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Background-—The ability to accurately predict the occurrence of in-hospital death after percutaneous coronary intervention is
important for clinical decision-making. We sought to utilize the New York Percutaneous Coronary Intervention Reporting System in
order to elucidate the determinants of in-hospital mortality in patients undergoing percutaneous coronary intervention across New
York State.

Methods and Results-—We examined 479 804 patients undergoing percutaneous coronary intervention between 2004 and 2012,
utilizing traditional and advanced machine learning algorithms to determine the most significant predictors of in-hospital mortality.
The entire data were randomly split into a training (80%) and a testing set (20%). Tuned hyperparameters were used to generate a
trained model while the performance of the model was independently evaluated on the testing set after plotting a receiver-operator
characteristic curve and using the output measure of the area under the curve (AUC) and the associated 95% CIs. Mean age was
65.2�11.9 years and 68.5% were women. There were 2549 in-hospital deaths within the patient population. A boosted ensemble
algorithm (AdaBoost) had optimal discrimination with AUC of 0.927 (95% CI 0.923–0.929) compared with AUC of 0.913 for
XGBoost (95% CI 0.906–0.919, P=0.02), AUC of 0.892 for Random Forest (95% CI 0.889–0.896, P<0.01), and AUC of 0.908 for
logistic regression (95% CI 0.907–0.910, P<0.01). The 2 most significant predictors were age and ejection fraction.

Conclusions-—A big data approach that utilizes advanced machine learning algorithms identifies new associations among risk
factors and provides high accuracy for the prediction of in-hospital mortality in patients undergoing percutaneous coronary
intervention. ( J Am Heart Assoc. 2019;8:e011160. DOI: 10.1161/JAHA.118.011160.)
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A ccurate prediction of adverse events after the perfor-
mance of percutaneous coronary intervention (PCI) is the

hallmark of contemporary societal guidelines, because the
magnitude of risk can aid in therapy selection and form the basis
for a precise preprocedural informed consent practice.1–3

Based on preprocedural factors (typically a combination of
clinical and/or angiographic variables), existing risk scores
estimate the individualized risk for adverse outcomes after
coronary revascularization.1,4–6 Two recent risk scores using
data from theNew York PCI reporting system (PCIRS) have been
developed aiming at predicting in-hospital and/or 30-day
mortality after PCI.7,8 These scores were created by assigning
a specified number of points to important risk factors that were
summed to obtain a per-patient predicted probability for the
outcome, and possessed good discrimination (area under the
receiver operating characteristics curve [AUC] of 0.886 for in-
hospital mortality and 0.890 for in hospital/30-day mortality)
with appropriate calibration. However, variables for logistic
regression models were chosen based on the presence of a
significant bivariate relationship with the primary outcome
(P<0.10), and these candidate variables were then further
multivariately modeled. This approach may ignore the potential
prognostic value of interactions between several unexpected
weaker risk factors with the primary outcome. Secondly,
continuous variables were grouped into categories, which may,
albeit easy to use, induce loss of predictive information.
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Machine learning (ML) is a novel field in computer science
that has been increasingly utilized in clinical research in an
attempt to improve predictive modeling and elucidate novel
determinants of a specific outcome.9,10 ML is a subset of
artificial intelligence that uses algorithms that autonomously
acquire knowledge by extracting patterns from data. For
example, ML-based algorithms have been successfully applied
to several aspects of cardiovascular research, ranging from
image segmentation in automated coronary artery calcium
scoring to outcomes research such as prediction of heart failure
rehospitalization.11,12 Given the potential forML to analyze ever-
expanding data sets and to include a large number of variables
that can be tested for numerous interactions and nonlinear
relationships with the outcome, ML may improve risk assess-
ment. The current study sought to utilizeML for the prediction of
in-hospital mortality by utilizing the state-mandated clinical
registry cohort, theNewYorkPCIRS, amongpatients undergoing
PCI in New York State between 2004 and 2012.

