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Statistical modeling of extracellular vesicle cargo
to predict clinical trial outcomes
for hypoplastic left heart syndrome

Jessica R. Hoffman,1,2 Hyun-Ji Park,1 Sruti Bheri,1 Manu O. Platt,1 Joshua M. Hare,3 Sunjay Kaushal,4

Judith L. Bettencourt,5 Dejian Lai,5 Timothy C. Slesnick,6,7 William T. Mahle,6,7 and Michael E. Davis1,2,7,8,*

SUMMARY

Cardiac-derived c-kit+ progenitor cells (CPCs) are under investigation in the CHILD phase I clinical trial
(NCT03406884) for the treatment of hypoplastic left heart syndrome (HLHS). The therapeutic efficacy
of CPCs can be attributed to the release of extracellular vesicles (EVs). To understand sources of cell ther-
apy variability we took a machine learning approach: combining bulk CPC-derived EV (CPC-EV) RNA
sequencing and cardiac-relevant in vitro experiments to build a predictive model. We isolated CPCs
from cardiac biopsies of patients with congenital heart disease (n = 29) and the lead-in patients with
HLHS in the CHILD trial (n = 5). We sequenced CPC-EVs, and measured EV inflammatory, fibrotic, angio-
geneic, andmigratory responses. Overall, CPC-EV RNAs involved in pro-reparative outcomes had a signif-
icant fit to cardiac development and signaling pathways. Using a model trained on previously collected
CPC-EVs, we predicted in vitro outcomes for the CHILD clinical samples. Finally, CPC-EV angiogenic per-
formance correlated to clinical improvements in right ventricle performance.

INTRODUCTION

Congenital heart disease (CHD) affects nearly 1% of births in the United States, with conditions ranging in severity.1 Hypoplastic left heart

syndrome (HLHS) is one of the most complex forms of CHD and is characterized by an underdeveloped left ventricle.2,3 HLHS is palliated

by a series of three surgeries which redirects blood flow such that the right ventricle sustains systemic circulation. Despite the short-term im-

provements offered by surgical palliation, HLHS has one of the highest mortality rates among all CHD conditions.4 In particular, patients with

HLHS suffer from right ventricle failure due to ischemia and pressure/volume overload. Therefore, to address right ventricle dysfunction and

improve HLHS patient outcomes, cell-based therapies have been explored in several preclinical and clinical trials.2 Notably, our group is

currently investigating the use of autologous c-kit+ progenitor cells (CPCs) for the treatment of HLHS in a Phase I/II clinical trial (CHILD:

NCT03406884).5

CPCs have shown promising results in pre-clinical and early-phase clinical trials, including the CONCERT-HF trial for use in adult patients

with heart failure.6–9 CPCs are isolated from the heart tissue—mainly the right atrial appendage that is routinely removed during cannula-

tion—and expanded in culture for preclinical or clinical use. Multiple studies have shown that CPCs derived from neonatal patients outper-

form CPCs derived from older children and adults, in part due to their differences in CPC secreted factors.8,10–13 Originally, cardiac cell ther-

apy was thought to function in a direct manner: transplanted cells engraft, proliferate, and form new healthy tissue. However, many groups

have now shown that transplanted cells function in a more indirect manner via paracrine signaling.14 More specifically, transplanted stem or

progenitor cells release extracellular vesicles (EVs) loaded with beneficial or reparative nucleic acid and protein cargo to resident cardiac

cells.15

Small EVs may be formed in an endocytic manner from a parent, or source, cell. In a series of inward budding steps—first from a parent

cell’s plasmamembrane and then from amultivesicular body—EVsmay be formed as intraluminal vesicles that are ultimately released into the

extracellular space to signal to neighboring cells. Importantly, during these biogenesis steps, EVs acquire specific proteins and nucleic acid
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cargo directly from the parent cell. We and others have shown that stem and progenitor cells are enriched in certain RNAs that promote pro-

cesses such as cell proliferation, cell migration, and angiogenesis, that may drive therapeutic success of cell therapy preclinical models.13,15–19

To better understand the mechanistic EV RNA signals driving reparative outcomes, we have previously built regression models to link EV

RNA-sequencing data to in vitro and in vivo experimental outcomes.7,9,13,16 Here, we aim to build upon this work, expanding our overall sam-

ple size and collecting results for clinical trial samples.

Despite growing evidence of stem/progenitor cell-derived EVs repairing the myocardium, there is a dearth of quantitative studies inves-

tigating the EV cargomolecules (mRNA,miRNA, proteins, etc.) contributing to repair. Indeed, cardiac cell therapy has suffered from variability

in patient outcomes; some cell types and/or patients exhibit greater improvements than others.20 Therefore, to identify contributing factors of

cell therapy variability and improve clinical outcomes, we need studies linking high dimensional EV RNA-sequencing datasets to clinical out-

comes. Here, we construct an in vitromodel of CPC-EV ‘‘repair’’ for the prediction of clinical outcomes from the CHILD trial. We collected and

sequenced EVs from cultures of (1) CPCs previously isolated from patients with CHD (n = 29), and (2) CPCs from five patients enrolled in the

phase I open-label group of the CHILD clinical trial (#1101, 1102, 1103, 1106, 1107). Then, we treated various cell types—cardiac endothelial

cells (CECs), cardiac fibroblasts (CFs), andmesenchymal stromal cells (MSCs)—with CPC-EVs andmeasuredCEC tube formation,MSCmigra-

tion, CF fibrotic gene expression, and CEC inflammatory gene expression. We linked the EV sequencing data and in vitro outcomes data to

generate regression models, potentially predictive of CHILD clinical trial outcomes.

RESULTS

Clinical CPC samples release small extracellular vesicles in cell culture

To build a predictive CPC-EV model of cardiac outcomes with an adequate sample size, we cultured previously collected CPCs from pa-

tients with various congenital heart conditions (training dataset, n = 29), as well as CPCs from select patients with HLHS enrolled in phase I

of the CHILD clinical trial (testing dataset, n = 5). Patients’ age and heart conditions are listed in Table 1. We expanded CPCs in 2D culture

and isolated their EVs from the conditioned media via differential ultracentrifugation (Figure 1A). We assessed CPC-EV size with transmis-

sion electron microscopy (Figure 1B) and Nanosight particle tracking (Figure 1C), and determined that CPC-EVs were <150nm, character-

istic of small EVs or exosomes. Next, we isolated CPC-EV RNA and performed total and small RNA sequencing. Initial bioanalyzer plots

of CPC-EV RNA revealed the enrichment of small RNAs �22nt, the size of miRNA, and confirmed the absence of ribosomal 18S and

28S RNA peaks (Figure 1D). Sequencing detected 1,067 miRNAs and 10,469 total RNAs after removing lowly expressed RNAs. CPC-EV

sample TMM-normalized logCPMs are displayed in Figure 1E. After processing sequencing results, dimension reduction plots using prin-

cipal component analysis (PCA) showed comparable miRNA and total RNA vesicle content across both training and testing datasets

(Figure 1F).

CPC-EV treatment affects recipient cell processes

Multiple studies have reported the pleiotropic effects of transplanted stem or progenitor cell-derived EVs.13,15,16,18 To construct an in vitro

model, predictive of clinical outcomes, we designed experiments to investigate primary mechanisms of EV-mediated cell therapy: mod-

ulation of inflammation, fibrosis, cell migration, and angiogenesis. Specifically, we treated cardiac endothelial cells (CEC), cardiac fibro-

blasts (CF), and mesenchymal stem, or stromal, cells (MSCs) with patient-derived CPC-EVs. We measured MSC migration in a Boyden

chamber system, CEC tube formation on Matrigel (number of tubes and total tube length), CEC inflammatory gene expression (Il-1ɑ,
Il-1b, Il-6) after TNF-ɑ treatment, and CF fibrotic gene expression (Col1a1, Col1a2, Col3a1, Vim, Ctgf) after TGF-b treatment. CPC-EVs

derived from different patients exerted different effects on recipient cells. We observed two major sample clusters with a mix of CPC-

EVs derived from various age groups (clusters A and B, Figure 2A; Figure S1). Cluster A included the testing set samples and showed

greater migration, fibrotic and inflammatory gene expression, and lower tube formation values than cluster B. As expected, we observed

in vitro outcomes largely clustered within assay type: fibrotic genes, tube formation measurements, and two of the three inflammatory

genes (Figure 2A).

