to analyse the precise electroporation
conditions which provide the optimum recombination fre-
quency. A pair of incompatible lox sites (loxP and
lox2272) in conjunction with a [-galactosidase open
reading frame and a hytk (hygromycin-
phosphotransferase thymidine kinase fusion gene) selec-
tion marker expression cassette was inserted into the
second exon of the P-casein gene in HMI1 embryonic
stem cells using sequential homologous and site-specific
recombination (13). The ATG of the B-casein gene was
deleted during that process, such that the ATG of
B-galactosidase is the first translation start codon in a
chimeric mRNA initiating at the first exon of the
B-casein gene (Figure 1). The resulting cell line HM1
RMCE2272-gal/hytk (GH1) was then transfected with
the plasmid pB2272-neo together with a two-fold excess
of a Cre expression vector. The cells were selected in
medium containing 200 pg/ml  G418. Under these
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Figure 1. (A) Schematic representation of the murine B-casein gene and its derivatives after homologous recombination and RMCE. Exons of the
B-casein gene are indicated as solid boxes, the neomycin (neo) and hytk selection marker genes are indicated as solid arrows, respectively and the
B-galactosidase gene (B-gal) is indicated as a hatched arrow. The PGK promoter elements directing expression of the selection marker genes are
indicated as black arrowheads. The positions of the 10x2272 and loxP sites and the translational start codon (ATG) are marked by vertical arrows.
The primer binding sites (horizontal arrows) used for genotyping and the sizes of the expected PCR products are indicated. (B) PCR analysis of
genomic DNA isolated from the cell clones HM1 RMCE2272-gal/hytk (GH1), and the cell clone HM1 N1-2272 derived from it. A 1317-bp band is
detected in both samples and represents the unmodified B-casein allele. HM1 RMCE2272-gal/hytk (GH1) cells carry an insertion of a -galactosidase
open reading frame and a PGK-hytk expression cassette at one of the B-casein alleles as indicated by the occurrence of a 1203-bp PCR product. Cell
clone HM1 N1-2272 was derived after an RMCE event which exchanged the B-gal and hytk genes for the neo selection marker gene. The correct
modification is indicated by the generation of a 1023-bp PCR product and the concomitant loss of the 1203-bp band. Phage A DNA digested with

HindIIT and EcoRI was used as molecular weight marker.

conditions cells which have incorporated the selection
marker gene at random sites or by site-specific recombin-
ation will survive. We found that, surprisingly, the fre-
quency of site-specific integration was heavily dependent
on the electroporation conditions used (Table 2). At 250V
and 960 uF almost all of the colonies selected carried a
site-specific insertion of the neo gene at the [-casein
locus. In contrast, transfections carried out at 800V and
3 pF, although generating the same number of resistant
colonies, showed no site-specific insertion of the neo
gene into the predefined B-casein target site (Table 2).

As we suspected that the amount of Cre protein ex-
pressed under these different electroporation conditions
may be critical for the frequency of the RMCE reaction,
we analysed the impact of the Cre protein concentration
on the recombinase mediated cassette exchange (RMCE)
frequency (Figure 2). HEK 293 cells were transfected with
the plasmids pB2272-neo and pBK2272-HPRT. RMCE
between the two plasmids can readily be detected and
quantified by PCR (Figure 2A). Subsequently, varying
amounts of MBP-Cre protein (23) were transfected into
the cells using the Proteo-Juice reagent and the RMCE
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frequency was determined by real-time PCR. The results (Figure 2B). MBP-Cre protein can be detected by
demonstrate that the RMCE frequency is indeed directly immuno-histochemistry in around 5-7% of the cells
correlated with the concentration of Cre protein present in (Figure 2C). As transfection of DNA and protein will
the cell. If 10 pg of MBP-Cre protein are tranfected per 10° not have occurred necessarily in the same cells, it is
cells, 14% of the transfected DNA undergo RMCE possible that the maximum frequency of RMCE may be

higher than 14%. Alternatively, as the RMCE reaction

Table 2. Recombinase mediated cassette exchange efficiency is will reach an equilibrium of the fiiﬂc?rent recombination

dependent on electroporation conditions products (which can be formed via either or both of the
) - ) lox sites), the 14% RMCE product detected may represent

Electroporation Number of Site-specific the equilibrium state of the RMCE reaction.

conditions colonies integration (%)