Methods

New York PCIRS
In order to access data collected for this study, requests to
access the data set from qualified researchers trained in
human subject confidentiality protocols may be sent to the

New York State Department of Health at cardiac-
data@health.ny.gov. The code used for data analysis in this
study has been made publicly available at GitHub.13 The New
York PCI registry was initiated by the New York State
Department of Health in 1992 in order to establish a clinical
registry that provides information regarding quality of care
provided across New York State hospitals.14 The database
contains detailed, de-identified information on demographics,
baseline clinical characteristics, periprocedural and procedu-
ral variables of patients undergoing PCI, as well as reperfusion
time intervals in acute myocardial infarction patients. The
primary outcome in this investigation was in-hospital mortal-
ity, which was one of the reported variables for the discharge
status.

The New York State Department of Health has multiple
mechanisms in place to confirm accuracy of the data in
PCIRS. Accuracy of risk-factor entries is confirmed through
auditing of samples obtained from participating hospitals.
Furthermore, data are matched to both New York’s adminis-
trative database and the Statewide Planning and Research
Cooperative System, which contain information on both
inpatient and outpatient PCIs. In-hospital mortality is con-
firmed by matching with Statewide Planning and Research
Cooperative System entries as well. The Weill Cornell
Medicine Institutional Review Board approved use of the
PCIRS database as well as the study protocol.

Patient Population
The PCIRS database obtained from January 1, 2004 until
December 31, 2012 was used in its entirety with no exclusion
criteria applied. The study protocol was approved by the
Institutional Review Board of Weill Cornell Medicine, and
informed consent had been waived since the database
obtained had no identifiable information. The total sample
size was 479 804 unique patients. All patients who under-
went PCI in the state of New York were included in the
analysis, which comprised both elective and emergent cases
(covering the spectrum of coronary artery disease presenta-
tion). Furthermore, the number of nonfederal New York State
Hospitals enrolled in the registry increased from 48 hospitals
in 2004 to 60 hospitals in 2012.

Variables Examined
Members on the cardiac advisory committee determine
variables included in the PCIRS database. Patients in shock
at initial presentation (defined as acute hypotension with
systolic blood pressure <80 mm Hg or low cardiac index
[<2.0 L/min per m2], despite pharmacologic or mechanical
support) had been originally excluded from the PCIRS
database. Further to our analysis, we excluded clinically

Clinical Perspective

What Is New?

• Accurate prediction of adverse events after coronary
revascularization is essential for preprocedural informed
consent and for appropriate therapy selection.

• This study utilized novel machine learning methodologies for
the accurate prediction of in-hospital mortality following
percutaneous coronary intervention, utilizing a contempo-
rary database and without the exclusion of any patients.

• The study also showed that several variables, beyond what
has been traditionally established, are important predictors
of in-hospital mortality including angiographic measures of
diameter stenosis, the occurrence of acute cerebrovascular
events within 24 hours of percutaneous coronary interven-
tion, as well as day of the week in which percutaneous
coronary intervention was performed.

What Are the Clinical Implications?

• This work could lead to the widespread adoption of machine
learning–based algorithms for the development of accurate,
precise, and generalizable risk assessment tools in clinical
practice.

• Such improved risk assessment could lead to better therapy
selection and lower periprocedural complications.
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nonrelevant variables (n=4), variables with 1 value (n=1),
duplicate variables (n=1), and variables with >70% missing
values (n=62) (Figure S1). In the final analysis, we included a
total of 49 variables (8 continuous and 41 categorical):
baseline demographics and clinical characteristics (n=18),
ejection fraction (n=1), baseline chemistry values (n=1),
periprocedural therapy and equipment used (n=8), hemody-
namic instability (n=1), invasive coronary angiographic find-
ings (n=15), periprocedural complications and outcomes
(n=3), day of the week PCI was performed (n=1), and facility
type (n=1). The occurrence of postprocedural complications
was defined as the occurrence of stroke, Q-wave myocardial
infarction, acute occlusion in the target lesion or in a
significant side branch, vascular injury at the access site
requiring intervention, renal failure, emergency cardiac
surgery, stent thrombosis, and coronary perforation or the
need to emergently return to the catheterization laboratory
for PCI.