In the angiogenesis experiments, CPC-EVs induced CEC tube formation, as compared to the untreated control (Figures 2B and 2C). Inter-

estingly, CPC-EVs derived from older patients induced greater CEC tube formation than CPC-EVs from neonate patients (Figure 2B). Linear

regression showed enhanced total tube lengthmeasurements in CPC-EVs from older patients (r = 0.34, p = 0.059, Figure S2). In the migration

assay, we observed the opposite trend: CPC-EVs derived from neonate patients promotedMSCmigration to a greater extent than CPC-EVs

derived from older patients (Figure 2D). Linear regression showed a modest decrease in MSC migration with age (r = �0.30, p = 0.092, Fig-

ure S2). We did not observe age-dependent differences in the PCR-based fibrosis and inflammation experiments with linear regression

(Figures 2E, 2F, and S2). Interestingly, simplifying these analyses by binning CPC-EV responses into 3 age groups—neonate (<2 weeks), infant

(2 weeks - 1 year), child (>1 year)— did not reveal a strong interaction between age group and experimental outcome (Figure S3). Further-

more, grouping CPC-EV samples by sex did not reveal differences between males and females across the various experimental outcomes

(Figure S4).

Overall, CPC-EV treatment reduced Il-6 expression in TNF-ɑ treated CECs and reduced Col1a2 and Ctgf expression in TGF-b treated

CFs. Data for Col1a1, Col3a1, Vim, and Il-1b expression, as well as total number of measured tubes are provided in the supplement

(Figure S5). Notably, for all four assays, we observed differences in experimental outcomes among the CPC-EVs. This variance among

donor -derived CPC-EVs provides a solid foundation for constructing regression models that link CPC-EV RNA-seq with experimental data.
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Weighted gene co-expression network analysis (WGCNA) identifies clusters of co-expressed CPC-EV RNAswhich correlate

to in vitro outcomes

To link CPC-EVmiRNA and RNA to functional in vitro outcomes (Figure 2), we initially used theWGCNA unsupervised learningmethod.21We

usedWGCNA to first identify clusters, or modules, of co-expressed CPC-EV RNAs, and then determined the Spearman’s correlation of these

modules to in vitro outcomes. We combined total RNA and miRNA datasets from all EV samples and standardized (mean centered and

scaled) the RNA features and outcomes (Figure S6).

First, we performed WGCNA and identified 44 modules of co-expressed RNAs (Figure 3A; Table S1). Then, we correlated these mod-

ules to each continuous in vitro outcome and identified 7 modules of interest: M5, M7, M14, M15, M21, M22 and M36. Interestingly,

although the RNA datasets were combined, centered, and scaled, the modules were primarily comprised of either RNA or miRNA

(Figure 3B). RNA modules of interest included M14, M15, and M21 which had a negative correlation with fibrotic gene expression (Vim,

Table 1. Patient characteristics

Patient Age Age Group Data Set Diagnosis

894 6 months infant Training Not reported

896 12 months child Training Ventricle septal defect

902 4 years child Training Atrial septal defect

903 <1 week neonate Training Hypoplastic left heart syndrome

924 2 months infant Training Total anomalous pulmonary venous return

925 <1 week neonate Training Total anomalous pulmonary venous return

926 14 months child Training Ventricle septal defect

930 <1 week neonate Training Total anomalous pulmonary venous return

938 5 years child Training Subaortic stenosis

956 5 months infant Training Complete atrioventricular canal defect

957 7 months infant Training Partial anomalous pulmonary venous return

975 6 months infant Training Tetralogy of Fallot

985 2 weeks neonate Training Interrupted aortic arch

1004 12 months child Training Anomalous superior vena cava to left atrium

1006 6 months infant Training Complete atrioventricular canal defect

1007 6 months infant Training Ventricle septal defect

1010 9 weeks infant Training Tetralogy of Fallot

1045 <1 week neonate Training Coarctation of the aorta, ventricle septal defect

1048 6 years child Training Atrial septal defect

1050 1 week neonate Training Hypoplastic left heart syndrome

1063 3 years child Training Ventricle septal defect

1066 6 months infant Training Tricuspid atresia, ventricle septal defect, atrial

septal defect

1083 <1 week neonate Training Interrupted aortic arch, ventricle septal defect

1092 4 years child Training Atrial septal defect

1095 3 months infant Training Double outlet right ventricle

1097 3 months infant Training Tetralogy of Fallot

1099 5 months infant Training Complete atrioventricular canal defect

1100 <1 week neonate Training Hypoplastic left heart syndrome

1101 neonate Testing/CHILD Hypoplastic left heart syndrome

1102 neonate Testing/CHILD Hypoplastic left heart syndrome

1103 neonate Testing/CHILD Hypoplastic left heart syndrome

1106 neonate Testing/CHILD Hypoplastic left heart syndrome

1107 neonate Testing/CHILD Hypoplastic left heart syndrome

2013 3 months infant Training Ventricle septal defect

2016 1-2 weeks neonate Training Coarctation of the aorta, atrial septal defect,

ventricle septal defect
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Figure 1. Characterization and RNA-sequencing of CPC-EVs

(A) Schematic of experimental design: CPCs were previously collected from various patients with CHD, as well as five patients with HLHS from the phase I open-

label group in the CHILD trial. CPC-EVs were collected from conditioned media, sequenced, and used in four in vitro experiments: cardiac endothelial cell tube

formation onMatrigel, MSCmigration in a Boyden chamber, cardiac endothelial cell inflammatory gene expression after TNF-ɑ treatment, and cardiac fibroblast

fibrotic gene expression after TGF-b treatment.

(B) Transmission electron microscopy image of EVs derived from patient 1101 CPCs.

(C and D) Nanoparticle tracking (mean G SD) and (D) bioanalyzer plot of representative CPC-EVs from patient 1106 determine EV size/concentration and RNA

composition, respectively.

(E) Boxplots show TMM-normalized counts of CPC-EV samples for miRNA and total RNA-sequencing. Middle line and box length represent the median and

interquartile range, respectively. Outside ‘‘whisker’’ lines represent minimum and maximum logCPM values in each sample. Dots represent outlier logCPM

values (>1.5 times the interquartile range). Samples from the CHILD trial shaded in green.

(F) PCA plots of CPC-EV samples formiRNA and total RNA-sequencing, coded by dataset and patient age. CHD: congenital heart disease; HLHS: hypoplastic left

heart syndrome; MSC: mesenchymal stromal cell; PCA: principal component analysis; CPM: counts per million.
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Ctgf or Col1a2) and a positive correlation with tube formation measurements (p < 0.1). RNA module M36 had a positive correlation with

migration (p < 0.01) (Figure 3C). Upon the investigation of the RNAs belonging to these modules, we determined with pathway analysis

that M14 was enriched in extracellular matrix organization and potassium ion homeostasis pathways; M14, M15, and M21 were enriched in

membrane depolarization and muscle organ development pathways; M14 and M15 were enriched in macrophage, myeloid cell, and B cell-

related immune responses; and M36 was enriched in RNAs involved in mRNA processing, and IL-12 and general cytokine signaling path-

ways (Figure 3D).

Additionally, we discovered that miRNA modules M5, M7, and M22 correlate with in vitro outcomes. These modules had a positive cor-

relation with the expression of various fibrotic and inflammatory genes. M22 had a positive correlation with tube formation measurements.

More concisely, these modules contained miRNAs which are positively correlated with ‘‘poor’’ outcomes (fibrosis and inflammation) and

negatively correlated with ‘good’ in vitro outcomes (tube formation), opposite to the trend shown in the RNA modules (Figure 3C). To un-

derstand the biological significance of these modules, we determined the miRNAs’ gene targets and performed pathway analyses. From

miRNA modules’ gene targets, we found the enrichment of cell cycle, apoptosis, migration, and differentiation pathways, as well as Notch

signaling, and positive regulation of fibroblast proliferation (Figure 3D).

Partial least-squares regression models predict CPC-EV in vitro outcomes for the test dataset

Next, we aimed to construct multivariate in vitro regression models that could be trained on CPC-EVs collected previously from various pa-

tients with CHD and would be predictive of our test dataset: CPC-EVs from the five phase I open-label CHILD trial patients. Partial least-

squares regression (PLSR) is a supervised learning method that performs both dimension reduction and regression. Here, the SIMPLS

Figure 2. CPC-EV treatment affects cell processes in vitro

(A) Heatmap of experimental outcomes (averaged) for CPC-EVs cluster by assay category. Patient IDs are listed in the rows and color-coded by age group and

dataset (training vs. testing). Two major CPC-EV sample clusters are highlighted in gray. Outcomes are listed in the columns and color-coded by assay category.

(B) Quantification of tube length, normalized to control (red line), and (C) representative images of CEC tube formation on Matrigel after 20 h with CPC-EV

treatment. Yellow, white-striped bars represent samples from five neonates with HLHS, enrolled in the phase I open-label group in the CHILD trial.

(D) MSC migration in Boyden chamber system, normalized to control (red line), 48 h after CPC-EV treatment.

(E) CEC Il-6 expression after 24-h CPC-EV pretreatment and 4-h TNF-ɑ stimulation. Relative Il-6 expression calculated using 2�DDCt method, compared to the

Gapdh housekeeping gene. Red line indicates control: CECs stimulated with TNF-ɑ, without CPC-EV treatment.

