
Sensors 2013, 13, 14740-14753; doi:10.3390/s131114740 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

A New Colorimetrically-Calibrated Automated Video-Imaging 

Protocol for Day-Night Fish Counting at the OBSEA Coastal 

Cabled Observatory 

Joaquín del Río 
1,
*, Jacopo Aguzzi 

2,
*, Corrado Costa 

3
, Paolo Menesatti 

3
, Valerio Sbragaglia 

2
, 

Marc Nogueras 
1
, Francesc Sarda 

2
 and Antoni Manuèl 

1
 

1
 SARTI Research Group, Electronics Department, Universitat Politècnica de Catalunya (UPC), 

Rambla de la Exposición 24, Vilanova i la Geltrú-Barcelona 08800, Spain;  

E-Mails: Marc.nogueras@upc.edu (M.N.); antoni.manuel@upc.edu (A.M.) 
2 

Instituto de Ciencias del Mar (ICM-CSIC), Paseo Maritimo de la Barceloneta, 37-49,  

Barcelona 08003, Spain; E-Mails: sbragaglia@icm.csic.es (V.S.); siscu@icm.csic.es (F.S.) 
3 

Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Via della Pascolare,  

Monterotondo Scalo 16-00015, Rome, Italy; E-Mails: corrado.costa@entecra.it (C.C.);  

paolo.menesatti@entecra.it (P.M.) 

* Authors to whom correspondence should be addressed; E-Mails: joaquin.del.rio@upc.edu (J.R.); 

jaguzzi@cmima.csic.es (J.A.).  

Received: 30 August 2013; in revised form: 22 October 2013 / Accepted: 22 October 2013 /  

Published: 30 October 2013 

 

Abstract: Field measurements of the swimming activity rhythms of fishes are scant due to 

the difficulty of counting individuals at a high frequency over a long period of time. Cabled 

observatory video monitoring allows such a sampling at a high frequency over unlimited 

periods of time. Unfortunately, automation for the extraction of biological information  

(i.e., animals‘ visual counts per unit of time) is still a major bottleneck. In this study, we 

describe a new automated video-imaging protocol for the 24-h continuous counting of 

fishes in colorimetrically calibrated time-lapse photographic outputs, taken by a shallow 

water (20 m depth) cabled video-platform, the OBSEA. The spectral reflectance value for 

each patch was measured between 400 to 700 nm and then converted into standard RGB, 

used as a reference for all subsequent calibrations. All the images were acquired within a 

standardized Region Of Interest (ROI), represented by a 2 × 2 m methacrylate panel, 

endowed with a 9-colour calibration chart, and calibrated using the recently implemented 

―3D Thin-Plate Spline‖ warping approach in order to numerically define color by its 

coordinates in n-dimensional space. That operation was repeated on a subset of images, 
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500 images as a training set, manually selected since acquired under optimum visibility 

conditions. All images plus those for the training set were ordered together through 

Principal Component Analysis allowing the selection of 614 images (67.6%) out of 908 as 

a total corresponding to 18 days (at 30 min frequency). The Roberts operator (used in 

image processing and computer vision for edge detection) was used to highlights regions of 

high spatial colour gradient corresponding to fishes‘ bodies. Time series in manual and 

visual counts were compared together for efficiency evaluation. Periodogram and waveform 

analysis outputs provided very similar results, although quantified parameters in relation to 

the strength of respective rhythms were different. Results indicate that automation 

efficiency is limited by optimum visibility conditions. Data sets from manual counting 

present the larger day-night fluctuations in comparison to those derived from automation. 

This comparison indicates that the automation protocol subestimate fish numbers but it is 

anyway suitable for the study of community activity rhythms. 

Keywords: coastal fishes; cables observatories; OBSEA; automated video-imaging; 

colorimetric calibration; swimming rhythms; 3D Thin-Plate Spline warping 

 

1. Introduction 

Field measurements of the swimming activity rhythms of rocky fishes are scant due to the difficulty 

of counting individuals at a high frequency over a large period of time [1]. Poor access to repeated 

sampling at statistically relevant intervals and frequencies limits temporal studies of fauna, impeding 

establishment of a solid linkage between perceived biodiversity and species behavior [2]. Such kinds 

of studies are of relevance for the development of models predicting fish community changes in spite 

of changing environmental conditions, involving human and climatic stressors [3]. 

