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Abstract

The rapid development of sequencing technology has led to an explosive accumulation of

genomic sequence data. Clustering is often the first step to perform in sequence analysis,

and hierarchical clustering is one of the most commonly used approaches for this purpose.

However, it is currently computationally expensive to perform hierarchical clustering of

extremely large sequence datasets due to its quadratic time and space complexities. In this

paper we developed a new algorithm called ESPRIT-Forest for parallel hierarchical cluster-

ing of sequences. The algorithm achieves subquadratic time and space complexity and

maintains a high clustering accuracy comparable to the standard method. The basic idea is

to organize sequences into a pseudo-metric based partitioning tree for sub-linear time

searching of nearest neighbors, and then use a new multiple-pair merging criterion to con-

struct clusters in parallel using multiple threads. The new algorithm was tested on the

human microbiome project (HMP) dataset, currently one of the largest published microbial

16S rRNA sequence dataset. Our experiment demonstrated that with the power of parallel

computing it is now compu- tationally feasible to perform hierarchical clustering analysis of

tens of millions of sequences. The software is available at http://www.acsu.buffalo.edu/

*yijunsun/lab/ESPRIT-Forest.html.

This is a PLoS Computational Biology software paper.

Introduction

Genome sequencing is a common tool in biological and biomedical research. In the past few

years, the data generation capacity of high-throughput sequencing technology has increased

dramatically at a speed exceeding Moore’s law [1] and with sharply reduced cost. For example,
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the latest Illumina HiSeq 2500 platform can produce 600 million sequences of 300bp in length

(2×150bp, 180GB data in total) in 40 hours. The rapid accumulation of genomic information

represents a valuable source to significantly expand biological knowledge but meanwhile poses

a serious challenge for data analysis, demanding new computational algorithms for efficient

data processing.

Shotgun and amplicon sequencing are currently two major sequencing approaches. Ampli-

con sequencing, which sequences a specific genome region identified by primers, is a powerful

tool for in-depth analysis of phylogenetic and evolutionary details, especially for ecology stud-

ies of viruses [2] and microbial communities including bacteria [3], fungi [4] and planktons

[5], and the analysis of germline and somatic mutations of human (e.g., cancer cells [6] or

immune cells [7]). For example, metagenomics of human gut microbiota, where amplicon

sequencing of 16S rRNA gene serves as a major probing tool, has become an exploding

research area listed as one of the top ten breakthroughs in 2013 by the Science magazine [8].

Usually, the first major step in processing amplicon sequencing data after quality control is

to bin sequences into taxonomic or genotypic units, which forms the basis for performing eco-

logical statistics and comparative studies [9]. Existing methods can be generally classified into

taxonomy-dependent approaches, where sequences are anno- tated against a reference taxon-

omy database, and taxonomy-independent approaches [10], where sequences are clustered

into operational taxonomy units (OTUs) based on pairwise similarities without using external

references (thus also called de novo binning [9]). Since the main goal of amplicon sequencing

is usually to explore uncharted biospheres where a significant portion of genetic material is

contributed by previously unknown taxa, taxonomy-independent analysis is often the pre-

ferred, if not the only, choice.

A dozen of methods have been proposed for the de novo binning of amplicon sequences.

Yet, the computational burden of generating clusters from massive sequence data remains a

serious challenge, and only a few algorithms are able to handle millions of sequences. To accu-

rately measure the similarity between sequences and sequence clusters, sequence alignment is

usually employed, which is computationally very expensive and represents a bottleneck for

clustering algorithms. Hierarchical clustering (HC) is one of the most widely used approaches

for sequence binning [11], which usually exhibits quadratic time and space complexity (when

pairwise alignment is employed) or even higher complexity (when multiple alignment is used)

due to the need of generating a pairwise similarity matrix. Various data preprocessing heuris-

tics (e.g., removing redundant reads, using kmer distances as a filter to remove sequence pairs

with large genetic distances, splitting a distance matrix) were recently proposed thatproven to

be very effective in reducing the computational time of a clustering process. However, these

heuristics do not fundamentally change the nature that HC is a quadratic-time algorithm. As a

tradeoff between computational efficiency and accuracy, several heuristic methods including

Cd-hit [12] and UCLUST [13] were recently proposed that employ greedy clustering instead

of hierarchical clustering to reduce the computational complexity associated with sequence

comparison. Several benchmark studies have shown that the use of greedy clustering can lead

to considerable loss in clustering quality compared with hierarchical clustering [14–16]. How-

ever, due to the high computational complexity of hierarchical clustering, heuristic methods

remain to date the only computationally feasible solution to process massive sequence datasets

such as those generated by the human microbiome project (HMP) [17].

