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The genome of the influenza virus consists of eight distinct single-stranded
RNA segments, each encoding proteins essential for the viral life cycle.
When the virus infects a host cell, these segments must be replicated and
packaged into new budding virions. The viral genome is assembled with
remarkably high fidelity: experiments reveal that most virions contain
precisely one copy of each of the eight RNA segments. Cell-biological studies
suggest that genome assembly is mediated by specific reversible and irrevers-
ible interactions between the RNA segments and their associated proteins.
However, the precise inter-segment interaction network remains unresolved.
Here, we computationally predict that tree-like irreversible interaction
networks guarantee high-fidelity genome assembly, while cyclic interaction
networks lead to futile or frustrated off-pathway products. We test our predic-
tion against multiple experimental datasets. We find that tree-like networks
capture the nearest-neighbour statistics of RNA segments in packaged virions,
as observedbyelectron tomography. Just eight tree-like networks (of a possible
262 144) optimally capture both the nearest-neighbour data and independently
measuredRNA–RNAbinding and co-localization propensities. These eight do
not include the previously proposed hub-and-spoke and linear networks.
Rather, each predicted network combines hub-like and linear features,
consistent with evolutionary models of interaction gain and loss.
1. Introduction
The influenza virus is notable in having a segmented genome, spread across
eight RNA strands [1]. This segmented organization directly impacts influenza
biology and evolution. The negative-sense genomic RNA is transcribed in an
infected cell’s nucleus to form positive-sense RNA, which undergoes both trans-
lation (to synthesize viral proteins) and replication (to form new genomic RNA).
Segmentation allows genomic re-assortment, contributing to the emergence of
novel influenza strains [2,3]. However, it also complicates the assembly and
packaging of the complete viral genome into new virions [4]. Genomic RNA
strands associate with specific viral proteins (nucleoprotein (NP) and the poly-
merase complex PB2, PB1 and PA) to form rod-like viral ribonucleoprotein
segments (vRNPs). Over 10 000 vRNPs are synthesizedwithin 4 hours post infec-
tion; these are packaged into nascent viral capsids at the plasma membrane,
generating over 1000 virions per hour [5]. Since each vRNP segment encodes
essential proteins, all eight segments must be assembled and packaged to gener-
ate an infectious virion [1,6]. Electron microscopy (EM) and fluorescence in situ
hybridization (FISH) studies have shown that over 80% of new virions contain
the complete genome, with each vRNP present in precisely one copy [7–9].

How does the influenza virus assemble its genome with such high fidelity?
Genomeassembly takes place as the vRNPs are trafficked to the plasmamembrane
[1,4]. The selective packaging model [6,7,10,11] posits that vRNPs bind to one
another non-randomly via specific RNA–RNA and RNA–protein interactions; it
is the resulting vRNP clusters that are packaged into virions. Consistent with
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this idea, mutations in the conserved RNA terminal regions
cause defects in genome packaging [12–16]. Genomic RNA
strands are seen to physically bind in vitro and in vivo [17–19]
via RNA base-pairing interactions [20–22] and the interactions
mediated by vRNP-associated proteins [23–25]. In addition to
the equilibrium RNA–RNA binding measured in vitro, live-
cell imaging reveals that some inter-segment interactions are
irreversible on the time scale of an infection [26]. Distinct
vRNP segments are seen to co-localize inside the cytoplasm
of infected cells [26,27]. EM tomography of virions shows
that the eight vRNPs are arranged as parallel rods, with
electron-dense regions that suggest tight lateral interactions [19].