Technological improvements in coastal fish monitoring would require the development of a new 

observational technology capable of acquiring data sets at a high frequency over long temporal 

durations (from week to years) [4]. This technology is now available, being represented by cabled 

video-observatories [5]. Cabled seafloor observatories are multiparametric platforms connected to the 

shore for power and real-time data transmission that often carry video cameras in addition to sensors 

measuring habitat conditions [6]. These allow the researcher to monitor biotic activities at different levels 

of complexity (from the individual animal, to population, species up to the level of the whole 

community), often providing real-time online access allowing the observer to view current events [7,8]. 

Unfortunately, major drawbacks in using still cabled observatories cameras chiefly refer to the need 

for manual processing of very large sets of images for animal detection, counting and when required, 

classification [9]. That drawback can only be overcome by implementing suitable automated-video 

imaging protocols, which have recently been customized for the study of activity rhythms with  

video-cabled observatories of aphotic deep-sea areas [9–11]. Such an effort has not yet been attempted 

in the shallow coastal zones, where the greater variability in environmental illumination and often 

complex background substrates (e.g., reefs or coarse bottoms) consistently complicate the elaboration 

of efficient protocols [2]. 
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The customization of an automated protocol for the 24-h video-counting at a frequency of minutes 

has not yet been implemented in shallow water coastal cabled observatories, being of potential 

relevance also for other coastal platforms worldwide, such as for example the Martha‘s Vineyard 

Coastal Observatory [12] of Massachusetts‘ Katama Air Park and the Long-term Environmental 

Observatory [13] in New Jersey. Accordingly, automated video-imaging protocols for fish detection, 

coping with the difficulties of working at depth zones where light levels vary markedly in relation to 

the day-night cycle are of relevance, since development in more challenging scenarios in comparison 

to the more disphotic deep-sea [2]. In this study, we describe the customization and functioning of a  

new automated video-imaging protocol for the day-night continuous counting of fishes (with no 

classifications) within a standardized field of view. Our protocol was developed to work with time-lapse 

photographic outputs proceeding form still coastal cabled observatory cameras. Our objective was to 

test its monitoring capabilities under markedly different environmental illumination conditions, in 

order to promote a discussion on feasibilities and limitations of automated video-imaging in coastal 

areas, as a reliable tool to monitor fish swimming rhythms at different temporal scales.  

2. Experimental Section  

2.1. The Platform and the Panel for the Field of View Standardization 

The expandable SEAfloor OBservatory (OBSEA; www.obsea.es) is a multiparametric cabled 

video-platform located at 20 m depth 4 km off Vilanova i la Geltrú (Catalonia, Spain) in front of an 

artificial reef [14,15]. It is endowed with an OPT-06 Underwater IP Camera (OpticCam; Ocean 

Presence Technologies, Santa Cruz, CA, USA, Figure 1A,B), which can acquire digital images of the 

environment surrounding the OBSEA at 360° with a resolution of 640 × 480 pixels (Mpeg/Mjpeg;  

18 × optical zoom). An artificial barrier is located at 3 m distance from the camera (Figure 1C). In the 

recent past, the OBSEA camera has be efficiently used for manual monitoring of the fish community at 

a high frequency and over prolonged periods of time, but only with daytime images [16]. 

The OBSEA was recently implemented with a nocturnal lighting system (Figure 1D) consisting of 

two white light LED arrays (Figure 1E), in order to allow fish counting over the 24-h cycle in a 

continuous fashion. Each array consisted of 13 high-luminosity white LEDs with a total power of 30 W 

and generated an emission power of 3,800 lumens (49 µmole/m
2
/s) along the maximum light propagation 

vector at an angle of 38°. The two lights illuminated a panel at the constant Region of Interest (ROI) 

for fish counting (Figure 1F), installed aside the artificial reef, from one meter rear the camera.  

The camera always aimed at 45° angle toward a red methacrylate homogenously panel of  

220 × 220 cm, approximately 2 m above the seabed (Figure 2), installed next to the artificial reef. Its 

presence and uniform colouring were required to standardize automated video-imaging within a 

constant ROI up to a maximum extent, given the variable lighting conditions, as usually occurring in 

coastal areas. In particular, the panel provided a constant framework for fish counting, when 

considering that the average visibility at OBSEA can be very variable according to local turbidity [16], 

considering turbidity as the cloudiness of water caused by individual particles (suspended solids) . 
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Figure 1. Different details of the OBSEA cabled video-observatory, the lighting system 

and the artificial reef with the appended ROI panel. (A) lateral view of the OBSEA 

platform with a detail of the cable and the external structure; (B) up-side view, where the 

circle indicates the position of the video camera (the arrow represents the direction in 

which images were acquired in relation to the artificial panel deployed aside the reef);  

(C) a top view of the OBSEA, in which are visible the artificial reef and the observatory 

together (see B for arrow meaning); (D and E), indicate respectively the positioning of the 

LED light arrays in relation to the camera (only one is visible, being the other on the back 

of the photographer) and a particular of its structure when ON; and finally, (F) Scheme 

depicting the installation of the panel (that will be the ROI acquired by the camera) aside 

the artificial reef (number are distances in cm). 