In our previous work, we developed a sequence clustering algorithm called ESPRIT-Tree

that performs hierarchical clustering efficiently with subquadratic complexity in both time and

space while maintaining an accuracy comparable to the standard method [18]. It is capable of

handling one million sequences with an average length of *250bp within less than one day on

a single personal computer. Several large-scale benchmark studies have been performed by us

Subquadratic-time parallel sequence clustering
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and others on real-world datasets that identified ESPRIT-Tree as one of the best algorithms for

taxonomy- independent analyses [14–16, 19, 20]. However, the single-thread nature of

ESPRIT-Tree poses a limitation on its data processing capacity. As high performance comput-

ing clusters are becoming widely accessible, parallel computing is a feasible approach to further

exploiting the computational power of subquadratic hierarchical clustering to handle even

larger sequence datasets. However, efficient parallelization of hierarchical clustering is inher-

ently difficult and only a few attempts [21–23] have been made using traditional hierarchical

clustering involving quadratic complexity. Among them, HPC-Clust [24], ESPRIT [25],

CRISPY [26] and LAHDC [27] are currently the only few parallel solutions for sequence clus-

tering. HPC-Clust resorts to profile-based alignment to reduce computation burden, which we

have shown to lead to inferior clustering quality when dealing with uncharted taxa [14]. Fur-

thermore, it merely parallelizes the distance-calculation step, but not the cluster-merging step

which takes a significant portion of the execution time on large datasets. Another major issue

with HPC-Clust is that its memory usage grows quadratically with respect to the number of

sequences, which makes it incapable of processing millions of sequences. ESPRIT and CRISPY

are essentially quadratic-time algorithms, which are accurate but computa- tionally inefficient

and take a couple of days to process one million reads. We recently proposed LAHDC as an

attempt of parallelizing ESPRIT-Tree, which speeds up the algorithm by partitioning the data

into subsets that can be clustered in parallel, with minor loss in clustering quality. However,

more sophisticated solutions are still desired to efficiently parallelize the hierarchical clustering

steps without sacrificing the cluster- ing quality. On the other hand, to the best of our knowl-

edge there is still no prior work done on the parallelization of subquadratic hierarchical clus-

tering methods.

In this paper we propose a new parallel algorithm, ESPRIT-Forest, which is able to handle

the problem of hierarchical clustering of tens of millions of sequences accurately, with subqua-

dratic time and space complexity and a good scalability with respect to the number of CPUs.

We utilize the basic concept behind ESPRIT-Tree that organizes sequences into a pseudo-met-

ric based partitioning (PBP) tree structure to achieve sub-linear time complexity when search-

ing for nearest neighbors, and propose a new multiple-pair merging algorithm that performs

search on a PBP tree for parallel construction of clusters. As such, multiple computing threads

can be used to perform hierarchical clustering on the same PBP tree without interfering with

each other. As a result, the clustering procedure can be accelerated efficiently by using multiple

processors. With the newly developed algorithm, we successfully performed a hierarchical

clustering analysis of the HMP data, currently one of the largest published microbial 16S

rRNA amplicon sequencing dataset, within less than 40 hours on a small computing cluster.

As currently there is no hierarchical clustering method available to process such large datasets,

this work represents a significant progress in algorithm development to overcome the compu-

tational bottleneck of microbial OTU binning.

Hierarchical clustering is an essential tool for in-depth analyses of sequence data, including

not only sequence binning but also sequence alignments [28, 29] and construction of phyloge-

netic trees [30, 31]. Thus, the algorithm proposed in this paper can help to boost the computa-

tional capacity of many sequence-processing pipelines, which in turn could enhance the

contributions of bioinformatics to knowledge discovery in sequencing-based studies.

Design and implementation

Subquadratic time hierarchical clustering using PBP tree

Hierarchical clustering is one of the most frequently used clustering methods in sequence anal-

ysis. It works by iterating a process of picking up a pair of samples or clusters with the minimal

Subquadratic-time parallel sequence clustering
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distance among all possible pairs of samples or clusters and then merging them into a new

cluster, until only one single cluster is left or the distances between clusters all exceed a given

threshold. Let D ¼ fx1; x2; . . . ; xNg be a dataset containing N samples (sequences), fS ig be the

obtained clusters and DðS1;S2Þ be a binary function defining the distance between any two

clusters, a hierarchical clustering algorithm is formally described in Algorithm 1.