(F) CF Col1a2 (left) and Ctgf (right) expression after CPC-EV pretreatment and TGF-b stimulation. Relative Col1a2 and Ctgf expression calculated using 2�DDCt

method, compared to Gapdh housekeeping gene. Red lines indicate controls: CFs stimulated with TGF-b, without CPC-EV treatment. Data are represented as

mean G SEM (B, D‒F). See also Figures S1‒S5. CEC: cardiac endothelial cell; CF: cardiac fibroblast.

ll
OPEN ACCESS

iScience 26, 107980, October 20, 2023 5

iScience
Article



PLSR algorithm computed components in RNA-seq (‘‘X’’) space thatmaximized variance explained in the experimental outcomes (‘‘Y’’) space.

Given that our multivariate outcomes were correlated within each experimental category—after mean centering and scaling the data (Fig-

ure 4A)—we sought to construct four PLSRmodels (fibrosis, inflammation, angiogenesis, and migration). For each model we first constructed

three-component full models based on all RNAs from the training CPC-EV set and leave-one-out cross-validation. The full models did not

Figure 3. WGCNA identifies clusters of RNA which correlate to experimental outcomes

(A) Forty-four miRNA/RNAmodules were identified withWGCNA and then correlated to in vitro outcomes. RNAdata from all EV samples were used. Hierarchical

clustering of the RNAmodules is displayed in the top dendrogram. The bottom heatmap displays the Spearman’s correlation of RNAmodules to each outcome.
.p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001.

(B) RNA composition of 7 modules which significantly correlate to experimental outcomes – blue: total RNA, pink: miRNA.

(C) Correlation, positive or negative, of modules to specific outcomes.

(D) Pathway analysis of RNAs in modules 14, 15, 21, and 36 (blue) show the enrichment of supramolecular fiber organization, calcium ion transport, and immune

response pathways. Pathway analysis of gene targets of miRNA modules 5, 7, and 22 show the enrichment of cytokine and Notch signaling, regulation of

fibroblast proliferation, as well as cell migration, differentiation, death pathways (pink). Gene targets determined by miRTarBase with the validation of at

least three experiments. See also Table S3. M: module.
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capture a meaningful amount of variance (the models explained just 30–36% of the RNA variance) and showed poor prediction performance

(high root-mean-square error (RMSE) and low R2) within the cross-validated training set (Figure 4B).

However, we then used feature selection to reduce the model from >11,000 RNAs to <300 RNAs, and this greatly improve performance.

We computed the variable importance for the projection (VIP) scores for each RNAand selected RNAswith an average score across outcomes

in a category >2. The reduced three-component models displayed higher performance metrics and captured greater variance, >98% of RNA

variance and 70–99% of outcome variance in all models (Figure 4B). VIP count and distribution of RNA type are displayed in Figure 4C. Notice-

ably, there was little overlap of VIPs across model categories (Figure 4D). Pathway analysis of the VIP RNAs showed the enrichment of mRNA

splicing, cell cycle, exocytosis, cell adhesion, IL-8 signaling, and Wnt signaling processes (Figure 4E). Finally, we validated the models on the

test dataset and demonstrated that the reduced models predicted fibrotic in vitro outcomes of the CHILD CPC-EV dataset. Representative

observed vs. predicted plots for Ctgf, Il-6, tube length, and migration are shown (Figure 4F; Figure S7).

Figure 4. Partial least-squares regression models predict in vitro outcomes from test dataset

(A) Experimental outcomes (continuous variables) for combined samples cluster by category: angiogenesis, fibrosis, and inflammation. Four PLSR models for

each outcome category were created and VIPs with average score >2 were identified.

(B) Variance explained, R2, and RMSE measurements from the four PLSR models, constructed from previously collected CPC-EVs (training set), before and after

feature selection.

(C) composition of VIPs and (D) overlap of VIPs across the models.

(E) GO biological processes pathway analysis of VIP RNAs in each model.

(F) in vitro predictions for CHILD CPC-EVs. See also Figure S7. PLSR: partial least-squares regression; VIP: variable importance in the projection; RMSE: root-

mean-square error.
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Random forest and regularized regression models select important CPC-EV RNA signals

To robustly identify CPC-EV RNA signals which covary with functional responses, we constructed additional regularized regression (lasso,

ridge, and elastic net) and random forest regression models for each of the eleven outcomes with the training dataset. Regularized regres-

sion models invoke a penalty to minimize the weight of RNA features, a hyperparameter which controls the learning process. We tuned the

shrinkage hyperparameter, l, for each model using 5-fold cross-validation and selected the optimal model with the highest R2 measure-

ments. Briefly, lasso (L1) and ridge (L2) regularization add a penalty equal to the absolute value or the square of the magnitude of the

coefficients, respectively. Simply put, RNA coefficients can only be reduced in ridge regression but may be fully eliminated in lasso

regression.

The four model types produced similar error (mean absolute error (MAE) and RMSE) and R2 metrics for the training set, based on repeated

5-fold cross-validation (Figure S8). Tuned hyperparameters for ridge and lasso models are listed in Table 2. Given the size of our dataset

(>10,000 RNAs, 26 samples) we expected that the optimal models would impose high penalties, or result in high l values. Indeed, five of

our eleven optimal ridge models invoked the maximum l value, 500. For ridge regression models, we set the maximum l value to 500 to

prevent shrinking feature weights too much, given that our goal for creating these models was to identify important RNA features for specific

outcomes. We also determined that the Vim and Il-6 lasso and ridge models had the highest shrinkage parameters. Further, we used elastic

net regression, a combination of lasso and ridge methods. The ɑ hyperparameter denotes the ratio of L1/lasso and L2/ridge penalties (0% ɑ
% 1 with 0 = ridge and 1 = lasso). Here, our Vim, Il-1a, and total tubes models favor the L2/ridge penalty (ɑ% 0.3) and all other models favor

the L1/lasso penalty (ɑ R 0.6). Notably, Col1a1 and Il-6 models had the highest hyperparameter values, lasso l > 0.66, ridge l = 500, and

ɑ = 0.8, indicating many RNA features have poor predictive power.

Next, with the optimal regularized regression models, we generated predictions for the CHILD CPC-EV testing dataset and observed

considerable differences in the predictive performance of these models. Root-mean-square error (RMSE) and R2 measurements for in vitro

CHILD predictions are listed in Table 2. Generally, ridge models had the highest R2 values, compared to their respective lasso and elastic

net models. In datasets with a very large number of features, a considerable drawback to lasso regression—and subsequently, elastic net

models with a high ɑ value–is that models will select at most n features. For our problem, each lasso model would include at most 26 features

(number of CPC-EV samples in the training set), picking one random feature per collinear set. In this way, ridgemay produce the best models

by shrinking, but not eliminating important and predictive RNA features.

Finally, we used the ensemble learning method, random forest regression, to model each outcome and predict CHILD in vitro out-

comes. We tuned the splitting rule parameter and importantly, the number of features considered at each split (mtry). A good rule

for random forest regression models is to use an mtry estimate of 1/3 of the number of features. Here, we determined that optimal

Vim and migration models had an mtry parameter near this estimate, and that Col1a1, Il-6, Il-a, and Il-1b full models were the most

predictive of the clinical test set (R2 > 0.48, Table 3). However, overall, we observed that most full random forest models resulted in

low R2 values. Thus, we then computed feature importance scores and tested whether reducing our random forest models to the

most informative features would result in better predictions, as demonstrated in our PLSR models. We constructed reduced models

based on features with importance scores >10. Reducing random forest models produced mixed results: Col1a2, Col3a1, Il-1a, tube

length, and migration models improved; Col1a1, Vim, Ctgf, Il-1b, Il-6, and total tubes models worsened. Finally, we compiled important

features from all models, within each outcome category: retained RNAs in lasso and elastic net and the top RNAs in ridge (by coeffi-

cients) and random forest (by importance score, Figure S9A). Pathway analysis of RNAs deemed important to multiple regression model

revealed: migration models fit cell cycle, endothelial cell differentiation, and cardiac epithelial to mesenchymal transition pathways;

angiogenesis models fit histone exchange and microtubulue organization processes; inflammation models fit alpha-beta T cell activa-

tion and response to DNA damage processes; fibrosis models fit cytokine production regulation and leukocyte tethering pathways

(Figure S9B).