ML Methodology
Data processing

For continuous variables, we performed range normalization
(values ranging from 0 to 1) to eliminate the possibility of
model bias caused by magnitude of the numerical values. For
categorical variables, we performed 1-hot-encoding, which is
defined as the process of dividing categorical values into
pairs of zero and nonzero values for the goal of transforming
the variables into a format that can be used for a
classification algorithm.15 In a large database, such as
PCIRS, having missing values in more than 1 variable poses a
special challenge, in terms of prediction model development
and extraction of maximal information available from the
data at hand. To handle this issue, missing values were
imputed using Multiple Imputations by Chained Equations
(MICE). MICE has emerged as one of the principal statistical
approaches to dealing with missing data, which involves
multiple imputations, as opposed to single imputations, in
order to account for the statistical uncertainty associated
with imputations. The chained equations approach can also
handle variables of various types and complexities.16,17

Before model construction, variables were examined for
nullity correlation (Figure S2) and value correlation (Figure S3).
Nullity correlation was performed in order to examine whether
certain features were correlated in terms of missingness
(since several angiographic variables included in the model
depended on each other: if a patient had 1 lesion then they
would not have lesion #2 and so forth). The nullity correlation
ranges from �1 to 1. A value of �1 indicates that if 1 variable
appears the other definitely does not. A value of “0” indicates
that variables appearing or not appearing have no effect on
one another, whereas a value of “1” indicates that if 1 variable

appears the other definitely also does. Value correlation was
performed in order to remove variables that may contribute to
numerical instability, cause model overfitting, and/or collude
the interpretability of the model. In this instance, no variables
were excluded based on the correlation coefficients and
clinical significance.

Attribute selection

Attribute selection was done after fine-tuning of the hyper-
parameters—defined as the model parameters that are given
an arbitrary value before the initiation of the learning process.
Attribute selection was performed using the information gain
ranking method that aims at ranking features based on high
information gain entropy. The attributes with information gain
>0 were only used for the ML approach.

Supervised ML approach

Predictive classifiers were developed based on data from the
training set using 4 supervised ML methods: (1) Adaptive
Boosting (AdaBoost), (2) Extreme Gradient Boosting
(XGBoost), (3) Random Forest, and (4) Logistic Regression.
The following ML-based algorithms were used in the present
analysis since they represent the full spectrum of analytic
approach from traditional logistic regression as used with
statistical analyses, to traditional ML algorithms (Random
Forest), decision-tree–based adaptive boosting algorithms
(AdaBoost) as well as ensemble boosting (XGBoost). Boost-
ing has been increasingly used within ML as it involves the
sequential creation of models, with each iteration attempting
at correcting the errors of the first model. The first
successful boosting algorithm was AdaBoost, and current
state-of-the-art boosting algorithms utilize gradient boosted
decision trees (XGBoost) for optimal speed and performance.
In order to evaluate the efficacy of each model, we used the
technique of K-Fold cross-validation on a randomly under-
sampled subset from the entire data set.9,15 Random
undersampling was performed to eliminate the adverse
effects of highly unbalanced classes (in the ratio of 2549/
477 255 [0.0053] for this data set) on the model accuracy.
For each model, we performed 5-fold cross-validation by
randomly splitting the entire data set into 5 parts for 5
iterations. At each iteration, we chose 4 parts as training
data and 1 part as a testing set. We report the averaged
results for each model on the unseen 20% testing data. The
overall performance of the prediction model on the test set
was assessed by calculation of the AUC from the receiver
operating characteristic curve and the associated 95% CI.
Finally, calibration was reported for each model. Calibration
provides knowledge regarding the confidence in assigning
a specific class to each of the already established labels,
and is commonly reported in developed clinical prediction
models.
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Results

Patient Characteristics
Table 1 lists the baseline characteristics of the study
population (n=479 804). The mean age was 65.2 years
(SD�11.9) and there was a predominance of female patients
(68.5%). Patients were relatively healthy at baseline, with low
prevalence of concomitant conditions: 8.2% with prior cere-
brovascular event, 4% with history of heart failure, 2.2% with
previous renal failure necessitating dialysis, 7.8% with
peripheral vascular disease, and 15.5% with chronic obstruc-
tive pulmonary disease. Diabetes mellitus (33.7%), on the
other hand, was the most prevalent cardiovascular risk factor.
Finally, one tenth of patients presented with ST-segment
elevation on ECG, while 0.5% patients were hemodynamically
unstable at the time of coronary angiography (defined as a
requirement for pharmacologic or mechanical support to
maintain blood pressure or cardiac index). There were 2549
in-hospital deaths from 2004 to 2012 (representing an event
rate of 0.5%).