Algorithm 1: Hierarchical Clustering

1 Input:D ¼ fxng
N
n¼1
, stop criteriondup, distancefunctionD(�);

2 Initialization:Sn ¼ fxng; 1 � n � N;O0 ¼ f1; . . . ;Ng, k = 0;
3 repeat
4 fa; bg ¼ argmini;j2Ok ;i6¼jDðSi;S jÞ;
5 k = k+1;
6 SNþk ¼ Sa [ Sb;
7 Ωk = Ωk−1 [ {N+k}\{a,b};
8 until |Ωk| = 1 ormini;j2Ok ;i6¼jDðSi;S jÞ � dup;
9 Output:A set of generatedclusters fS1; . . . ;SNþkg and a set of existing
clustersΩk.

The most time-consuming step in hierarchical clustering is the identification of the closest

cluster pairs (line 4 in Algorithm 1) which requires computation of all N�(N − 1)/2 distance

pairs in the first iteration and O(N) updates in each subsequent iterations. In our previous

work [18] we proposed a data structure called pseudo-metric based partitioning (PBP) tree to

enable fast searching of the closest pairs by making only a small number of distance compari-

sons. A PBP tree is an ordered, equal-depth tree that partitions a sequence space with a series

of hyper-spheres. Each node of a PBP tree represents a hyper-sphere in the space with a

selected sample as the center. The nodes in the tree are then organized as a hierarchical struc-

ture with multiple levels, with all nodes at the same level having an equal sphere radius and

nodes at the upper level having a larger radius than those at the lower levels. Each leaf node at

the bottom level has a radius of zero and is created for each sample in a dataset, with the sam-

ple point as the center. Each node at the same level is assigned an order number, according to

the order at which the node is created in the tree. For a given node, a parent node is chosen

from the nodes at the upper level whose hyper-sphere region covers the center of the given

node, and has the minimal order number among all candidates. Finally, a root node is defined

as the parent of all top-level nodes, without a defined center or radius. Fig 1 illustrates a toy

example of a PBP tree and how it partitions a dataset in a space.

Fig 1. (a) A toy example of a PBP tree and (b) its corresponding partitioning of a dataset and a space. The

colors indicate different levels of nodes and their corresponding hyper-spheres. The leaf nodes are omitted in the

tree. When searching for the nearest neighbor of a point (large red dot), only a small number of sibling hyper-

spheres (filled circles) need to be explored.

https://doi.org/10.1371/journal.pcbi.1005518.g001

Subquadratic-time parallel sequence clustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005518 April 24, 2017 4 / 16

https://doi.org/10.1371/journal.pcbi.1005518.g001
https://doi.org/10.1371/journal.pcbi.1005518


By organizing sequences in a PBP tree and performing a branch-and-bound searching, we

can find the nearest neighbor of any given sequence efficiently and determine the closest pair

in sublinear time, avoiding the computation of the entire pairwise distance matrix. On the

other hand, insertion (deletion) of a sequence into (from) the PBP tree takes almost constant

computational time. Furthermore, after each modification, the new closest pair can be updated

on-the-fly with sub-linear computation time. Hence, by iteratively merging the closest pair

into one cluster and inserting the new cluster back to the PBP tree, we are able to perform hier-

archical clustering very efficiently. In practice, ESPRIT-Tree achieved a computational com-

plexity of OðN1:2Þ to OðN1:3Þ on various benchmark datasets (N is the number of sequences)

with the best clustering accuracy among existing methods. A detailed description on the

branch-and-bound searching and on-the-fly maintenance of a PBP tree can be found in [18].

Despite its efficiency, ESPRIT-Tree can only be executed on one computer processor due to

the restriction of finding and merging closest pairs one at a time, which limits its application

to ultra-large-scale data. In this paper we address this issue by allowing multiple cluster merg-

ing operations to be executed on one single PBP tree in parallel, which is described in detail

below.