250 V/960 pF (+Cre) 21+ 17 100 (12 of 12) ) )

250 V/960 uF (+Cre) 73+ 8 92 (11 of 12) Chemical-mediated gene transfer supports RMCE

250 V/960 uF (+Cre) 154 +7 83 (10 of 12) : )

250 V/960 uF (+Cre) 68 + 6 92 (11 of 12) Most researchers have used electroporation to mediate

800 V/3 uF (+Cre) 53+5 0 (0 of 12) DNA transfection in the context of RMCE experiments

800 V/3 uF (+Cre) 2142 0 (0 of 12) (8,24,25). We wanted to determine whether electroporation

800 V/3uF (*Cre) 46+ 3 0 (0 of 12) per se is a significant stimulus for the efficient integration of

800 V/3 uF (+Cre) 61 =7 0 (0 of 12) , . ;

800 V/3 uF (~Cre) 5743 nd DNA via RMCE or whether (in our hands) a chemical

800 V/3 uF (—Cre) 62+6 nd (rather than a physical) method for DNA transfer would

work as well as electroporation. We therefore used a

Colony numbers are average values from four cell culture dishes chemical DNA transfer methods (Gene Juice, Novagen)

(£SD). Site-specific integration was assessed by PCR as shown in

Figure 1. nd: not determined. to mediate site-specific insertion of the transgene cassette.
A 1000 2000 3000 4000 5000 6000 7000 bp
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Figure 2. (A) Schematic representation of the plasmids pB2272-neo and pBK2272-HPRT. The neomycin resistance marker genes (neo) are indicated
as solid arrows. The PGK promoter is indicated as an arrowhead. The HPRT selection marker gene is indicated as a striped arrow. The primer
binding sites (horizontal arrows) used for genotyping and the sizes of the expected PCR products are indicated. (B) Quantitative PCR analysis of
recombinase mediated cassette exchange in HEK 293 cells. Cells were transfected with equimolar amounts of the plasmids pBK2272-HPRT and
pB2272-neo. Twenty four hours post-plasmid transfection the cells were transfected with different amounts of an MBP-Cre fusion protein using the
Proteo-Juice reagent (Novagen). DNA was isolated from cells 36h later and analysed by real-time PCR using the primer pair neoint.2/pBKpA2
(yielding a 1106-bp fragment) to quantify the concentration of the input plasmid pBK-2272HPRT and the primer pair neoint.4/pBKpA (yielding a
1073-bp fragment) to quantify the concentration of RMCE product generated. The concentrations are presented as pg RMCE product per ng input
plasmid in correlation with the amount of MBP-Cre protein transfected into 1 x 10° cells. (C) Immunohistochemistry of cells transfected with the
plasmids pB2272-neo and pBK2272-HPRT and the protein MBP-Cre (or the plasmid pMCI-Cre; right panel). The MBP section of the protein was
detected using a 1:200 dilution of an MBP-specific rabbit antiserum and a goat-anti-rabbit FITC-linked secondary antiserum.
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Table 3. Recombinase mediated cassette exchange efficiency after liposome transfection and electroporation in two experiments conducted in

parallel
Selection pMCI1-Cre Colonies Gene Juice transfection Colonies electroporation
(1.5pg DNA per cell) (2pg DNA per cell)
G418 (=) 178, 131 78, 40
G418 (+ 42, 38 (3 of 17 positive, 18%) 178, 155 (7 of 25 positive, 28%)
G418/Ganc. (-) 133, 146 54, 78
G418/Ganc. () 71, 87 208, 218

pMCI1-Cre was co-transfected with the plasmid pB2272-neo in a 3:1 ratio.

As HMI1 ES cells do not display high transfection
frequencies with the Gene Juice reagent, this experiment
was carried out in a derivative of the mouse mammary
gland cell line HCI11 cells termed HC11-bcas-F9 (18).
The cells carry the same modification as the HM1 ES
cells used above and were transduced with the plasmids
pB2272-neo and pMCI1-Cre using the Gene Juice reagent
and, in parallel, by electroporation. Seventeen percent of
the selected cell colonies carried the correct site-specific
integration of the marker gene into the B-casein gene
when the cells were transfected using Gene Juice.
Electroporation with the same construct lead to 28% of
the cells carrying the correct integration. The absolute
number of resistant cell colonies was similar for both tech-
niques (Table 3), however, addition of Cre to the trans-
fection mixture decreased the number of resulting
selection resistant colonies when the cells were trans-
fected with Gene Juice and increased the number of resist-
ant colonies when the cells were -electroporated.
This suggests that the transfection method can indeed
have an influence on the relative frequency of random in-
tegration and recombinase mediated integration. Gene
Juice mediated transfections may present the DNA in a
way that is more amenable to random insertion than
DNA brought into the cell by electroporation. This in
turn may be dependent on the different biochemical envir-
onments the DNA is exposed to in the two DNA transfer
methods. However, these results also demonstrate that
transfection methods other than electroporation can be
used successfully to bring about recombinase mediated
cassette exchange.