These studies strongly support the existence of specific inter-
actionsbetweenvRNPsegments.However, theydonot reveal the
core interaction network that primarily drives genome assembly.
Manypossible interactionnetworkshavebeensuggested, includ-
ing a hub-and-spoke network (with a central ‘master segment’)
and a linear network (looping to form a ‘daisy chain’) [10]. To
our knowledge, none of these hypotheses have been rigorously
tested against the measured interaction data. Here, we approach
this problem by first exploring the influence of the inter-segment
interactionnetworkon the fidelityof genomeassembly.We focus
on the irreversible interactions, which create key decision points
between correct and incorrect assembly pathways. Reversible
and non-specific interactions [28] can play a role in stabilizing
vRNP clusters already formed via irreversible interactions;
we do not consider them here. By combining theoretical
considerations with experimental datasets of virion structure,
RNA–RNA binding and vRNP co-localization, we identify a
handful of specific inter-segment interactions as the primary
drivers of high-fidelity viral genome assembly.
2. Results
2.1. Routes to high-fidelity genome assembly
We first explore the dynamics of the selective packaging
model, in which genome assembly is driven by specific inter-
segment interactions. The efficiency of a self-assembly reaction
is typically measured by its yield: the fraction of total input
material that is correctly assembled. A better measure for our
purposes is fidelity: the fraction of output clusters that contain
precisely one copy of each of the eight genomic RNA segments.
Fidelity corresponds to the experimentally measured fraction
of new budding virions that are infectious, assuming that
clusters are uniformly packaged into viral capsids.

Irreversible interactions correspond to energetically
favourable contacts between specific binding sites on the
vRNP segments; these interactions could be orientationally
rigid or flexible. We assume binding sites are organized
such that two vRNP segments of the same type cannot bind
to one another, and a given type of vRNP segment can bind
to at most one copy of a given other type of vRNP segment.
To assemble eight vRNP segments, we require a minimum
of seven interactions. Networks with precisely seven inter-
actions are acyclic (tree like), while those with more than
seven interactions must include cycles (closed paths). There
are 86 = 262 144 tree-like networks (oeis.org/A000272) and
over 250 million cyclic networks (oeis.org/A001187) that
could potentially connect eight vRNP segments. Given an
interaction network, we can model genome assembly as a
stochastic chemical reaction (Methods). We start with a pool
containing all vRNP types in equal amounts. We then
allow the growth of clusters through pairwise aggregation,
mediated by specific interactions between vRNP segments
belonging to each cluster. We assume all allowed aggregation
reactions occur by mass action with identical rate constants.
Once no further aggregation events are possible, we calculate
the final fidelity of the assembly reaction.

Cyclic interaction networks constitute the vast majority of
possible networks. If the interactions in such networks are
orientationally flexible, cycles will drive the futile synthesis
of long polymers (figure 1a; X-Y-Z-X-Y… ). Such futile reac-
tions can be prevented by making the interactions
orientationally rigid: the desired cluster with one copy of
each segment is then stable because its binding sites are all
either occupied or occluded. However, this introduces a new
problem: once all the monomeric vRNP segments are
depleted, the assembly reaction gets stuck at frustrated oligo-
meric states (figure 1b; even though Y and Z can aggregate,
X-Y and X-Z cannot since both copies of X compete to
occupy the same position). This type of frustration has been
observed in a broad class of self-assembly processes [29].
One way to prevent this is to use a fixed order of assembly,
by tuning the aggregation rates (rapidly make X-Y, and then
slowly make X-Y-Z). However, vRNPs appear to aggregate
in many possible orders (though some might be preferred
[26,27]). In this situation, cyclic interaction networks will
always show low fidelity, owing to vRNPs being trapped in
futile or frustrated off-pathway clusters. By contrast, tree-like
networks of irreversible interactions will always show 100%
fidelity (figure 1c,d; all aggregates reach state Y-X-Z),
even when there is no fixed order, independent of the rates
of aggregation, and whether interactions are flexible or
rigid. This is surprising since tree-like interaction networks
locally resemble cyclic interaction networks. A simple proof
(Methods) shows that these results are completely general
for tree-like and cyclic networks, regardless of the specific net-
work topology. This strongly suggests that the core interaction
network, which drives genome assembly, should be tree like.