Multi-point parallel clustering on PBP tree

Parallelizing the hierarchical clustering process is difficult because for each merging operation

it is required to keep track of all previous merging results, which restricts the capability of mul-

tiple threading. We tackle this problem by exploiting the implicit independency among clus-

tering steps. A new cluster-merging criterion is proposed that strictly replicates the results of

the standard hierarchical clustering method but at the same time decouples and re-orders the

cluster merging steps, enabling hierarchical clustering to be executed on several merging

points in parallel. Fig 2 illustrates the basic idea of parallel merging with a toy example showing

Fig 2. A toy example illustrating single-point (left) and multiple-point (right) hierarchical clustering by parallelizing uncorrelated

operations. Each filled box represents a sequence and each circle represents a cluster-merging step. The numbers in the circle denote the

order of merging operations. The merging orders may change when switching from single-point to multi-point clustering.

https://doi.org/10.1371/journal.pcbi.1005518.g002
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that some clustering steps can be carried out simultaneously without violating the merging

rules used in the standard hierarchical clustering process.

The key challenge of parallel merging is to design a clustering scheme that produces results

identical to that generated by standard hierarchical clustering, which is important in order to

preserve clustering quality. We demonstrate below that by using a proper merging criterion,

multi-point clustering can achieve a clustering result equivalent to that of standard single-

point hierarchical clustering. Specifically, in each step, we can merge all pairs {a, b} that satisfy

NN(a) = b and NN(b) = a (Here NN denotes the nearest neighbour), without violating the

rule used conventional hierarchical clustering. The modified algorithm is described in Algo-

rithm 2.

We prove that, in the case of sequence clustering and many other normal situations, a clus-

tering result generated by Algorithm 2 is always consist with one generated by Algorithm 1.

The formal statement and the proof of the theorem are provided in S1 Methods. With Algo-

rithm 2 we can extend our previous ESPRIT- Tree algorithm to a parallel version called

ESPRIT-Forest. Table 1 depicts the overall framework of our new algorithm, ESPRIT-Forest,

and the comparison with the previous single-thread version, with the parallel execution parts

underlined. It should be noted that, although the key modification (Step 3) itself is not paralle-

lized, it is the basis for achieving high parallelization efficiency. Without the modified crite-

rion, the parallelization step (Step 5) will be inefficient due to too few deliverable tasks.

Algorithm 2: Multi-point Hierarchical Clustering

1 Input:D ¼ fxng
N
n¼1
, stop criteriondup, distancefunctionD(�);

2 Initialization:Sn ¼ fxng; 1 � n � N;O0 ¼ f1; . . . ;Ng, k = 0;
3 repeat
4 SetF ¼ ffai; big j NNOk

ðSai
Þ ¼ bi;NNOk

ðSbi
Þ ¼ ai;DðSai

;Sbi
Þ < dupg;

5 for i 1 to |Φ| do
6 k = k+1;
7 SNþk ¼ Sai

[ Sbi
;

8 Ωk = Ωk−1 [ {N+k}\{ai, bi};
9 until |Ωk| = 1 ormini;j2Ok ;i6¼jDðSi;S jÞ � dup;
10 Output:A set of generatedclusters fS1; . . . ;SNþkg and a set of existing
clustersΩk.

Table 1. Comparison of the overall frameworks of ESPRIT-Tree and ESPRIT-Forest. The parallel execu-

tion parts are underlined.

ESPRIT-Tree ESPRIT-Forest

1. Construct a PBP tree and insert all samples 1. Construct a PBP tree in each computing node

and insert all samples

2. Find the nearest neighbor (NN) for each sample 2. Find the nearest neighbor (NN) for each sample

in parallel

3. Find the closest pair from a NN list, delete the

pair from the PBP tree and merge them to form

a new cluster

3. Select all pairs {a, b} satisfying NN(a) = b and NN

(b) = a, delete each pair from the PBP tree and

merge each of them into a new cluster

4. Insert the new cluster into the PBP tree 4. Insert all new clusters into the PBP tree

5. Update the NN list for the new cluster and all

affected clusters through NN search

5. Update the NN list for the new clusters and all

affected clusters through NN search in parallel

6. Repeat Steps 3–5 until the stopping criterion is

met

6. Repeat Steps 3–5 until the stopping criterion is

met

https://doi.org/10.1371/journal.pcbi.1005518.t001
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Code implementation

Programming model. A master-slave programming model was adopted in the imple-

mentation of ESPRIT- Forest. The master thread takes charge of all samples and distributes

tasks to the slave threads, while the slave threads are launched by the master thread to execute

required operations and become inactive after that. In a shared-memory architecture (SMA)

computer, this can be easily implemented by using parallel programming modules such as

OpenMP [32]. However, shared-memory computers with many CPU cores are expensive and

currently many high-performance computing (HPC) centers do not have a shared-memory

computer with more than 32 CPU cores. Therefore, in order to ensure the scalability of our

method, we implemented it using a symmetric multi-processor (SMP) model where multiple

computing nodes do not access the memory of each other, but communicate via a message

passing interface (MPI). The code is implemented in C++ using OpenMPI [32] and OpenMP

at the same time.