The recombinase expression cassette and the transgene
cassette can be delivered in one plasmid

We then wanted to analyse the efficiency with which the
recombinase and the transgene cassette mediate RMCE
reactions in the context of a biological gene transfer
vehicle i.e. a viral vector. Transfections aimed at achieving
recombinase mediated cassette exchange typically utilize
an excess of Cre expression plasmid over the plasmid
carrying the transgene construct (13,26-28). In the experi-
ments described above a 2- or 3-fold excess of Cre expres-
sion construct was used. In the context of a viral vector
carrying both the transgene and the recombinase gene, the
genes would be present at an equimolar ratio. In order to
test whether such a construct would support site-specific
recombination of a transgene, a plasmid carrying the
neomycin resistance marker cassette derived from

pB2272-neo (flanked by a pair of incompatible lox sites)
was joined to a Cre expression cassette in the context of
the plasmid pShuttle (Stratagene) (Figure 3A). First, the
construct was co-transfected into BHK cells together with
an acceptor plasmid (pBK2272-HPRT) carrying the same
pair of lox sites. As shown in Figure 3B the plasmid
(termed pShuttle-H6) supported site-specific recombin-
ation with the acceptor plasmid in the presence or
absence of any additional Cre expression vector (see
lanes pShuttle-H6 and pShuttle-H6 +pMC1-Cre) as
demonstrated by the occurrence of the indicative 421-bp
PCR product in a transient transfection.

The construct pShuttle-H6 was then transfected into
HM1-2272-98 cells (13). These derivatives of HMI1 cells
carry a modified B-casein locus incorporating an HPRT
selection marker gene flanked by the loxP/lox2272 pair of
Cre target sites. Interestingly, none of the G418 resistant
cell clones derived from this transfection carried a
site-specific insertion of the neo cassette at the B-casein
gene even if electroporations were carried out under the
conditions which had previously lead to a high efficiency
of RMCE (cf. Table 1). In the plasmid pShuttle-H6 the neo
expression cassette and the Cre expression cassette are
placed in tandem. A corresponding plasmid in which the
orientation of the neo expression cassette was reversed also
failed to yield any G418 resistant cell clones which carried a
site-specific insertion after transfection into HMI
RMCE2272-98 cells (data not shown). We have previously
shown that expression cassettes in close vicinity can inter-
fere with each others expression (15). Therefore the vector
was modified by the insertion of two copies of the chicken
B-globin insulator between the Cre and neo expression cas-
settes. The resulting vector (pShuttle-G5, Figure 5A) was
again transfected into HM1-2272 98 cells and G418 resist-
ant colonies were derived. This time the vast majority of
stable cell clones (85%) had taken up the neo cassette by
site-specific recombination (as shown for representative
clones in Figure 4). This confirms that it is possible to
provide the Cre expression cassette and the transgene
which is to be integrated into the host genome in a single
contiguous DNA segment. The results also demonstrate
that vector design is a critical factor determining the effi-
ciency of RMCE.

An adenovirus vector can mediate successful RMCE

We therefore established an adenovirus vector based on
the plasmid pShuttle-G5 and tested its ability to support
site-specific recombination in HEK 293 and BHK cells.
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Figure 4. PCR analysis using the primer combination bcas3, bcasl0
and neoint.4 on DNA isolated from representative cell clones derived
after electroporation of HM1 RMCE2272-98 cells with the plasmid
pShuttle-G5 and selection of the transfected cells in medium containing
200 pg/ml of G418. The 1317-bp band is detected in all samples and
represents the unmodified B-casein allele. Cell clones modified by an
RMCE event, which has inserted the PGK-neo selection marker
cassette, display an additional 1023-bp PCR product. Phage 2 DNA
digested with HindIII and EcoRI was used as molecular weight marker.