Table 2. Tuned hyperparameters and testing set performance metrics for lasso, ridge, and elastic net regression models

Model Parameter Col1a1 Col1a2 Col3a1 Vim Ctgf Il-1a Il-1b Il-6 Total Tubes Tube Length Migration

Lasso l 0.66 0.30 0.51 0.76 0.76 0.76 0.34 0.76 0.01 0.26 0.34

RMSE 0.89 1.03 0.83 0.89 0.89 0.88 0.82 0.89 0.94 1.04 1.01

R2 NA 0.27 0.18 NA NA 0.27 0.22 NA 0.06 0.00 0.29

Ridge l 500 336.7 226.2 500 9.4 9.4 500 500 500 384.5 6.3

RMSE 0.88 0.97 0.88 0.82 0.68 0.92 0.97 0.97 0.89 0.96 1.03

R2 0.77 0.77 0.10 0.18 0.70 0.01 0.37 0.41 0.01 0.03 0.41

Elastic Net l 0.84 0.14 0.65 0.11 0.03 1.03 0.78 0.97 0.05 0.59 0.35

a 0.80 0.60 0.80 0.10 0.90 0.10 0.90 0.80 0.30 0.60 1.00

RMSE 0.89 1.26 0.85 0.80 0.67 0.88 0.89 0.89 0.88 0.93 1.02

R2 NA 0.49 0.12 0.25 0.49 0.03 NA NA 0.07 0.01 0.33
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CHILD clinical ranking predictions

To make clinical predictions for the five patients enrolled in the phase I open-label group of the CHILD clinical trial, we ranked CPC-EV

in vitro outcomes from ‘‘best’’ to ‘‘worst’’ (Figure 5). CPC-EVs derived from patient #1101 performed ‘‘the worst’’ with the highest average

score: 4.2. Patients #1103 and #1107 had the lowest average score, 2.5. CPC-EVs derived from patient #1103 showed the greatest pro-

angiogenic potential, but higher inflammatory responses. Further, patient #1102 had the highest pro-migratory response and lowest

Il-1ɑ response.

Next, these in vitro rankings were correlated to clinical rankings in right ventricle (RV) improvements (FAC: fractional area change, GLSR:

global longitudinal strain rate, FWGLS: free wall longitudinal strain). Correlations were made for improvements from baseline to six months,

baseline to twelve months, and six months to twelve months. Across these timepoints, angiogenesis measurements correlated to improve-

ments in RVGLSR and FAC. Interestingly, we observed a negative correlation between six-month to twelve-month improvements in GLSR and

anti-inflammatory and anti-fibrotic responses (Il-6 and Col1a1). Nevertheless, confident validation of the model will require complete clinical

data, which remain blinded and will become available next year. The clinical trial will collect patient right ventricle ejection fraction, end-dia-

stolic volume, end-systolic volume, and tricuspid regurgitation at baseline, six months, and twelve months after treatment.5 Correlating these

data will allow us to determine the best, or most informative, predictors of clinical outcomes.

DISCUSSION

Outcomes for infants with HLHS have improved significantly with the emergence of the 3-stage palliation, including the Norwood, Bidirec-

tional Glenn, and Fontan procedures. Surgical palliation supports single-ventricle physiology and redirects blood flow such that the RVmain-

tains systemic circulation. Unfortunately, the RV is not physiologically adapted to support systemic circulation and HLHS patients often

develop RV dysfunction, adverse RVmodeling, and eventual RV failure. RV dysfunction has been shown to predict mortality: 18-month survival

for patients with and without RV dysfunction are 35% and 70%, respectively.22 Furthermore, mortality rates for patients with HLHS remain the

highest between stage I and II Norwood and Bidirectional Glenn surgeries.23,24 Therefore, therapeutic intervention during this stage, prevent-

ing RV dysfunction, is necessary to improve outcomes for patients with HLHS.

Cell therapy has emerged as a promising avenue to promote cardiac repair and prevent adverse remodeling in younger patients. Several

cell types are under clinical investigation for use in treating HLHS, including CPCs (NCT03406884), cardiosphere-derived cells (NCT01273857,

NCT01829750, NCT02781922), umbilical cord blood and bone marrow-derived mononuclear cells (NCT01883076, NCT02549625,

NCT03779711, and NCT04907526), and bone marrow-derived mesenchymal stem cells (NCT03525418 and NCT04925024). In particular,

our group is involved in theCHILD clinical trial investigating use of autologous CPCs during the stage II Glenn operation to potentially support

the function of the RV and compensate for pressure and volume overload. Unfortunately, cardiac cell therapy suffers from too much variation

in cell populations and patient outcomes. Previous work has investigated the genetics of patients receiving MSC injections for non-ischemic

dilated cardiomyopathy and determined that patients without genetic variants in a panel of 11 ACMG-classifiedCHDgenes respond better to

the cell therapy than patients with pathological variants.25 However, there have been a dearth of studies investigating potential paracrine,

including EV, factor determinants for cell therapy responsiveness. Here, we investigate the variability of CPC-EVs from >30 patients with

CHD (including patients enrolled in the CHILD trial, n = 5), and link these transcriptomic data to cardiac-relevant experimental outcomes.

We aim to understand which in vitro experiments correlate with clinical outcomes, and subsequently, which CPC-EV RNA molecules may

be mechanistically driving these functional responses.

Initially, we confirmed that CPC-EVs derived from various patients differentially affect cell processes (Figure 2). We determined that CPC-

EV migration and angiogenesis responses correlated with patient age. Here, we recapitulate our previous results demonstrating that CPCs

derived from younger patients exhibit greater paracrine pro-migratory behavior8 (Figure 2D; Figure S2). Unexpectantly though, we deter-

mined that age positively correlated with angiogenesis. Previous results from our lab suggested that neonate-derived CPCs and CPC-EVs

promoted angiogenesis to a greater extent than their child counterparts.8,13 However, these experiments were conducted using pooled

Table 3. Tuned hyperparameters and testing set performance metrics for full and reduced random forest regression models

Model Parameter Col1a1 Col1a2 Col3a1 Vim Ctgf Il-1a Il-1b Il-6 Total Tubes Tube Length Migration

Full mtry 4000 10 5250 6500 11250 8000 11250 11500 750 9500 1250

split rule V V V V ET ET V ET ET ET V

RMSE 0.81 0.90 0.91 0.81 0.84 0.77 0.99 1.06 0.89 0.94 0.92

R2 0.49 0.00 0.04 0.24 0.25 0.51 0.64 0.97 0.01 0.00 0.08

Reduced mtry 2 2 2 2 2 22 14 8 62 32 2

split rule V V V V V ET V ET ET V V

# features 42 954 54 71 41 71 64 12 198 39 121

RMSE 0.78 0.92 0.92 0.86 0.92 0.72 1.09 1.36 0.94 1.14 0.95

R2 0.40 0.29 0.17 0.09 0.04 0.62 0.50 0.91 0.00 0.17 0.13

V, variance; ET, extratrees.
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samples, including the 3rd most angiogenic patient, #903. Given that the results presented here show large patient-to-patient variation,

perhaps with repetitive cell passaging, specific patient lines may dominate pooled samples. Additionally, the CPC-EVs derived from

CHILD samples (white-striped bars, Figure 2B) are the least angiogenic and may be skewing these results. This observation may be due to

technical variability from CPCs isolated at different locations: CHILD cells were initially isolated at the University of Miami, whereas the other

CPCs were isolated and expanded by our group. However, the purpose of this study was to understand CPC-EV variability which may be

driving large variation in patient outcomes. To improve autologous cell therapy outcomes, it will be important to understand functional effects

at the individual patient level, rather than exploring general effects from pooled samples.

A major issue with RNA sequencing experiments is that p>>n: there are far greater features, or RNAs, measured than samples. This

issue makes conventional linear regression ill-suited to handle these problems. Fortunately, the multicollinearity, inherent to datasets

this size, allows for the implementation of machine learning methods to reduce dataset dimension and complexity and summarize

the data. Initially, we used WGNCA, an unsupervised learning approach, to identify modules of co-expressed EV-RNAs correlate

these modules to in vitro outcomes. WGCNA identified 3 miRNA enriched modules that had a negative correlation to inflammatory

and fibrotic in vitro responses. The gene targets of these miRNAs were enriched in biological processes related to cell proliferation,

apoptosis, cytokine signaling, Notch signaling, and fibroblast proliferation. Of note, module 5 contained well-studied miRNAs -139-5p

(targets CXCR4, MCL1, and NOTCH1) and -149-5p (targets IL6, MYD88, and FGFR1). Module 7 included well-studied miR-302d-3p (targets

CXCL8, CDK2, CCND2, and TGFBR2) and �135b-5p (targets SMAD5 and TGFBR1). Given that EV miRNAs are particularly potent,

it may be expected that clusters of miRNAs that target inflammatory and fibrotic pathways correlate to their corresponding in vitro

outcomes.

Furthermore, to directly link our CPC-EV RNA sequencing to experimental outcomes, we constructed univariate regularized regression

and random forest regression models, as well as multivariate partial least-squares regression (PLSR) models of angiogenesis, migration,

Figure 5. Correlation of in vitro CPC-EV performance and clinical CHILD patient outcomes

(A) in vitro outcomes were ranked from best (#1, anti-inflammatory, anti-fibrotic, pro-angiogenic, pro-migratory) to worst (#5) for the five patients with CHILD

(#1101–1107).