An appealing property of ESPRIT-Forest is that the PBP tree does not need to be shared or

synchronized among computing nodes, because the possible discrepancy of the constructed

trees will not lead to inaccuracy in NN search, provided that the properties of the PBP trees are

maintained. In practice, each node reads the entire sequence data, constructs a PBP tree inde-

pendently, and modifies the tree by following the same instructions from the master node,

which leads to almost identical tree structure (with small discrepancy caused by floating point

errors). During the clustering procedure, in each iteration, the master node launches a list of

NN queries and assigns each query task to a computing node (including the master node

itself). Each computing node responds to the query by executing NN search tasks in its assign-

ment list, and returns the results to the master node. The master node then determines which

clusters should be merged and what new queries should be launched next. After cluster merg-

ing operations are made on the master node, it broadcasts the changes to the slave nodes and

each computing node makes changes to its own PBP tree accordingly. In this way, the comput-

ing nodes are weakly coupled and the communication costs are minimized, which guarantees

the efficiency of parallelization.

Tie-breaking. An issue not considered in the above framework Table 1 is that there may

be ties in the searching of the nearest neighbors. For example, for three clusters a, b and c, it

may hold that NN(a) = b, NN(b) = c and NN(c) = a, with equal NN distances. In this case, the

above proposed framework may fail to discover mergeable pairs, which causes the algorithm

to be inefficient or even fail. To avoid this problem, a tie-breaking operation is carried out in

each iteration that scans all unpaired clusters and check if they can be paired. For an unpaired

cluster a and its counterpart b = NN(a), if b is also unpaired and D(b, NN(b))� D(a, b), then

NN(b) is forced to be a to make a mergeable pair.

Delayed updating of nearest neighbors. With the proposed multi-point merging crite-

rion, a large number of merging and NN updating are generated in each iteration, which

makes it possible for efficient paralle- lization. However, a potential problem is that some NN

update requests may not be necessary. For example, if we search the NN of a cluster a, resulting

in a solution NN(a) = b, but later b is merged with another cluster and we have to search the

NN for a again, the former search effort is actually wasted and brings additional computation

burden. To avert this issue, we design a delayed updating scheme that postpones a NN search

until it has to be carried out. Due to the non-decreasing property of hierarchical clustering,

when the NN of a cluster becomes invalid (i.e., merged into a new cluster), the old NN distance

can be used as an estimate of the lower bound of a new NN distance. Two heaps [33] are cre-

ated in the master nodes, with one storing a sorted list of NN pairs to be merged, and the other

storing a sorted list of clusters for which a search needs to be launched to update NN

Subquadratic-time parallel sequence clustering
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information. The master node inspects each candidate NN pair in the first heap. If the distance

of the candidate pair is smaller than the estimated NN distance of all pre-updated clusters, the

pair can be merged regardless of the incomplete NN information. If there is at least one merg-

able pair in the heap, the master node carries out the merging first without launching update

requests; otherwise, it launches a predefined number of updates (20 times the number of the

used CPU cores) to ensure that the clustering steps can be continued with a balanced

workload.

Pipeline and data pre-processing. ESPRIT-Forest inherits the same pipeline of ESPRIT

and ESPRIT-Tree, which takes sequences in FASTA format as inputs and performs three

major operation steps: pre-processing, hierarchical clustering and statistical analysis. The pre-

processing step is identical with ESPRIT and ESPRIT-Tree, which merges redundant

sequences and filters out sequences with a poor match with their primers or having lengths

deviated too much from the average length. Although chimera checking is not implemented in

ESPRIT-Forest, it can be performed efficiently with existing tools such as UCHIME [34]. We

should point out that although ESPRIT-Tree/ESPRIT-Forest does not pay lots of efforts on

data pre-procesing, it is a stand-alone algorithm which can be used in couple with other data

preprocessing techniques or as a basic building block in a pipeline to further speed up a clus-

tering process. The processed sequences are fed to hierarchical clustering module and two

types of clustering outputs are generated. The first output is the complete hierarchical tree

described in a tetrad table format with each line representing a clustering step. The second is

the cluster partitioning of sequences at various given distance thresholds, which can be cus-

tomized by the users. Finally, a statistical analysis module inherited from ESPRIT/ESPRIT--

Tree performs ecological statistical analysis including the ACE estimates, the CHAO1

estimates and the Rarefaction curves [25] on user-defined distance levels.