 

Figure 2. The methacrylate red panel used for automated RGB colorimetric calibration of 

images taken by OBSEA camera at different times of the day. White vertical lines (100 cm 

length) can be used as general size bars for fish length determination in absence of more 

precise measuring methods (i.e., lasers).  
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A 9-colour chromatic chart was also installed on the panel upper side (see Figure 2), in order to 

allow image calibration for Red, Green and Blue (RGB) contents at different time of the day and under 

different environmental illuminations (see Section 2.3). RGB calibration was required for the image 

thresholding, which is a critical initial step for fish presence identification [9]. 

2.2. The Time-Lapse Photographic Acquisition 

Images were acquired over 30-min periods during 18 days (22 October to 9 November 2011 starting 

and ending at 0:00 h and 21:30 h local time, respectively). A procedure controlling the ON-OFF status 

of the lighting immediately before and after image acquisition at night was implemented, since 

constant lighting at video-monitoring may disrupt behavioural observations [9,17], due to fish 

avoidance or attraction [18,19]. The lights activation was automatically controlled by a customized 

LabVIEW application that also manages the camera white balance. The automated protocol for the ON 

and OFF light switching started and ended 2 s prior and after respectively, the camera image acquisition.  

2.3. The Automated Video-Imaging Protocol for Fish Counting 

All automation procedures were implemented in a Matlab 7.0 environment (Image Processing 

Toolbox). The spectral reflectance values for each of the 9-colour chart patches of the panel (see 

Figure 2) was measured in the visible range (between 400 and 700 nm wavelengths with a step of  

10 nm) prior immersion, using a Portable Integrated-Sphere D50/2 Spectrocolorimeter (Xrite, SP64, 

Grandville, MI, USA). The obtained reflectance of each patch was then converted in standard RGB 

(sRGB) value, using the Matlab OptProp Freeware Toolbox., according to [20]. These converted 

values were used as a reference for all calibration treatments of underwater images at filtering 

(as required for fish identification by thresholding). 

All the images were calibrated using the recently implemented ―3D Thin-Plate Spline‖ warping 

approach [21] (Figure 3). For each calibrated image, the mean RGB values of a 100 × 100 pixels area 

in the centre of each patch were extracted. That operation was repeated on a subset of 614 images as a 

training set, manually selected since of optimum visibility conditions. RGB values of a ROI 

encompassing the central portion of the panel from all images (so including the 614 used as training 

set) were ordered altogether through Principal Component Analysis (PCA) in order to verify if calibration 

could be automatically used to classify good from bad images. That represents a necessary preliminary 

step in automated video-imaging to avoid the wasting computational time and potential results noise.  

Fish automated counting was then carried out only on the 614 images a ROI encompassing the 

central portion of the panel was selected. On all the RGB channels a Euclidean distance was calculated 

from each pixel with respect of the background (i.e., the mean value for the 100 × 100 pixels panel 

central area). Basing on these distances a segmentation algorithm based on the Roberts edge detection 

has been applied. The Roberts operator performs a simple 2-D spatial gradient measurement on an 

image [22]. It thus highlights regions of high spatial gradient, which often correspond to edges. In the 

output, pixel values at each point represent the estimated absolute magnitude of the spatial gradient of 

the input image at that point. 
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Figure 3. Example of three images with different illumination conditions (A, day, B, night; 

C, day with turbidity), before and after the calibration.  

 

2.4. Data Treatment of Video-Imaging Fish Counts 

The time series of automated and manual total fish counts were firstly represented in the domain of 

time. Both data sets were then treated by the same time series analysis tools, in order to generally 

evaluate the efficiency of automation in a statistic fashion. Firstly, both series were screened by  

Chi-Square periodogram analysis [23] between 660 and 1,500 min (equals to 11-h and 25-h, 

respectively) [1]. Periodogram analysis was run with El Temps software [24]. In the periodogram 

output plots, the highest peak crossing the significance (p < 0.05) threshold represented the maximum 

percentage of total data variance explained by the inherent dominant periodicity. Periodicity was 

indicated by that peak value. We also reported the % of variance for each detected significant 

periodicity, being that measure proportional to the rhythm strength in time series outputs [25,26]. 

At this point, we carried out a compared waveform analysis on the automated (i.e., merged data) 

and manual visual detections data sets. A mean fluctuation over a standard period of 24-h (i.e., the 

waveform) was calculated in order to identify time zones where automation increases its rate of failure. 