The G5 virus could be amplified to a typical titer of
around 1 x 10°pfu/ml. This is significantly lower than
the titer we obtained for the control virus encoding the
B-galactosidase gene, which yields a titer in excess of
1 x 10® pfu/ml in our hands. We suspect that this is due
to the fact that the size of the total insert is ~7 kb, which is
close to the maximum packaging capacity of the AdEasy
vector system (7.5kb), which carries deletions in the El
and E3 genes. When infected with the [B-galactosidase
control adenovirus BHK and HEK 293 cells at an MOI
of 10, essentially all cells become infected, demonstrating
that both cell types are susceptible to adenovirus infection
(data not shown).

HEK 293 cells carry segments of the adenovirus genome
which are deleted from the recombinant virus and com-
plement the viral vector to allow virus replication. BHK
cells, in contrast, do not support viral replication. We
analysed whether the transgene cassette present in the
adenovirus vector can be mobilized such that it integrates
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site-specifically into an acceptor plasmid. HEK 293 and
BHK cells were transiently transfected with the acceptor
plasmid pBK2272-HPRT and subsequently infected with
the adenovirus vector G5 or the control virus. As a
positive control the cells were also transfected with the
plasmid pMCI1-Cre. In order to determine whether the
availability of the mobilizable transgene cassette is a
limiting factor, in a parallel reaction the infected cells
were also transfected with the plasmid pB2272-neo,
which corresponds exactly to the cassette present in the
viral vector. DNA was isolated from the transfected and
infected cells 24h post-infection and analysed by PCR
with the primer combination: CMVseq.1/PGKS5/pBKpA.
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In the absence of recombination a PCR product of 622 bp
is generated by the primer pair pPBKpA/PGKS5, whereas
successful recombination is evidenced by the occurrence of
a 421-bp product derived from primer pair PGKS5/
CMVseq.1 (Figure 5A).

As shown in Figure 5B transfection of HEK 293 cells
with the acceptor plasmid pBK2272-HPRT, the donor
plasmid pB2272-neo and the Cre expression plasmid
pMCI1-Cre leads to the generation of a 421-bp product
indicative of a successful site-specific recombination. The
same product is also generated when the cells are infected
with the adenovirus G5 irrespective of whether the donor
plasmid pB2272-neo was co-transfected. This indicates
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Figure 5. (A) Schematic representation of the linear plasmids pShuttle-G5, pBK2272-HPRT and the expected recombination product. The neomycin
resistance marker genes (neo) are indicated as solid arrows. The Cre open reading frame is indicated as a shaded arrow. The PGK and the tk
promoter are indicated as arrowheads. The copies of the B-globin insulator element (INS) are indicated as vertically striped boxes. The positions of
the 10x2272 and loxP sites are marked by vertical arrows. (B) PCR analysis of DNA isolated from HEK 293 and BHK cells (as indicated)
transfected/infected with pBK2272-HPRT plus the indicated plasmids and virus vectors. The 622-bp PCR product is generated from the
non-recombined pBK2272-HPRT plasmid. The 421-bp PCR product (derived from the primer pair PGK5/CMVseq.1) is indicative of a recombinase
mediated cassette exchange between the PGK-neo cassette and the PGK-HPRT cassette. Phage A DNA digested with HindIIT and EcoRI was used

as molecular weight marker.
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that in this assay format the G5 virus is capable of ex- using the primer pair DSred-1R/CMVseq.1 which yields a
pressing sufficient amounts of Cre and to act as donor 529-bp product indicative of a site-specific recombination
of the 2272-neo cassette. The PCR analysis shown in event in both cell types. The product can be detected in
Figure 5B analyses the 3’ end of the recombination event HEK 293 and BHK cells (albeit at a lower intensity)

(Figure 5A). Analysis of the 5 end of the recombination indicating that there is sufficient Cre protein present in
event confirms these results (data not shown). BHK cells the BHK cells to support recombination.

in contrast which do not allow replication of the adeno- Subsequently, we used a lower concentration of the
virus vector do only show the band indicative of an G5 virus (MOIs of 0.1 and 0.3) in HEK 293 cells to
RMCE event after co-transfection of the plasmids assess whether under these conditions additional transfec-

pB2272-neo and pMCI1-Cre. In addition, there is a faint tion of a Cre-expression plasmid (pMCI1-Cre) or the
band detectable in the cells which have been transfected RMCE plasmid pB2272-neo would augment RMCE. As
with the plasmid pB2272-neo and infected with the shown in Figure 6C the addition of extra mobilizable
G5 virus. transgene cassette DNA significantly enhances RMCE fre-