Results

We tested the proposed ESPRIT-Forest algorithm on several large-scale real-world datasets

acquired from 16S rRNA sequencing of human microbiome, and compared with three leading

sequence-clustering algorithms, ESPRIT-Tree, UPARSE (the latest version of UCLUST [35])

and HPC-Clust. For UPARSE and UCLUST, the default parameters are used per the authors’

suggestion. The tests were performed on a small HPC cluster with 32 nodes, each equipped

with two Intel Xeon E5-2660 8-core CPUs and 128GB memory. Up to 256 (16×16) cores were

used in the test.

Scalability test

We first tested the parallelization efficiency of ESPRIT-Forest. To this end, a human gut

microbiome dataset from an obesity study [36] was used, which contains 1.1M reads (470K

unique sequences) with an average length of 233bp. Fig 3 depicts the running time of

ESPRIT-Forest performed on 1 to 128 CPU cores. For comparison, the running time of the

single-thread ESPRIT-Tree algorithm is also reported. With 128 cores, ESPRIT-Forest finished

the analysis of the entire dataset in 2,218 seconds, more than 20 times faster than ESPRIT-Tree.

With only 2 CPU cores, ESPRIT-Forest surpasses ESPRIT-Tree in speed. This demonstrates a

good scalability of the algorithm to utilize the power of parallel computing. In the single-core

environment, ESPRIT-Forest is slower than ESPRIT-Tree. This is because in order to reduce

the communication cost in parallel execution, we force a large number of NN updates (20

times the number of CPU cores) to be executed in a batch. Consequently, some unnecessary

NN updates are carried out in the single-core case. This, however, is a necessary trade-off.

Subquadratic-time parallel sequence clustering
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We also tested HPC-Clust on the same dataset. However, even with 128GB memory per

node and at a very high similarity threshold 0.99, HPC-Clust failed to complete the distance

calculation and crashed after about one hour of execution. This suggests that HPC-Clust is not

suitable to handle large datasets. In order to make the comparison feasible, we sampled a sub-

set of 300K reads (93,269 unique reads) from the dataset and executed each algorithm on it.

Table 2 reports the execution time of ESPRIT-Forest, ESPRIT-Tree, HPC-Clust and UPARSE.

ESPRIT-Forest and HPC-Clust were executed on 32 CPU cores. We can see that even after

excluding the time used for sequence alignments, the clustering step of HPC-Clust still took

nearly twice the total time of ESPRIT-Tree (it used only one CPU core) and is 15 times slower

than ESPRIT-Forest. Although UPARSE is faster, it is a greedy method and the clustering

result is quite coarse as demonstrated in the next subsection.

Benchmark on clustering quality

In addition to computational efficiency, clustering quality is another important consideration

when evaluating a clustering method. Although we have proved in theory that our

Table 2. Execution time of four clustering methods performed on a subset of the human gut microbiome data. ESPRIT-Forest and HPC-Clust (includ-

ing the INFERNAL alignment method it used) were executed on 32 CPU cores.

Method ES-Forest ES-Tree HPC-Clust

(incl. align)

HPC-Clust

(excl. align)

UPARSE

Time 251s 1942s 217h 3695s 70s

https://doi.org/10.1371/journal.pcbi.1005518.t002

Fig 3. Execution time of ESPRIT-Forest performed on a human gut microbiome dataset using a

varying number of CPU cores ranging from 1 to 128. The clustering termination criterion was set to 85%

sequence similarity. For comparison, the execution time of ESPRIT-Tree is also reported.

https://doi.org/10.1371/journal.pcbi.1005518.g003
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parallelization method should produce results compliant with the single-thread version, the

multi-solution nature of hierarchical clustering and the approximation steps taken in

ESPRIT-Tree may lead to some random fluctuations. Here we carried out an experiment to

demonstrate that parallelization does not affect the quality of clustering outcomes. It should be

noted that the purpose of the experiments carried out in this section is to confirm that the per-

formance of ESPRIT-Forest is similar to ESPRIT-Tree in statistical sense using other methods

as anchors, rather than to compare ESPRIT-Forest with previous methods. Comprehensive

comparison of 16S rRNA clustering or OTU picking methods is quite a sophisticated and con-

troversial topic, which is out of the scope of this paper. A brief discussion on this issue will be

provided later in the paper.