In order to do so, each data set was partitioned into subsets of 24-h duration. An average diel fluctuation 

was then computed by averaging fish counts values of all sub-sets at corresponding timings. The phase 

was then computed according to the Midline Estimating Statistic of Rhythm (MESOR) method [27]. 

The MESOR value was estimated by re-averaging all waveform values and representing the result as a 

threshold line on the waveform plot. All mean values above the line defined a significant increment in 

visual counts. The onset and offset of activity were estimated by considering the first and the last value 

above MESOR, respectively. Also, the percentage of activity in both waveforms was compared at 

daytime as marker of signal goodness.  

We also considered the intensity variations (scale from 0 to 255) of the Green channel (G) of the 

green colour chart patch (see Figure 2), in order to compare automated video-imaging performance 

with local conditions of illumination and turbidity. The waveform analysis was again carried out on the 

G dataset, in order to assess the timing where most difficulties in automation occurred for the presence 
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of turbidity (drops in G intensity). To the resulting waveform plot, we superimposed the total counting 

of discharged images by 30 min, as an ulterior parameter of evaluation.  

3. Results  

In this study we acquired continuously 908 images corresponding to 18 days at 30 min frequency. A 

total number of 614 images (67.6%) were selected for the further analyses according to the ―3D  

Thin-Plate Spline‖ the calibration procedure. The PCA ordination of the mean calibrated RGB values 

of a 100 × 100 pixels area in the center of the panel is reported in Figure 4. It is possible to observe 

that the selected images (in green) are positioned altogether on the positive side of PC1 and PC3. That 

calibration method efficiently allowed the selection of the images to be further processed discarding all 

the others (i.e., those presenting bad illumination conditions as well as too elevated turbidity). 

Figure 4. PCA outputs on the mean calibrated RGB values of a 100 × 100 pixels area in 

the centre of the panel. In green the selected images; in red the discarded images. Around 

the graph are represented four examples of calibrated images (selected and discarded 

according to their relative positioning in the PCA output (clockwise: night-time good, 

daytime good; night bad, day bad).  

 

In Figure 5 four examples of images processed with the automated protocol were reported. It is 

possible to observe how the two images in the A block were processed with good performances of  

object extraction, meanwhile the B block reported images processed with fair performances (object 

overlapping on the upper side and object not recognized on the bottom side). 
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Figure 5. Examples automated processing of time-lapse images acquired by the OBSEA 

coastal cabled observatory at both day and night-time. Two examples of original images 

(on the left; above day, below night) and their chromatically calibrated outputs (on the 

right) were reported as an example of fish identification performance. The black polygon 

represents the ROI and selected object selected by the Roberts edge algorithm within it are 

evidenced with a green outline.  

 

The comparison between automated and manual fish count sets (Figure 6) can be used to generally 

evaluate the goodness of the method. Automated time series show a similar phasing in fish count 

increases at daytime than manual ones, although for different levels. In fact, total detected fishes are 

equals to 678 for the automated protocol vs. 4,751 for the manual counting. That difference was given 

by the minor number of images considered suitable for automation processing according to the criteria 

established in Figure 4.  

Despite abundance differences produced using the automated vs. the manual fish counting similar 

diel periodicities could be detected. This can be considered as an indication of the viability of the 

implemented protocol for automated fish counting, from the point of view of activity rhythms 

estimations by cabled observatories. Periodogram screening of both automated and manually-generated 

data sets (Figure 7A) indicated significant and very similar periodicities (approx. 1,440 min equals  

24 h). According to differences in reported abundances by the two methods, the rhythmicity in time 

series show also a differential strength as indicated by the peak amplitude (i.e., the % of variance): 

automated, 19.1%; manual, 26.2%. 

At the same time, waveform analysis (Figure 7B) revealed a marked similar diurnal phases with  

a consistent nocturnal drop for both data sets (i.e., equals time of ONSET and OFFSET of count 

increases in relation to the MESOR). Also, the area percentage at daytime was very similar indicating 

a similar community activity profile: automated, 73.4%; manual, 76.0%. Anyway, one should be 

notice how phases amplitude are different (given overall differences in abundance). 
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Figure 6. Time series outputs for automated (black) and manual (grey) time series in fish video 

counts as obtained continuously at day and night-time, with 30 min time-lapse photographic 

frequency sampling carried out during one month at the OBSEA cabled observatory. 