ML Analysis
Variable selection

Variable importance plot was obtained after training on the
training data set (80% of total cohort) using the tuned
hyperparameters. Figure 1 and Figure S4 show ranking of
the variables that are most significant in the prediction of in-
hospital mortality in the studied cohort. Age was the most
important predictor of in-hospital mortality, followed by
ejection fraction, time (in days) since onset of myocardial
ischemia/infarction, and body mass index. Notable variables
that feature prominently are angiographically determined
stenosis severity within the coronary vasculature, the
occurrence of acute cerebrovascular events within 24 hours
of PCI as well as day of the week on which PCI was
performed.

Prediction of in-hospital mortality

Among all 4 different ML methods (AdaBoost, XGBoost,
Random Forest, and Logistic Regression), AdaBoost, which is
short for Adaptive Boosting, revealed the highest performance
for discrimination between survival/in-hospital mortality with
an AUC of 0.927 (95% CI 0.923–0.929, P<0.05) (Figure 2).
XGBoost had similar discriminatory performance to that of
logistic regression (XGBoost AUC of 0.913, 95% CI 0.906–
0.919 compared with logistic regression AUC of 0.908, 95%
CI 0.907–0.910, P=0.34). Finally, Random Forest, represent-
ing a more established and traditional ML algorithm, had the
lowest AUC of 0.892 (95% CI 0.889–0.896).

Calibration of the prediction models

Calibration was performed on this 2-class classification task
(determination of post-PCI in-hospital death or living status) in
order to evaluate class-assignment probability distribution.
The Brier score, measuring the accuracy of the probabilistic
predictions, for AdaBoost to predict in-hospital mortality was
0.159, indicating a good fit of the ML-based model. Table 2
summarizes the Brier scores for the remainder of the models.

Comparison of feature trends and model outcome

Figure 3 visually represents the effect of significant features
on model prediction of the primary outcome (in-hospital
death). Normalized continuous features (top panel) are plotted
on the x-axis showing positive correlation between age
(Pearson correlation coefficient of 0.31) and serum creatinine
(Pearson correlation coefficient of 0.15) and negative corre-
lation between ejection fraction (Pearson correlation coeffi-
cient �0.43) and body mass index (Pearson correlation
coefficient�0.11). For categorical variables, box plots show
the density distribution revealing the expected correlation
between the occurrence of post PCI complications and the
occurrence of in-hospital death (P<0.01), as well as the

Table 1. Baseline Characteristics of the Study Population

Variable
All Patients
(n=479 804)

Age (y), mean�SD 65.2�11.9

Male sex (%) 151 349 (31.5%)

White ethnicity (%) 385 984 (80.4%)

Ejection fraction, mean�SD 50.6�14.5

BMI, kg/m2 29.4 � (5.9)

Median CCS class (IQR) 3 [2, 4]

Previous PCI (%)

1 115 200 (24%)

2 45 153 (9.4%)

3 or more 35 456 (7.4%)

History of cerebrovascular disease (%) 39 434 (8.2%)

History of peripheral vascular disease (%) 37 647 (7.8%)

History of heart failure (%) 19 279 (4%)

History of malignant ventricular arrhythmia (%) 2769 (0.6%)

History of COPD (%) 74 423 (15.5%)

History of diabetes mellitus (%) 161 771 (33.7%)

History of renal failure on dialysis (%) 10 456 (2.2%)

History of previous CABG (%) 79 075 (16.5%)

Hemodynamic instability (%) 2363 (0.5%)

ST-segment elevation on ECG 49 084 (10.2%)

BMI indicates body mass index; CABG, coronary artery bypass graft; CCS, Canadian
Cardiovascular Society; COPD, chronic obstructive pulmonary disease; IQR, interquartile
range (25th and 75th percentile); PCI, percutaneous coronary intervention.
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presence of heart failure at the time of PCI and Canadian
Cardiovascular Society class and death (P<0.01 for both).
Interestingly, the occurrence of in-hospital mortality had a
higher cluster on weekend days (Saturday and Sunday)
compared with weekdays (Monday to Friday) (P<0.01).