The benchmark test protocol proposed in [14] was used. Briefly, a benchmark database

comprising sequences that can be reliably annotated to a known taxon was used as the ground

truth. The annotation was done using a BLAST [37] search against the RDP-II [38] database

(not the RDP classifier), whose annotation was enhanced by the TaxCollector [39] tool to

achieve precise species-level labeling. A test dataset was created by random sampling without

replacement from the benchmark database. The test dataset was fed into a clustering algo-

rithm, and the clustering results generated at various similarity thresholds were then compared

with the true annotation using the normalized mutual information (NMI) index. The peak

NMI score was used to measure the clustering quality. To remove statistical variations, twenty

test sets were randomly generated in each run and box-plots were created to compare the qual-

ity of different clustering results. In this paper, four benchmark databases were used, two from

the human gut microbiome dataset [36], one from the ELDERMET dataset and one from the

saliva subset of the HMP project.

Fig 4 reports the peak NMI scores of ESPRIT-Forest, ESPRIT-Tree, UPARSE and

HPC-Clust performed on four benchmark datasets, respectively, averaged over twenty runs.

ESPRIT-Forest achieved statistically identical quality compared with ESPRIT-Tree (p-

value > 0.2 based on Student’s t-test) and both performed significantly better than UPARSE

(p-value < 10−22). This result shows that hierarchical clustering indeed performs much bet-

ter than heuristic methods, which is consistent with previous work [14–16, 19, 20]. It also

empirically verifies the theoretical result that multi-point clustering does not change the

nature of a clustering algorithm. To further verify this, the NMI scores achieved for ESPRIT-

Tree and ESPRIT-Forest on the first dataset with different distance cut-offs are depicted in

Fig 5. We see that the results of both algorithms agree on various distance levels. Moreover,

despite the lengthy time consumed in HPC-Clust, it lead to inferior clustering quality due to

the profile-based alignment method employed.

Tests on large-scale real world datasets

To further demonstrate the power of ESPRIT-Forest on processing large amplicon sequencing

datasets, we applied the algorithm to the HMP and ELDERMET datasets [40]. The HMP data-

set comprises 19.8 million raw reads sequenced from different hypervariable regions of the

microbial 16S rRNA gene, including 9.6 million reads from the V1-V3 regions, 9.6 million

reads from the V3-V5 regions, and 0.7 million reads from the V6-V9 regions. Since clustering

sequences from different regions makes no biological sense, we partitioned the data into three

subsets based on their targeted regions and clustered the two largest subsets. The ELDERMET

dataset comprises 9.0 million raw reads sequenced from the V2-V3 regions. Although several

studies have analyzed the above datasets [40–42], only taxonomy-dependent approaches were

used. To the best of our knowledge, no taxonomy-independent analysis has been performed

before using a hierarchical clustering method.

Subquadratic-time parallel sequence clustering
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Table 3 reports the detailed information of the datasets and the execution time required for

ESPRIT-Forest (using 256 CPU cores) to complete the analysis. By using parallel computing,

the proposed algorithm is able to finish the hierarchical clustering analyses of all datasets in

less than 40 hours. This experiment suggests that with the power of parallel computing it is

now computationally feasible to perform hierarchical clustering of tens of millions of

Fig 4. Comparison of clustering quality of ESPRIT-Forest, ESPRIT-Tree and UPARSE performed on benchmark datasets

using the species annotation as ground truth. (a) NMI scores calculated on human gut V2 dataset. (b) NMI scores calculated on

human gut V6 dataset. (c) NMI scores calculated on ELDERMET dataset. (d) NMI scores calculated on HMP Saliva dataset.

https://doi.org/10.1371/journal.pcbi.1005518.g004
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sequences. Considering that heuristic greedy methods with low clustering quality was the only

available clustering method capable of handling extremely large sequence data, this work thus

represents a significant progress in algorithm development to overcome the computational

bottleneck of microbial OTU binning.