(B) in vitro rankings were correlated (Spearman’s) to their patient-matched clinical RV improvements associated with the trial. .p % 0.1. FWGLS, free wall

longitudinal strain; GLSR, global longitudinal strain rate; FAC, fractional area change.
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inflammation, and fibrosis responses. We constructed models using the training data—previously isolated CPCs from patients with

CHD—and measured the in vitro predictability in our test set— five patient-derived CPC-EVs in the phase I open-label group from the

CHILD trial. As to be expected, in all cases, our original, full models described little variance of the RNAs, and produced poor prediction

metrics for the cross-validation of our training set. Therefore, we computed VIP scores to determine the most important RNAs in the

models and reduced our regression models, from >11,000 RNAs to <300 RNAs. In doing so, we greatly improved upon our training

data metrics: explained variance and RMSE/R2 measurements. Interestingly, only a handful RNAs were deemed important across multiple

models (Figure 4D; Figure S9). In the case of comparing across outcomes, this may indicate that different EV RNAs are driving different

mechanisms.

Overall, the study presented here investigates patient-to-patient variability of CPC-EVs and links CPC-EV RNA cargo to experimental

outcomes. We identified differences in angiogenesis, migration, inflammation, and fibrosis responses from CPC-EV treated cells and

determined the EV-RNAs which correlate and covary with responses using WGCNA and various regression models, respectively. We

also determined that in vitro angiogenic potential of EVs correlates to clinical improvements in RV performance of patients with

HLHS. Ultimately, we aim to connect these results to our phase I, patient-matched, results. Here, we have ranked the in vitro perfor-

mance of the CPC-EVs from patients included in the CHILD trial (Figure 5) and made predictions as to which patient may perform bet-

ter. These predictions will be validated when the trial is complete and unblinded. Given the importance of EV release in cell-therapy

efficacy, our results and prediction tools will help to inform clinicians of patient outcomes, thereby potentially minimizing poor

outcomes.26

Limitations of the study

In this article, we aimed to connect progenitor cell-derived EV cargo and their pro-reparative in vitro effect to clinical outcomes. Our study

is primarily limited by clinical sample size. First, our training and testing datasets consisted of different patient populations; we trained our

models with CPC-EV samples derived from cardiac biopsies of patients with a range of diagnoses and tested our models with CPC-EVs

derived from patients with HLHS in the CHILD trial. Given a limited availability of HLHS cardiac biopsies—only three of the training set

CPC-EVs were derived from patients with HLHS—we felt it was best to use the largest training dataset possible, and utilized samples

collected from patients of varying congenital heart disease conditions. Second, we are constrained by our phase I trial sample

size. Here, we were able to include data from five patients who completed the trial (four males and 1 female), with visits six months

and twelve months post-surgery. Third, we are limited to clinical rankings in RV function (fractional area change, global longitudinal strain

rate, and free wall longitudinal strain). We will need to wait until the trial is unblinded in early 2025 to validate and refine the model

predictions.
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E., Villafañe, J., Bhatt, A.B., Peng, L.F., et al.
(2012). Hypoplastic left heart syndrome:
current considerations and expectations.
J. Am. Coll. Cardiol. 59, S1–S42. https://doi.
org/10.1016/j.jacc.2011.09.022.

4. Saraf, A., Book,W.M., Nelson, T.J., and Xu, C.
(2019). Hypoplastic left heart syndrome: From
bedside to bench and back. J. Mol. Cell.
Cardiol. 135, 109–118. https://doi.org/10.
1016/j.yjmcc.2019.08.005.

5. Kaushal, S., Hare, J.M., Shah, A.M., Pietris,
N.P., Bettencourt, J.L., Piller, L.B., Khan, A.,
Snyder, A., Boyd, R.M., Abdullah, M., et al.
(2022). Autologous Cardiac Stem Cell
Injection in Patients with Hypoplastic Left
Heart Syndrome (CHILD Study). Pediatr.
Cardiol. 43, 1481–1493. https://doi.org/10.
1007/s00246-022-02872-6.

6. Bolli, R., Mitrani, R.D., Hare, J.M., Pepine,
C.J., Perin, E.C., Willerson, J.T., Traverse,
J.H., Henry, T.D., Yang, P.C., Murphy, M.P.,
et al. (2021). A Phase II study of autologous
mesenchymal stromal cells and c-kit positive
cardiac cells, alone or in combination, in
patients with ischaemic heart failure: the
CCTRN CONCERT-HF trial. Eur. J. Heart Fail.

23, 661–674. https://doi.org/10.1002/
ejhf.2178.

7. Saha, P., Sharma, S., Korutla, L., Datla, S.R.,
Shoja-Taheri, F., Mishra, R., Bigham, G.E.,
Sarkar, M., Morales, D., Bittle, G., et al. (2019).
Circulating exosomes derived from
transplanted progenitor cells aid the
functional recovery of ischemic myocardium.
Sci. Transl. Med. 11, eaau1168. https://doi.
org/10.1126/scitranslmed.aau1168.

8. Agarwal, U., Smith, A.W., French, K.M.,
Boopathy, A.V., George, A., Trac, D., Brown,
M.E., Shen, M., Jiang, R., Fernandez, J.D.,
et al. (2016). Age-Dependent Effect of
Pediatric Cardiac Progenitor Cells After
Juvenile Heart Failure. Stem Cells Transl.
Med. 5, 883–892. https://doi.org/10.5966/
sctm.2015-0241.

9. Trac, D., Maxwell, J.T., Brown, M.E., Xu, C.,
and Davis, M.E. (2019). Aggregation of Child
Cardiac Progenitor Cells Into Spheres
Activates Notch Signaling and Improves
Treatment of Right Ventricular Heart Failure.
Circ. Res. 124, 526–538. https://doi.org/10.
1161/CIRCRESAHA.118.313845.

10. Sharma, S., Mishra, R., Bigham, G.E.,
Wehman, B., Khan, M.M., Xu, H., Saha, P.,
Goo, Y.A., Datla, S.R., Chen, L., et al. (2017). A
Deep Proteome Analysis Identifies the
Complete Secretome as the Functional Unit
of Human Cardiac Progenitor Cells. Circ. Res.
120, 816–834. https://doi.org/10.1161/
CIRCRESAHA.116.309782.

11. Simpson, D.L., Mishra, R., Sharma, S., Goh,
S.K., Deshmukh, S., and Kaushal, S. (2012). A
strong regenerative ability of cardiac stem
cells derived from neonatal hearts.
Circulation 126, S46–S53. https://doi.org/10.
1161/CIRCULATIONAHA.111.084699.

12. Mishra, R., Vijayan, K., Colletti, E.J.,
Harrington, D.A., Matthiesen, T.S., Simpson,
D., Goh, S.K., Walker, B.L., Almeida-Porada,
G., Wang, D., et al. (2011). Characterization
and functionality of cardiac progenitor cells in
congenital heart patients. Circulation 123,
364–373. https://doi.org/10.1161/
CIRCULATIONAHA.110.971622.

13. Agarwal, U., George, A., Bhutani, S., Ghosh-
Choudhary, S., Maxwell, J.T., Brown, M.E.,
Mehta, Y., Platt, M.O., Liang, Y., Sahoo, S.,
and Davis, M.E. (2017). Experimental,
Systems, and Computational Approaches to
Understanding the MicroRNA-Mediated
Reparative Potential of Cardiac Progenitor
Cell-Derived Exosomes From Pediatric
Patients. Circ. Res. 120, 701–712. https://doi.
org/10.1161/CIRCRESAHA.116.309935.

14. Marbán, E. (2018). Amechanistic roadmap for
the clinical application of cardiac cell
therapies. Nat. Biomed. Eng. 2, 353–361.
https://doi.org/10.1038/s41551-018-0216-z.

15. Ibrahim, A.G.E., Cheng, K., and Marbán, E.
(2014). Exosomes as critical agents of cardiac
regeneration triggered by cell therapy. Stem
Cell Rep. 2, 606–619. https://doi.org/10.1016/
j.stemcr.2014.04.006.

16. Gray, W.D., French, K.M., Ghosh-Choudhary,
S., Maxwell, J.T., Brown, M.E., Platt, M.O.,
Searles, C.D., and Davis, M.E. (2015).
Identification of therapeutic covariant
microRNA clusters in hypoxia-treated cardiac
progenitor cell exosomes using systems
biology. Circ. Res. 116, 255–263. https://doi.
org/10.1161/CIRCRESAHA.116.304360.