 

Figure 7. Periodograms (left) and waveforms (right) for visual (A) and automated (B) fish 

counts time series as reported at OBSEA. In waveforms plots the dashed vertical rectangle 

depicts the average night duration during the whole video sampling period. MESOR is the 

horizontal bar in waveforms (A = 5.21; B = 0.74) along with ONSET (upper arrow; the first 

values above MESOR) and OFFSET (lower arrow; the first value below MESOR) timings.  

 

The automated processing showed to be influenced by turbidity, which was more apparent in 

daytime images (Figure 8). The Green content of images was used as a proxy of suspended particles 

matter. That increased during the day for the effect of downward incoming solar light enhancing the 

reflection of that matter. At night times such an effect was consistently diminished for the action of the 
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two lights, strongly illuminating the ROI in the horizontal plane. The number of images discarded 

during daytime hours was higher than the ones at night times. Accordingly, overall detections  

were more different during the day, as timing coinciding with the larger augments of fishes in the 

OBSEA area.  

Figure 8. The influence of turbidity on the elaborated automated video-imaging protocol 

over a standard 24-h cycle, as indicated by turbidity as quantified through the averaged 

Green content (green-channel) and total discharged photos. Grey area is the night.  

 

4. Discussion 

In this study, we customized a new automated video-imaging protocol to count fishes at day and 

night in a continuous fashion over a standardized ROI. We implemented a colorimetric calibration 

procedure that could efficiently discriminate suitable images for fish counting, as shown by PCA 

ordination (see Figure 4). That preliminary screening was required for the too variable light and 

turbidity conditions usually experienced in the OBSEA coastal areas [5,16]. Once calibration was 

carried out, the Roberts edge algorithm could discriminate fish present with the ROI. Globally, results 

indicate that automation efficiency is limited by optimum visibility conditions, being procedures for 

image quality evaluation prior the recognition of moving fishes also a key step to be carefully taken 

into account.  

Periodogram and waveform analysis outputs for automated and manual data sets are similar  

(see Figure 7), although quantified parameters in relation to the strength of respective rhythms were 

different. Clearly, data sets derived from manual counting presented the larger day-night fluctuations 

being reported rhythmic stronger in comparison to those derived from automation. This comparison 

indicates that our automation protocol subestimate fish numbers but it is anyway suitable for the study 

of community activity rhythms.  

Automation in the processing of cabled observatory video materials must be customized according 

to each location, being substrate, depth and hence overall photic conditions greatly variable [2]. Here, 

we tried to standardize our automated video processing to a maximum extent, by adding a constant and 

colorimetrically uniform ROI. In that manner, fish counts are at least homogenized in relation to the 

depth of the field of view. Under these conditions, activity patterns were anyway resolvable in a 

fashion similar to outputs provided by manual counting. This indicates that activity rhythms in the 
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community can be studied by automated video-imaging because image discarding and the derived 

counting underestimation are constantly occurring through consecutive days. Swimming rhythms were 

measurable at a community level, since image discarding occurred more frequently at daytime, when 

fish counts were anyway at their maximum in the study areas [16]. 

Image acquisition occurred in a time-lapse mode at a 30 min frequency, with a light ON duration of 

few seconds. As already pointed out in video imaging studies with artificial lighting ON at night-time 

or constantly ON during the 24-h as in the deep-sea [11,19,28], attraction or repulsion in fishes may 

occurs after few seconds. In particular, Doya et al. [29] estimated a suitable time of light attraction 

within the first 25 s of light ON at video recording in the deep-sea. Presently, an estimation of 

behavioural alterations on the local fish community produced by our photographic sampling schedule 

at nighttime is not available. Anyway, activity rhythms were detected and fish counts were very low at 

nighttime as usually confirmed also by other sampling methods (e.g., visual census; [1]). Accordingly, 

we here confirm that a 30 min time lapse mode in photographic acquisition with associated and 

intermittent lighting ON at night time is not perturbing the recording of community rhythms and hence 

the overall study of fish behavior. 

5. Conclusions/Outlook  

Marked variations in coastal fish counts were detected with daily periodicity by an automated 

video-monitoring carried out with the OBSEA cabled observatory. This fact alone justifies the effort of 

developing increasingly more efficient methods for the remote, autonomous, and long-lasting monitoring 

of marine animals communities. That socio-economical and scientific need is now summarized by the 

fast developing ―cabled observatory science‖ [7]. In this monitoring, automation in video imaging 

plays a key role, since cameras are the only sensor allowing the extraction of biological information at 

the complex ecological scale of animals and their communities [2,9]. Suitable automation may 

contribute to transform cabled observatories into permanent ecosystem monitoring tools [6–8,11], 

fulfilling the goals of major ongoing infrastructural projects of relevance for the future of European 

marine research [30–32].  
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