Discussion
PCI has become one of the most common therapeutic
procedures in modern cardiovascular practice. Additionally,
the rapid pace of progress and increasing operator experience
has resulted in a steady and sustained decline in periproce-
dural adverse events, resulting in excellent and comparable
outcomes for coronary artery bypass surgery. Notwithstand-
ing, differences between percutaneous and surgical revascu-
larization exist and as a result, societal guidelines have
highlighted the importance of risk stratification, which
typically takes into consideration clinical and angiographic
characteristics, for the administration of the appropriate
therapy. To this end, numerous risk scores and prediction
models have been developed using traditional statistical
approaches that involve the inclusion of limited, single-center
cohorts, the application of numerous exclusion criteria,
inclusion of prespecified variables expected to be related to
the outcome, and do not address the potential prognostic
value of interactions between several unexpected weaker risk
factors and the primary outcome.18 In this study, we sought to

harness the power of big data analytics and ML in order to
develop a ML-based prediction model for the occurrence of in-
hospital mortality following PCI. Without the application of any
exclusion criteria, we found that advanced ML algorithms
accurately predict the occurrence of in-hospital death after
PCI. We also found that several features, not typically
incorporated in risk scores such as day of the week,
demonstrate important prognostic value, in addition to
already established variables such as body mass index,
preprocedural serum creatinine, as well as several angio-
graphic features related to lesion location and stenosis
severity.

We compared the performance of advanced ML algorithms
(AdaBoost and XGBoost) with traditional ML (Random Forest)
and a statistical model, Logistic Regression. The main finding
of the current analysis was that AdaBoost exhibited the
highest discriminatory performance for the prediction of in-
hospital mortality following PCI (AUC of 0.923, P<0.05
compared with other models) compared with XGBoost (AUC
of 0.906), Random Forest (AUC of 0.892), and Logistic
Regression (AUC of 0.908). What is unique about the
application of ML in this data set has been the ability to
include all the patients and a significant proportion of the
variables (with exclusion of nonrelevant or redundant vari-
ables) without the application of major exclusion criteria. Use
of such a methodology for big data analysis in clinical
research could contribute towards development of widely

Figure 1. Feature importance ranking. This figure lists the relative importance of clinical and angiographic variables in the developed machine
learning–based model for the prediction of in-hospital mortality after percutaneous coronary intervention (selected for the model with the
highest area under the curve—AdaBoost. See Figure S4, for feature importance ranking with SD across 5-fold cross-validation). BMI indicates
body mass index; CABG, coronary artery bypass grafting; CCS, Canadian Cardiovascular Society; CVA, cerebrovascular accident; MI, myocardial
infarction; PCI, percutaneous coronary intervention; RCA, right coronary artery.
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applicable prediction models as well as an improvement in the
ability to predict future events, which is a major focus in an
era of precision medicine. Furthermore, the ability to agnos-
tically incorporate a multitude of variables without precon-
ceived notion of likely important predictors will ultimately help
unravel novel associations between specific features and a
specific outcome of interest.