17. Hoffman, J.R., Park, H.J., Bheri, S.,
Jayaraman, A.R., and Davis, M.E. (2022).
Comparative computational RNA analysis of
cardiac-derived progenitor cells and their
extracellular vesicles. Genomics 114, 110349.

ll
OPEN ACCESS

12 iScience 26, 107980, October 20, 2023

iScience
Article

https://doi.org/10.1016/s0735-1097(02)01886-7
https://doi.org/10.1016/s0735-1097(02)01886-7
https://doi.org/10.1161/CIRCRESAHA.117.311206
https://doi.org/10.1161/CIRCRESAHA.117.311206
https://doi.org/10.1016/j.jacc.2011.09.022
https://doi.org/10.1016/j.jacc.2011.09.022
https://doi.org/10.1016/j.yjmcc.2019.08.005
https://doi.org/10.1016/j.yjmcc.2019.08.005
https://doi.org/10.1007/s00246-022-02872-6
https://doi.org/10.1007/s00246-022-02872-6
https://doi.org/10.1002/ejhf.2178
https://doi.org/10.1002/ejhf.2178
https://doi.org/10.1126/scitranslmed.aau1168
https://doi.org/10.1126/scitranslmed.aau1168
https://doi.org/10.5966/sctm.2015-0241
https://doi.org/10.5966/sctm.2015-0241
https://doi.org/10.1161/CIRCRESAHA.118.313845
https://doi.org/10.1161/CIRCRESAHA.118.313845
https://doi.org/10.1161/CIRCRESAHA.116.309782
https://doi.org/10.1161/CIRCRESAHA.116.309782
https://doi.org/10.1161/CIRCULATIONAHA.111.084699
https://doi.org/10.1161/CIRCULATIONAHA.111.084699
https://doi.org/10.1161/CIRCULATIONAHA.110.971622
https://doi.org/10.1161/CIRCULATIONAHA.110.971622
https://doi.org/10.1161/CIRCRESAHA.116.309935
https://doi.org/10.1161/CIRCRESAHA.116.309935
https://doi.org/10.1038/s41551-018-0216-z
https://doi.org/10.1016/j.stemcr.2014.04.006
https://doi.org/10.1016/j.stemcr.2014.04.006
https://doi.org/10.1161/CIRCRESAHA.116.304360
https://doi.org/10.1161/CIRCRESAHA.116.304360


https://doi.org/10.1016/j.ygeno.2022.
110349.

18. Sahoo, S., Klychko, E., Thorne, T., Misener, S.,
Schultz, K.M., Millay, M., Ito, A., Liu, T.,
Kamide, C., Agrawal, H., et al. (2011).
Exosomes from human CD34(+) stem cells
mediate their proangiogenic paracrine
activity. Circ. Res. 109, 724–728. https://doi.
org/10.1161/CIRCRESAHA.111.253286.

19. Yu, B., Kim, H.W., Gong, M., Wang, J.,
Millard, R.W., Wang, Y., Ashraf, M., and Xu,
M. (2015). Exosomes secreted from GATA-4
overexpressing mesenchymal stem cells
serve as a reservoir of anti-apoptotic
microRNAs for cardioprotection. Int. J.
Cardiol. 182, 349–360. https://doi.org/10.
1016/j.ijcard.2014.12.043.

20. Banerjee, M.N., Bolli, R., and Hare, J.M.
(2018). Clinical Studies of Cell Therapy in
Cardiovascular Medicine: Recent
Developments and Future Directions. Circ.
Res. 123, 266–287. https://doi.org/10.1161/
CIRCRESAHA.118.311217.

21. Langfelder, P., and Horvath, S. (2008).
WGCNA: an R package for weighted
correlation network analysis. BMC Bioinf. 9,
559. https://doi.org/10.1186/1471-2105-
9-559.

22. Altmann, K., Printz, B.F., Solowiejczky, D.E.,
Gersony, W.M., Quaegebeur, J., and Apfel,
H.D. (2000). Two-dimensional
echocardiographic assessment of right
ventricular function as a predictor of outcome
in hypoplastic left heart syndrome. Am. J.
Cardiol. 86, 964–968. https://doi.org/10.
1016/s0002-9149(00)01131-0.

23. Carlo, W.F., Carberry, K.E., Heinle, J.S.,
Morales, D.L., McKenzie, E.D., Fraser, C.D.,
Jr., and Nelson, D.P. (2011). Interstage

attrition between bidirectional Glenn and
Fontan palliation in children with hypoplastic
left heart syndrome. J. Thorac. Cardiovasc.
Surg. 142, 511–516. https://doi.org/10.1016/j.
jtcvs.2011.01.030.

24. McGuirk, S.P., Griselli, M., Stumper, O.F.,
Rumball, E.M., Miller, P., Dhillon, R., de
Giovanni, J.V., Wright, J.G., Barron, D.J., and
Brawn, W.J. (2006). Staged surgical
management of hypoplastic left heart
syndrome: a single institution 12 year
experience. Heart 92, 364–370. https://doi.
org/10.1136/hrt.2005.068684.

25. Rieger, A.C., Myerburg, R.J., Florea, V.,
Tompkins, B.A., Natsumeda, M., Premer, C.,
Khan, A., Schulman, I.H., Vidro-Casiano, M.,
DiFede, D.L., et al. (2019). Genetic
determinants of responsiveness to
mesenchymal stem cell injections in non-
ischemic dilated cardiomyopathy.
EBioMedicine 48, 377–385. https://doi.org/
10.1016/j.ebiom.2019.09.043.

26. Kaushal, S., Hare, J.M., Hoffman, J.R., Boyd,
R.M., Ramdas, K.N., Pietris, N., Kutty, S.,
Tweddell, J.S., Husain, S.A., Menon, S.C.,
et al. (2023). Intramyocardial cell-based
therapy with Lomecel-B during bidirectional
cavopulmonary anastomosis for hypoplastic
left heart syndrome: the ELPIS phase I trial.
Eur. Heart J. Open. 3, oead002. https://doi.
org/10.1093/ehjopen/oead002.

27. Dobin, A., Davis, C.A., Schlesinger, F.,
Drenkow, J., Zaleski, C., Jha, S., Batut, P.,
Chaisson, M., and Gingeras, T.R. (2013).
STAR: ultrafast universal RNA-seq aligner.
Bioinformatics 29, 15–21. https://doi.org/10.
1093/bioinformatics/bts635.

28. Robinson, M.D., McCarthy, D.J., and Smyth,
G.K. (2010). edgeR: a Bioconductor package

for differential expression analysis of digital
gene expression data. Bioinformatics 26,
139–140. https://doi.org/10.1093/
bioinformatics/btp616.

29. Zhou, Y., Zhou, B., Pache, L., Chang, M.,
Khodabakhshi, A.H., Tanaseichuk, O.,
Benner, C., and Chanda, S.K. (2019).
Metascape provides a biologist-oriented
resource for the analysis of systems-level
datasets. Nat. Commun. 10, 1523. https://doi.
org/10.1038/s41467-019-09234-6.

30. Friedman, J., Hastie, T., and Tibshirani, R.
(2010). Regularization Paths for Generalized
Linear Models via Coordinate Descent.
J. Stat. Softw. 33, 1–22.

31. Kuhn, M. (2008). Building PredictiveModels in
R Using the caret Package. J. Stat. Softw.
28, 1–26.

32. Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q.,
Wang, Z., Meirelles, G.V., Clark, N.R., and
Ma’ayan, A. (2013). Enrichr: interactive and
collaborative HTML5 gene list enrichment
analysis tool. BMC Bioinf. 14, 128. https://doi.
org/10.1186/1471-2105-14-128.

33. Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law,
C.W., Shi, W., and Smyth, G.K. (2015). limma
powers differential expression analyses for
RNA-sequencing and microarray studies.
Nucleic Acids Res. 43, e47. https://doi.org/
10.1093/nar/gkv007.

34. Hsu, S.D., Lin, F.M., Wu, W.Y., Liang, C.,
Huang, W.C., Chan, W.L., Tsai, W.T., Chen,
G.Z., Lee, C.J., Chiu, C.M., et al. (2011).
miRTarBase: a database curates
experimentally validated microRNA-target
interactions. Nucleic Acids Res. 39, D163–
D169. https://doi.org/10.1093/nar/gkq1107.

ll
OPEN ACCESS

iScience 26, 107980, October 20, 2023 13

iScience
Article

https://doi.org/10.1016/j.ygeno.2022.110349
https://doi.org/10.1016/j.ygeno.2022.110349
https://doi.org/10.1161/CIRCRESAHA.111.253286
https://doi.org/10.1161/CIRCRESAHA.111.253286
https://doi.org/10.1016/j.ijcard.2014.12.043
https://doi.org/10.1016/j.ijcard.2014.12.043
https://doi.org/10.1161/CIRCRESAHA.118.311217
https://doi.org/10.1161/CIRCRESAHA.118.311217
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1016/s0002-9149(00)01131-0
https://doi.org/10.1016/s0002-9149(00)01131-0
https://doi.org/10.1016/j.jtcvs.2011.01.030
https://doi.org/10.1016/j.jtcvs.2011.01.030
https://doi.org/10.1136/hrt.2005.068684
https://doi.org/10.1136/hrt.2005.068684
https://doi.org/10.1016/j.ebiom.2019.09.043
https://doi.org/10.1016/j.ebiom.2019.09.043
https://doi.org/10.1093/ehjopen/oead002
https://doi.org/10.1093/ehjopen/oead002
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1038/s41467-019-09234-6
http://refhub.elsevier.com/S2589-0042(23)02057-6/sref32
http://refhub.elsevier.com/S2589-0042(23)02057-6/sref32
http://refhub.elsevier.com/S2589-0042(23)02057-6/sref32
http://refhub.elsevier.com/S2589-0042(23)02057-6/sref32
http://refhub.elsevier.com/S2589-0042(23)02057-6/sref33
http://refhub.elsevier.com/S2589-0042(23)02057-6/sref33
http://refhub.elsevier.com/S2589-0042(23)02057-6/sref33
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkq1107
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD117 Santa Cruz sc-5535