In order to assess whether the abundance of Cre or the quency (lane pB2272-neo + virus G5; Figure 6C). No sig-
neo-RMCE donor cassette is limiting for the RMCE nificant difference is observed if the pMC1-Cre plasmid is
reaction two further experiments were carried out. First, transfected in addition to infection with the virus G5
HEK 293 cells and BHK cells were transfected with the (Figure 6C). Real-time PCR analysis confirms that there
plasmid pDSred-mito-2272neo. This plasmid carries a is a 14-fold increase in RMCE product when the plasmid

PGKneo cassette flanked by two tandem lox2272 sites pB2272-neo containing the transgene cassette is trans-
inserted between the CMV promoter and the open fected in addition to the G5 infection in HEK 293 cells
reading frame of the red fluorescent protein DSred-mito (Figure 6D). In contrast, transfection of the plasmid
gene. The neo-cassette prevents activation of the pMCI1-Cre in addition to the virus infection only
DSred-mito gene. Cre removes the neo-cassette and the augments the occurrence of the RMCE product by
ensuing gene expression can be detected as red fluorescent 1.4-fold.

staining in the mitochondria of the cells. Infection of the We then assessed whether the adenoviral vector would
G5 virus was able to induce DSred-mito gene expression also be able to support integration of the neo-selection
both in HEK 293 and BHK cells even though expression marker cassette from the virus into a target site
was much more abundant in HEK 293 where virus repli- embedded into the genome. We therefore generated

cation is possible (Figure 6A). This is confirmed by PCR a plasmid carrying a modified [-casein gene
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Figure 6. (A) Red fluorescent staining in HEK 293 and BHK cells transfected with the plasmid pDSred-mito-2272-PGKneo and infected with the G5
adenovirus. Red staining of the mitochondria indicates the presence of the plasmid and the virus-derived Cre protein in the same cell. (B) PCR
analysis of DNA derived from the cells in A using the primer combination DSred]1R/CMVseq.l. Recombination between the two identical lox2272
sites in the plasmid, which is a prerequisite for the activation of the red fluorescent protein is indicated by the occurrence of a 529-bp band (marked
by the arrow). (C) PCR analysis of DNA isolated from HEK?293 cells transfected with the indicated plasmids and infected with adenovirus G5 at an
MOI of 0.1. RMCE is detected using the primer pair pBKpA/neoint.4 which yields an indicative 1073 bp product (marked by the arrow).
(D) Real-time PCR analysis of DNA isolated from HEK?293 cells transfected with the indicated plasmids and infected with adenovirus G5 at an
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Figure 7. (A) Schematic representation of the plasmid pB-bcas7-2272-hytk, the insert of the virus vector G5 and the resulting RMCE product. Exons
of the P-casein gene are indicated as shaded boxes, the neomycin and hytk selection marker genes are indicated as solid and shaded arrows,
respectively and the Cre ORF (Cre) is indicated as a vertically striped arrow. The PGK promoter elements directing expression of the selection
marker genes are indicated as black arrowheads. The positions of the 10x2272 and loxP sites are marked by vertical arrows. The primer binding sites
(horizontal arrows) used for genotyping and the sizes of the expected PCR products are indicated. (B) PCR analysis of DNA isolated from HEK
293 cells transiently or stably transfected with pB-bcas7-2272-hytk. The cells were either co-transfected with the indicated plasmids or infected with
the indicated virus vectors 24 h post-transfection. The 3’ end of the RMCE reaction was analysed using the primer combination bcas3/neoint.4/hytkl.
Successful recombination at the loxP site is indicated by the presence of the 1023-bp PCR product. Non-recombined DNA yields a PCR product of
1147 bp. Phage » DNA digested with HindIIl and EcoRI was used as molecular weight marker. (C) The 5 end of the RMCE reaction was analysed
using the primer combination bcas6/PGK5/hytk2. Successful recombination at the 1ox2272 site is indicated by the presence of the 215-bp PCR
product. Non-recombined DNA yields a PCR product of 936 bp. Phage A DNA digested with HindIII and EcoRI and the NEB PCR marker (New
England Biolabs) were used as molecular weight markers.