Various prediction models have been developed for in-
hospital mortality following PCI and have been validated on
different populations. The Mayo Clinic Risk Score, developed
in 2002, was based on 5463 patients’ data and predicts post
PCI procedural complications using 8 clinical and angio-
graphic variables.19 The Mayo Clinic Risk Score was further

validated using the National Heart, Lung, and Blood Institute
registry, and was found to be an accurate predictor of in-
hospital mortality when applied to the PCIRS registry (AUC of
0.85).20 Separately, Wu et al utilized a logistic regression
model to derive a prediction using 46 090 patients using the
2002 PCIRS data and subsequently performed validation of
the model using the 2003 data.8 The model was found to have
high accuracy in discriminating events/nonevents when
applied to the validation cohort (C-statistic of 0.886). The
most significant variables in the model (variables with the
largest b coefficient) were hemodynamic instability (odds
ratio of 7.8), shock (odds ratio 19.91), and preprocedural
myocardial infarction <24 hours with stent thrombosis (odds
ratio 18.75). In this investigation, we show that ML, as a new
analytic tool in outcomes research, improved the predictive
accuracy even further, using a big database of patients
undergoing PCI across New York State hospitals. Further-
more, we find that certain risk factors that were not included
in previous risk scores are fairly important predictors of in-
hospital mortality, such as serum creatinine, body mass index,
and several angiographically determined coronary atheroscle-
rotic characteristics. For instance, acute kidney injury follow-
ing PCI has been consistently shown to be associated with the
occurrence of both in-hospital and postdischarge adverse
cardiovascular events.21–24 Furthermore, the association
between contrast-induced nephropathy and long-term mor-
tality was found to be significant in patients with chronic
kidney disease, as opposed to those without it.24 To this
effect, our results are in concordance with published literature
and show that preprocedural serum creatinine was a strong
predictor of the occurrence of in-hospital mortality. Addition-
ally, numerous multi-ethnic investigations have studied the
relationship between body mass index and outcomes follow-
ing PCI.25–27 While few studies showed increased 1- and 5-
year major adverse cardiac events in obese patients,28,29

there is a predominant notion that the presence of obesity is a
protective factor in patients undergoing PCI, a phenomenon
that has been termed the “obesity paradox.”30–34 Yet, body
mass index is not typically incorporated into most contem-
porary risk scores of in-hospital mortality.

As a result, the increasing application of artificial intelli-
gence in cardiovascular research has been done in an attempt
to circumvent the current limitations of existent approaches.
Artificial intelligence has revolutionized society through
innovations in various sectors of technology. ML, which is a
subset of artificial intelligence, is a code-based algorithm that
autonomously learns patterns within data and applies that
knowledge to tasks that are provided. ML provides novel
frameworks and a new approach to image interpretation and
data analysis that is beyond what is provided with traditional
statistical approaches.10 ML has already been used to aid with
detection in screening for breast cancer on mammography

Figure 2. Receiver operating curves. In this study, we trained 4
models: (1) AdaBoost (2), XGBoost (3), Logistic Regression, and
(4) Random Forest. We performed 5-fold cross-validation on the
data set for each model. The area-under-the-curve for all the
models has been indicated as mean�SD. AdaBoost was noted to
have the best performance for prediction of in-hospital mortality
after percutaneous coronary intervention.

Table 2. Summary of the Brier Scores Evaluating the
Calibration of the Machine Learning Models (AdaBoost,
XGBoost, and Random Forest) as Well as That of Logistic
Regression

Model Brier Score

AdaBoost 0.159�0.031

XGBoost 0.494�0.091

Random Forest 0.084�0.001

Logistic Regression 0.173�0.045
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and to help with prediction of risk, echocardiographic image
analysis, and electrocardiography interpretation.35–38 Further-
more, the performance of ML has already been adopted to
leverage big data in order to minimize biases and to
accurately assess hospital performance after PCI.39

Despite the highlighted advantages of the proposed
approach, there are several limitations worth mentioning.
First, the developed model has not been externally validated
on a separate cohort. Second, one of the challenges
associated with ML is to avoid overfitting, a limitation that
occurs when a predictive model is to perfectly fit the
derivation cohort without accounting for generalizability,
thereby producing a model that performs with high accuracy
on the training tasks, while lacking such performance in the
general population. To mitigate these issues in an unbiased
manner, we performed k-fold cross-validation and reported
the results as mean values (with SDs and P values).
Nevertheless, it would still be imperative to validate the
model on an external cohort. A third issue that comes into
play is associated with an inherent limitation of existent
databases. A large database such as the New York State PCI