GATA-4 Santa Cruz sc-9053

CD34 eBioscience 11-0341-81

CD117 MicroBead, human Miltenyi Biotec 130-091-332

Biological Samples

Cardiac-derived c-kit+ progenitor cells, human Children’s Healthcare of Atlanta and

University of Miami Clinical Research

Cell Manufacturing Program

Table 1

Chemicals, Peptides, and Recombinant Proteins

Matrigel Matrix Corning 356237

Geltrex Gibco A1413302

Recombinant TGFB1, human Invitrogen PHG9204

Recombinant TNF-alpha, rat R&D Systems 510-RT

Recombinant basic fibroblast growth factor ,

human

STEMCELL Technologies 78003

Fetal Bovine Serum Cytiva SH30071.03

Penicillin-Streptonmycin Thermo Fisher Scientific 15140122

L-glutamine MP Biomedicals 091680149

Calcein, AM Invitrogen C3099

Endothelial Cell Growth Medium-2 BulletKit Lonza CC-3162

Ham’s F-12 medium Corning 10-080-CV

Dulbecco’s Modified Eagle Medium and

Ham’s F-12 medium

Corning 10-090-CM

Critical Commercial Assays

Micro BCA Protein Assay Kit Thermo Scientific Pierce 23235

CellTracker Orange CMRA Dye Invitrogen C34551

Pure Link RNA Mini Kit Invitrogen 12183018A

miRNeasy Mini Kit Qiagen 217084

SYBR Green PCR Master Mix Applied Biosystems 4309155

Deposited Data

CPC-EV bulk RNA sequencing GEO GSE202345, GSE202347, GSE203512

Experimental Models: Cell Lines

Mesenchymal stromal cells, human StemPro/Gibco A15652

Cardiac endothelial cells and fibroblasts, rat Emory University N/A

Oligonucleotides

Primer sequences Integrated DNA technologies Table S2

Software and Algorithms

Nanoparticle tracking analysis software NanoSight NS300 NanoSight NTA 3.4

ImageJ NIH ImageJ.org

StepOne Real-Time PCR System Applied Biosystems 4376357

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to the lead contact, Michael Davis (michael.davis@bme.gatech.edu).

Materials availability

This study did not generate new unique resources.

Data and code availability

� RNA-sequencing data have been deposited (GEO: GSE203512) and is publicly accessible.

� Code was generated using a variety of published algorithms (R packages referenced) and is available from the lead contact upon

request.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICPANT DETAILS

Isolation and culture of c-kit+ progenitor cells (CPCs)

This study was approved by the Institutional Review Board at Children’s Healthcare of Atlanta and Emory University (IRB00005500 and

IRB00096402). HumanCPCs were isolated from the right atrial appendage tissue, routinely removed during surgical repair of congenital heart

defects, via magnetic cell sorting (CD177 human, Miltenyi Biotec, MD, USA). CPCs from the CHILD trial (#1101, 1102, 1103, 1106, 1107; 4

males, 1 female) were initially isolated at the University of Miami Clinical Research Cell Manufacturing Program, as described,5 and shipped

to Emory for expansion. In total, CPCs were collected from 14 neonatal (<2 weeks), 13 infant (2 weeks - 1 year), and 7 child (>1 year) patients.

Cells were cultured and expanded in Ham’s F-12 medium (Corning Cellgro�, Corning, NY, USA) with 10% fetal bovine serum, 1% penicillin-

streptomycin, 1% L-glutamine, and 0.04% human fibroblast growth factor-b. The adherent CPCs were expanded to reach confluency in

700cm2. CPCs were characterized with flow cytometry (Figure S10). Patient characteristics for samples used in the study are listed in Table 1.

Extracellular vesicle (EV) collection

CPCs were grown to 90% confluency, washedwith PBS, and quiescedwith serum freemedium for 24 hours. Conditionedmedia was collected

and subjected to sequential centrifugation: 3000 g for 10 min to remove cells, 28,000 g for 30 min to remove cell debris, and 118,000 g for 1 hr

54 min to pellet EVs (Optima XPN-100 ultracentrifuge; Beckman Coulter SW 41 Ti rotor). EV protein content was analyzed by Micro BCA Pro-

tein Assay Kit (Thermo Scientific Pierce 23235), according to manufacturer’s instructions. Morphology and size of EVs were initially character-

ized by transmission electronmicroscopy imaging with negative staining at the Emory Integrated ElectronMicroscopy Core. EV size and con-

centration was determined by NanoSight NS300. Samples were diluted 1:100 in PBS, and three, 60-second video images were captured per

sample and analyzed by NanoSight NTA 3.4 software. Of note, CPCs and CPC-EVs were collected from 37 patients total, however, patient

#1048 CPC-EVs were not sequenced and patients #1063, #1099, and #2013 CPC-EVs were not examined in in vitro assays, due to low vesicle

yield.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

2100 Bioanalyzer and TapeStation Controller Agilent Genomics N/A

QIAseq miRNA Quantification tool Qiagen GeneGlobe geneglobe.qiagen.com/

STAR aligner Dobin et al.27 github.com/alexdobin/STAR

miRTarBase Hsu et al.28 mirtarbase.cuhk.edu.cn

Metascape Zhou et al.29 metascape.org

edgeR, R package Robinson et al.28 bioconductor.org/packages/release/bioc/

html/edgeR.html

WGCNA, R package Langfelder and Horvath21 horvath.genetics.ucla.edu/

mdatools, R package Sergey Kucheryavskiy github.com/svkucheryavski/mdatools

glmnet, R package Friedman, Hastie, and Tibshirani30 glmnet.stanford.edu/

caret, R package Kuhn31 topepo.github.io/caret/

enrichR, R package Chen et al.32 maayanlab.cloud/Enrichr/

Other

Transwell, 6.5 mm with 8.0 mm pore Corning 3422

Ibidi m-Slide Angiogenesis Ibidi 81506
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Tube formation assay

Rat cardiac endothelial cells (CECs) were cultured in endothelial cell growth medium (Endothelial Cell Growth Medium-2 BulletKit�, Lonza,

Bend,OR). Before experimentation, CECswerewashedwith PBS andquiesced in endothelial baremedia (FBS andgrowth factor free) with 1%

penicillin-streptomycin overnight. Quiesced CECs were seeded at 10,000 cells/well onto m-slide Angiogenesis slides (IBIDI) pre-coated with

10 mL/well Matrigel (Matrigel� Matrix, Corning) or Geltrex (Geltrex� LDEV-Free hESC-qualified Reduced Growth Factor Basement Mem-

brane Matrix, Gibco) with three technical replicates per group. CECs were treated with 20 mg/mL protein of EVs in 50 mL of media per

well. After 20 hours, live cells were stained with calcein-AM (Thermo Fisher Scientific) and imaged with fluorescent microscopy (Olympus

IX71). The ImageJ Angiogenesis Analyzer plug-in was used to quantify number of tubes and total tube length (Fiji, National Institutes of

Health, Bethesda, MD, USA). Quiesced CECs and CECs grown in full growth medium (with FBS and growth factors) without EV treatment

served as negative and positive controls, respectively. Tube formation experiments were performed five times (n=5) for each CPC-EV.

Mesenchymal stromal cell (MSC) migration assay

Bonemarrow-derivedMSCswere purchased (StemPro�BMMesenchymal StemCells, Gibco) and grown in a 1:1mixture of Dulbecco’sModi-

fied EagleMedium and Ham’s F-12media (Corning Cellgro�, Corning, NY, USA) with 10% fetal bovine serum, 1% penicillin-streptomycin, 1%

L-glutamine, and 0.04% human fibroblast growth factor-b. Before experimentation, cells were washed in PBS and quiesced in serum free me-

dia overnight. The bottom of a 24 well plate was coated in 0.1% gelatin for 1 hour. Then, excess gelatin was aspirated and cells were seeded

onto a Transwell Insert with 8 mm pore (Corning� Transwell� polycarbonate membrane cell culture inserts, Corning, NY, USA) and placed in

the 24well plate (two technical replicates per group). The basolateral compartment was treatedwith 20 mg/mLprotein of EV in 300 mL of serum

free media. After 48 hours, cells that migrated through the porous membrane were detached and stained (CellTracker�Orange CMRA Dye,

Invitrogen). Fluorescence was detected by the Synergy 2Microplate Reader (Biotek, Winooski, VT, USA) and fold-change was computed over

the negative control (MSCs without EV treatment in serum free media). MSCmigration experiments were performed four times (n=4) for each

CPC-EV.