Avalability and future directions

The ESPRIT-Forest software is available at http://www.acsu.buffalo.edu/*yijunsun/lab/

ESPRIT-Forest.html, including the source code of both MPI and OpenMP implementations

with pre-compiled executable codes. The software is an open-source program following the

OSI certificated Adaptive Public License (https://opensource.org/licenses/APL-1.0). With the

rapid development of sequencing technologies, the computational bottleneck hinders the effi-

cient mining of acquired large data sets. In this paper, we described a novel efficient parallel

hierarchical clustering algorithm, ESPRIT-Forest, to tackle the computational bottleneck asso-

ciated with the taxonomy-independent analyses of amplicon sequencing data. Using a small

Fig 5. Comparison of clustering quality of ESPRIT-Tree (red) and ESPRIT-Forest (blue) on various distance cut-offs on the human

gut V2 dataset. We see that the results of both algorithms agrees but with small variations caused by randomness in clustering.

https://doi.org/10.1371/journal.pcbi.1005518.g005

Table 3. Execution time of ESPRIT-Forest performed on HMP and ELDERMET datasets. The clustering termination criterion was set to 85% sequence

similarity. ESPRIT preproc was used to remove low-quality reads before clustering analysis.

Datasets Data size No. raw reads No. high-quality reads No. unique reads Ave. length (bp) Exec. time

(ES-Forest)

HMP V1-V3 5.5GB 9,547,737 7,678,585 5,063,052 482 33h

HMP V3-V5 5.4GB 9,547,362 7,747,712 4,277,831 483 38h

ELDERMET 2.5GB 8,989,448 7,068,272 3,826,973 254 8h

https://doi.org/10.1371/journal.pcbi.1005518.t003
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HPC cluster, the proposed algorithm successfully processed the entire HMP dataset, one of the

currently largest published 16S rRNA sequence dataset, within less than 40 hours, which sug-

gests that ESPRIT-Forest is capable of handling most of the existing amplicon sequencing

datasets. The source code of the algorithm is made available so that it can be incorporated with

existing tools and pipelines.

One severe challenge for sequence clustering for very large scale problems is that the entire

dataset has to be loaded into the memory of every computation node and processed together.

Hence the capacity of a single node limits the size of the problem that can be solved. In one of

our previous work we proposed LAHDC [27] which enables partitioning of sequence data into

subsets and each computation node conquers a subset separately, but with slight loss in cluster-

ing quality. In order to handle very large datasets, the advantages of LAHDC and ESPRIT-For-

est should be fused, which would be one of our future direction.

Another striking challenge brought by the advent of next-generation sequencing technol-

ogy is the rapid growth of sequence length. Many third-generation sequencing technology

claims to have a long read length of 10k to 100k base-pairs, which made sequence alignments

more time consuming. To cope with this, parallelizing the Needleman-Wunsch algorithm for

pairwise sequence alignments with GPU computation would be a feasible solution, which

would require more sophisticated design on the programming architecture and the computer

hardware infrastructure in order to support GPU-CPU hybrid computing.

The problem of identifying microbe taxonomic groups (OTUs) from 16S rRNA sequencing

has been investigated for many years with tons of algorithms and tools proposed but debates

still remain on various scopes [43, 44]. Due to the limitation of human knowledge on micro-

bial communities, establishment of reliable ground truth becomes very difficult and evalua-

tions of OTU picking often lead to controversial results with different datasets or criteria used.

Moreover, recent studies have suggested that alignments and clustering methods are not the

only major factors that affect the clustering quality, and sequence preprocess or denoising

would largely affect the final results [45, 46], which further increases the complication of this

issue. For this reason, in current stage it is hard to settle the complete OTU picking problem

with a single pipeline. Alternatively, a stand-alone programs that can be flexibly incorporated

with existing pipelines and provides incremental improvements would be favored. On the

other hand, some recent studies have suggested that a dynamic distance cut-off accounting the

phylogentic topology of the entire microbe community would improve the quality of OTU

picking [47, 48]. Compared with greedy-based approaches, our hierarchical clustering

approach provides more detailed information about the entire community, thus leaving more

potential of improvements for advanced OTU-picking methods in the future. Moreover, since

hierarchical clustering plays a fundamental role in many analytical procedures other than

sequence binning, such as phylogenetic tree construction [49], sequence alignments [50],

sequence database construction and searching [51], etc., our general approach can be used to

boost the efficiency of other sequence analysis tools.

Supporting information

S1 Methods. Theoretical proof for the equivalence of parallel hierarchical clustering to

sequential ones.

(PDF)
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