(pB-cas7-2272-hytk), which can serve as a target for
RMCE, and transfected it stably into HEK 293 cells
(Figure 7A). The stably transfected cells were subsequently
infected with the virus G5 or the control virus. Genomic
DNA was isolated 24h post-infection and analysed by
PCR. The primer combination bcas3/hytkl/neoint.4 was
used to detect recombination at the 3’ end of the integrated
cassette. A 1147-bp PCR product (amplified by the primer
pair bcas3/hytkl) is detected in the unmodified B-casein
gene, whereas a 1028-bp product (amplified by the
primer pair bcas3/neoint.4) is indicative of a [-casein

gene modified by RMCE (Figure 7B). The primer combin-
ation bcas6/hytk2/PGKS5 was used to assess recombin-
ation at the 5 end of the integrated cassette. A 936-bp
PCR product (amplified by the primer pair bcas6/hytk?2)
is detected in the unmodified B-casein gene, whereas a
215-bp product (amplified by the primer pair bcas6/
PGKS5) is indicative of a [-casein gene modified by
RMCE (Figure 7C). Recombination was readily detected
in HEK 293 cells transiently or stably transfected with the
pB-cas7-2272-hytk plasmid indicating that the G5 virus is
able to serve as both transgene donor and source of Cre
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expression, mediating stable insertion of a transgene
cassette into a predefined genomic site in HEK 293 cells.
Comparison of the relative intensities of the PCR products
representing the stably integrated P-casein gene and the
RMCE product demonstrates that infection with the G5
virus is significantly more efficient in mediating RMCE
than transfection of the plasmids pB2272-neo and
pMCI1-Cre.

DISCUSSION

The goal for genome modification in gene therapy and
transgenesis is that genome alterations can be introduced
rapidly and accurately. Cre recombinase has proved a
useful tool for genome modifications due to its high
activity in mammalian cells (29) and its high degree of
DNA sequence specificity. We show here that
Cre-mediated cassette exchange is highly dependent on
electroporation conditions and vector design. Our results
confirm our expectations that a single contiguous segment
of DNA which carries both, the Cre expression cassette
and a mobilizable transgene cassette, is able to mediate
stable integration of the transgene into a genomic target.
However, the presence of an insulator element between the
two genes is essential for efficient recombination to take
place. The requirement for the insulator element may
suggest that transcription of the gene cassettes can inter-
fere with Cre mediated recombination. Alternatively, tran-
scription of the neo cassette may reduce expression of the
neighboring Cre recombinase gene thus resulting in a di-
minished level of site-specific recombination. We and
others have demonstrated that adjacent transcription cas-
settes can silence each other (15,30).

An adenovirus vector which acts both as transgene
donor and source of Cre expression is able to mediate
site-specific transgene integration into extra-chromosomal
and chromosomal target sites. However, the vector is
only efficient in cells which allow adenovirus vector
replication. This is largely due to the limiting amounts
of transgene cassette that can be generated in an infected
cell which does not support virus replication. This can
be concluded from the finding that augmenting the trans-
gene cassette by transfection significantly increases the
RMCE frequency, whereas augmenting the Cre-
expression cassette does not. The limiting amounts of
transgene cassette may also be responsible for the different
RMCE frequencies obtained with different electropor-
ation conditions. The conditions which strongly favor
random integration over RMCE may not allow sufficient
quantities of transgene DNA to enter the cell, whereas the
conditions which strongly favor RMCE over random
integration do.

El gene deleted adenovirus vectors do not allow a sig-
nificant degree of DNA replication in cells in which the
E1 gene product is not supplied exogenously. E1 encodes
the earliest viral gene product and is essential for the early
steps of virus DNA replication. This may limit the total
amount of viral DNA that is produced in an infected cell.
Therefore alternative adenovirus vector designs may be
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used to enhance the concentration of viral DNA in the
infected cell.

Adenovirus vectors have been used successfully to
mediate integration of transgene cassettes using transpos-
able elements (e.g. sleeping beauty and L1) demonstrating
the usefulness of combining viral vectors with enzymes
mediating gene integration (albeit non-site-specific) to
improve transgene expression (31,32).

It has been shown that the specificity of site-specific re-
combinases can be modulated such that they recognize
sites existing in the human and animal genomes
(33,34). We show in here that an adenovirus vector con-
taining a Cre expression cassette and a transgene cas-
sette can mediate site-specific gene integration into a
genomic target site. In combination with Cre mutants
of altered site-specificity and viral vectors whose inability
to multiply in host cells is restricted at the step of
packaging rather than DNA replication this approach
may lead to vectors which allow site-directed insertion
of genes into mammalian genomes. This approach
can therefore be applied to the insertion of transgenes
encoding recombinant proteins in animals and may
also have implications for similar approaches in gene
therapy. This system can also be applied to any other re-
combinase system including the ®C31 recombinase
(33,35,36) and the A integrase (37), which mediate the
site-specific integration of transgenes into the host
genome.
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