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR)

RNA fromCECs and CFs was collected in lysis buffer from the Pure Link RNAMini Kit (Invitrogen) with 1% 2-mercaptoethanol (Sigma-Aldrich).

Total RNAwas isolated with the kit, according to manufacturer’s instructions. Next, cDNAwas prepared, and RT-qPCRwas performed on the

StepOne System (Applied Biosystems, Foster City, CA) based on SYBR Green fluorescence detection of PCR products (Power SYBR Green

PCR Master Mix, Applied Biosystems). Relative mRNA levels were calculated using the 2�DDCt method, as compared to Glyceraldehyde

3-phosphate dehydrogenase (Gapdh) housekeeping gene. Primer sequences are listed in Table S2.

Fibroblast TGF-b stimulation assay

Rat cardiac fibroblast cells (CFs) were cultured in a 1:1 mixture of Dulbecco’s Modified Eagle Medium and Ham’s F-12 media (Corning

Cellgro�, Corning, NY, USA) with 10% fetal bovine serum, 1% penicillin-streptomycin, and 1% L-glutamine. At 90% confluency, cells were

washed with PBS and quiesced in serum free media. CFs were treated with 20 mg/mL protein of EV in 500 mL of serum-free media per well

(two technical replicates per group). After 12 hours, CFs were stimulated with 10 ng/mL of TGF-b (TGFB1 Recombinant Human Protein, In-

vitrogen) for 12 hours. Then, media was aspirated, and RNA lysate was collected for RT-qPCR analysis. CFs without EV treatment in serum free

media, with and without TGF-b treatment served as positive and negative controls, respectively. Fibrotic gene PCR assays were performed

three times (n=3) for each CPC-EV. RT-qPCR was used to evaluate transcript expression of connective tissue growth factor (Ctgf), collagen

type 1 pro-a1 chain (Col1a1), collagen type 1 pro-a2 chain (Col1a2), collagen type 3 pro-a1 chain (Col3a1), and vimentin (Vim).

Endothelial cell TNF-a stimulation assay

CECswere cultured as previously described in 24 well plates. At 90% confluency, cells were washedwith PBS and quiesced in endothelial bare

medium overnight (no growth factors, no serum). CECs were treated with 20 mg/mL protein of EV in 500 mL of bare media per well (two tech-

nical replicates per group). After 24 hours, CECs were stimulated with 20 ng/mL of rat TNF-ɑ (Recombinant Rat TNF-alpha Protein, R&D Sys-

tems) for 4 hours. Then, media was aspirated, and RNA lysate was collected for RT-qPCR analysis. CECs without EV treatment in bare media,

with and without TNF-ɑ treatment served as positive and negative controls, respectively. Inflammatory gene assays were performed three

times (n=3) for each CPC-EV. RT-qPCRwas used to evaluate transcript expression of interleukin 1b (Il-1b), interleukin 1ɑ (Il-1ɑ), and interleukin

6 (Il-6).

Next generation sequencing

In this study, we combined RNA sequencing data from our previously published CPC-EVs (training data) with CHILD trial patient CPC-EVs

(testing data). The previously published training data and information regarding RNA preparation and sequencing can be found under

‘‘E’’ EV samples in GSE202345 and GSE202347. Additionally, we performed RNA sequencing on CPC-EVs from patients 938 and 1097, which

were not included in our previous publication. NewCPC-EV sequencing data and information can be found in GSE203512. Briefly, we isolated

RNA with the miRNeasy Mini Kit (Qiagen), according to manufacturer’s instructions. We analyzed purified RNA (2100 Bioanalyzer and
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TapeStation Controller, Agilent Genomics) for size, quality, and quantity. We conducted RNA library preparation and sequencing at the

Emory Yerkes Nonhuman Primate Genomics core (Illumina NovaSeq 6000).

Small RNA sequencing files were aligned using the Qiagen GeneGlobe console with QIAseq miRNA Quantification tool. Default param-

eters were used: 30 adapters were trimmed using cutadapt, and reads with less than 16 base pair insert sequences or less than 10 base pair

unique molecular index sequences were removed. Reads were aligned with Bowtie with GRCh38 and miRbase v21 references. Total RNA

sequencing were aligned, and gene counts were determined with STAR in the Illumina BaseSpace app, RNA-Seq Alignment.27 Reads

were aligned with the hg19 reference genome. Biotypes were matched to alignment results using the Ensembl based annotation package

(EnsDb.Hsapiens.v79). miRNAs were considered only from the small RNA sequencing results and were thus removed from the total RNA

sequencing data set.

RNA sequencing data analysis

Data analysis was completed in R. First, RNA counts for CPC-EVs were filtered: we removed RNAs with zero count entries in twenty or more

samples and used edgeR package’s ‘filterByExpr’ function with the default parameter settings.28 RNA counts were normalized with edgeR’s

weighted trimmed mean of M-values method (TMM) using the default parameters and transformed into log2 counts per million (logCPM).

Batch correction of logCPM values was implemented to account for sequencing performed at separate sites and times using limma’s remov-

eBatchEffect function.33 Multidimensional scaling plots before and after batch correction are shown in Figure S11.

Identification of miRNA gene targets and pathway analysis

Gene targets of miRNAs were determined using the database miRTarBase.34 Targets experimentally validated by at least three different

methods (e.g.microarray, NGS, western blot, reporter assay, etc.) were considered for pathway analysis. Pathway analysis of RNAs andmiRNA

gene targets was performed using Metascape express analysis.29

WGCNA gene module detection

The WGCNA R package was used to construct co-expression networks for the filtered, normalized genes. The details of this algorithm are

described by Langfelder and Horvath.21 RNA and miRNA datasets were combined, mean centered and scaled using mdatools R package’s

prep.autoscale function. The optimal soft-threshold power was graphically determined (b= 9, Table S3) and theminimummodule size was set

to 50. Clusters, or modules, of RNAs were determined by first computing the adjacency matrix and then transforming it to form the topolog-

ical overlap matrix (TOM). Then, the corresponding dissimilarity matrix, 1-TOM, and the cutreeDynamic function was used for hierarchical

clustering andmodule detection. Highly correlatedmodules (r > 0.85) weremerged to form the final co-expressionmodules. The dissimilarity

of the module Eigengenes was computed with the moduleEigengenes function and the association between Eigengene values and exper-

imental outcomes were assessed by Spearman’s correlation. Modules that correlated with multiple outcomes (p < 0.1) were examined for

biological significance with enrichR GO: Biological Processes pathway analysis.32

Regression models

RNA-sequencing and experimental outcomes data were scaled and centered with the mdatools package in R before use in regression

models. The mdatools package was also used to construct four partial least squares regression (PLSR) models using the SIMPLS algorithm.

First, 3-component models were constructed using all features (RNA) and leave-one-out cross validation. VIP scores were calculated for each

model and RNAs with an average score >2 across all outcomes in the category were selected. VIP type was categorized by sequencing data-

set: from total RNA-sequencing vs. small RNA-sequencing. Pathway analysis was performed using VIP RNAs and VIP miRNA gene targets.

Then, 3-component final, reducedmodels were constructed (2-component for migration). Model performance of the cross-validated training

set was assessedwith root-mean-square error (RMSE) and R2measurements. Finally, predictions for in vitrooutcomeswere predicted from the

reduced models for the CHILD CPC-EV RNA-seq data. Observed vs. predicted plots for each outcome of the CHILD testing set were gener-

ated with the following statistics: RMSE, R2, nLV (# of components).

Random forest regression was performed using the ranger and caret R packages.Models were constructed from the training data for each

experimental outcome using 5-fold cross validation with 3 repeats. Hyperparameters mtry (number of features to consider at each split) and

splitting rule (extra trees vs. variance) were tuned and the combination with the lowest RMSE were selected. Variable importance was deter-

mined by Gini index. Reduced models were constructed with features > 10 importance score.

Ridge, lasso, and elastic net regression was performed using the glmnet and caret R packages.30,31 Models were constructed from the

training data for each experimental outcome using 5-fold cross validation with 3 repeats. Given the high number of features and low variance

in errormetrics, optimalmodels were selected based on R2 values, to return an informative number of features. For ridge and lasso regression

models, the hyperparameter, l, was tuned (100 values from 10-3 to 500). For elastic net models, a tuneLength of 10 was set to test combina-

tions of 10 different values of l and ɑ. Feature coefficients were taken from the final, optimal model.

QUANTIFICATION AND STATISTICAL ANALYSIS

All quantification and statistical analyses were performed as described in the experimental model and subject details section of the STAR

Methods.
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ADDITIONAL RESOURCES

This study involves data and materials collected from patients enrolled in The CHILD Trial: Hypoplastic Left Heart Syndrome Study

(NCT03406884). Measurements in right ventricle fractional area change, global longitudinal strain rate, free wall longitudinal strain were

made before treatment, as well as six-months and twelve-months post-surgery. Measurements from patients were ranked before use in

this manuscript.
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