registry defines certain variables in a specific way, which likely
differs from other single- or multicenter databases. For
instance, the PCIRS database defines postprocedural compli-
cations as a conglomerate of adverse events, encompassing
vascular and nonvascular events (as defined in the Methods
section), while the National Cardiovascular Data Registry
breaks down post-PCI complications into several distinct
categories. Such inconsistency across databases may limit
the applicability and generalizability of developed predictive
models, since every algorithm is limited by the quality of the
ground truth that is being used for training and testing
purposes. One potential solution would be to avoid catego-
rization of variables, thereby providing more predictive power
and limiting the subjectivity in variable definition (for instance,
instead of different cutoff values for renal failure, one could
include serum creatinine in a model as a continuous variable).

Conclusion
In summary, this study sought to elucidate the determinants
of in-hospital mortality in a large cohort of patients

Figure 3. Trend comparison between model outcome and clinically important features. Clinically important categorical and continuous
features were plotted to understand their underlying trends in relation to the model outcome. A, Continuous variables have been plotted in a
joint scatter and regression plot. The underlying trend between variables and the model outcome is shown for each variable. Normalized values
for each variable are plotted on the x-axis. B, Categorical variables have been plotted using box plot. BMI indicates body mass index; CCS,
Canadian Cardiovascular Society; PCI, percutaneous coronary intervention.
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undergoing PCI across New York State between 2004 and
2012, utilizing advanced ML algorithms that offer a novel
approach to predictive modeling. We found that ML produced
high discriminatory performance (specifically AdaBoost) while
utilizing the cohort in its entirety and without the application
of major exclusion criteria. Such findings, coupled with
previously published work, could highlight the utility of using
such an approach for the development of more precise and
generalizable risk assessment in an era where risk stratifica-
tion is becoming essential for the identification of optimal
revascularization strategies.
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Supplemental Material 

 



Figure S1. Comparison between model accuracy and variable missingness.  

 

 

 

Blue bars represent the proportion of variables meeting inclusion criteria stratified by missingness percentage 

(i.e. when variables with ≤90% missing values are included in the analysis, 66% of the variables meet the inclusion 

criteria). In the present analysis, 70% missingness was used as the cutoff value since it represented a balance 

between overall model performance as well inclusion of a larger proportion of variables (yellow highlight).  
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Figure S2. Nullity correlation Heat map. 

 

The nullity correlation ranges from -1 to 1. A value of -1 indicates that if one variable appears the other definitely 

does not. A value of ‘0’ indicates that variables appearing or not appearing have no effect on one another 

whereas a value of ‘1’ indicates that if one variable appears the other definitely also does. PCI: percutaneous 

coronary intervention; LAD: left anterior descending; RCA: right coronary artery; LCx: left circumflex; MI: 

myocardial infarction; EKG: electrocardiogram; TIMI: thrombolysis in myocardial infarction. 
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Figure S3. Correlation analysis of the variables in the dataset. 

 

A simpler model is always more stable and hence preferred. Inclusion of highly correlated variables could 

contribute to numerical instability, mask interactions between different features, collude the interpretability of 

a machine learning model and also may cause overfitting. Thus, it is always preferred to exclude one of the two 

correlated variables. The heat map shown above indicates that dataset does not contain many correlated 

variables. BMI: body mass index; PCI: percutaneous coronary intervention; CCS: Canadian Cardiovascular 

Society; MI: myocardial infarction; CVA: cerebrovascular accident; CABG: coronary artery bypass grafting; COPD: 

chronic obstructive pulmonary disease; LCx: left circumflex; LAD: left anterior descending; RCA: right coronary 

artery. 

 



Figure S4. Feature importance ranking and the association standard deviations across 5-fold cross validation. 

 

 

 

Standard deviation, in black bars, is provided along with the feature importance ranking for (A) AdaBoost (B) XGBoost (C) Logistic Regression and (D) 

Random Forest. CCS: Canadian Cardiovascular Society; BMI: body mass index; MI: myocardial infarction; PCI: percutaneous coronary intervention; RCA: 

right coronary artery; CVA: cerebrovascular accident. 

 