2.2. Inferring interaction networks from
experimental data

EM tomography shows that the eight vRNP segments (hence-
forth numbered 1–8; figure 2a) are arranged in a characteristic
‘7 + 1’ pattern within virions, with seven vRNPs on the per-
iphery surrounding a central vRNP (figure 2b). Using vRNP
length as a proxy for segment identity, all but the three longest
segments (1, 2, 3) can be distinguished from one another [8].
The relative positions of the segments are found to vary
from virion to virion, suggesting that interactions are orienta-
tionally flexible (figure 2b; see Methods for segment positions
in the 30 EM-tomography-observed virions [8]). However,
certain vRNP pairs are more likely than others to appear as
nearest neighbours. Segment interactions can be further
resolved by the SPLASH (sequencing of psoralen crosslinked,
ligated and selected hybrids) technique [30], which uses cross-
linking and RNA sequencing to infer base-paired nucleotides
in RNA complexes. SPLASH can be used to score the propen-
sity of interaction between vRNPs in purified virions [20].
Both the EM tomography [8] and SPLASH [20] data are
obtained for influenza strain A/WSN/33 (H1N1) in MDCK
cells, allowing them to be directly compared.

Given a proposed interaction network, we assign it two
types of scores based on experimental data (Methods). To



100

80

60

40

20

sp
ec

ie
s 

co
un

t

0

100

80

60

40

as
se

m
bl

y 
fi

de
lit

y 
(%

)

20

0

100

80

60

40

20

sp
ec

ie
s 

co
un

t

0

0

0 800 1600 2400 3200 4000

100% fidelity

tree

futile polymers frustrated oligomers

rigid
cycle

(a) (b)

(c) (d)

rigid
cycle

flexible
cycle

flexible
cycle

[X]

tree

[Y]

Y Z

X

Y Z

X

Y Z

X

Y Z

X

[Z]
[XY]
[YZ]
[XZ]
[XYZ]
others

400 800 1200 1600
time steps

time steps

0

3 4 5
no. segments

6 7 8

400 800 1200 1600
time steps

100

80

60

40

20

sp
ec

ie
s 

co
un

t

0

Figure 1. Stochastic simulation of genome assembly. We consider a toy model in which three segments (X, Y, Z ) must assemble to form a desired cluster (XYZ). (a–c)
Simulating time-dependent aggregation dynamics. The underlying interaction networks are indicated above each plot (zigzag edges show orientationally flexible inter-
actions, straight edges show orientationally rigid interactions). The simulation starts with 100 copies of each segment and continues until no further reactions are
possible. Counts of each possible reaction species over time from a single simulation are shown as curves of different colours (legend). Schematics show a few
sample aggregation reactions, focusing on clusters that are present at long times. The fidelity is defined as the fraction of final clusters that are of the desired
type (XYZ, black curves). (a) Flexible cyclic network. Flexible interactions allow the futile synthesis of long polymers. Segments are trapped within these futile clusters,
reducing fidelity. (b) Rigid cyclic network. Once all monomeric segments are depleted, the remaining oligomers cannot bind to one another since identical segments
compete to occupy the same spatial position. This is known as frustration. Segments are trapped within these frustrated oligomers, reducing fidelity. (c) Tree-like
network. Once sufficient time has passed, all segments aggregate to produce the desired cluster XYZ, and no other cluster types are present. This reaction has
100% fidelity. (d ) We consider systems with varying numbers of segments, whose interaction network is either a tree or a single long cycle. We compute the
mean (±s.d.) fidelity over 500 stochastic simulations. Both flexible and rigid cycles show decreasing fidelity with an increasing segment number. Trees always
show 100% fidelity. These results generalize to all tree-like and cyclic networks, regardless of the size and topology (proof in Methods). (Online version in colour.)
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obtain the ‘RNA contacts’ score, we simply sum SPLASH
scores for all the bonds present in the interaction network
(figure 2c,d: left; there are two scores corresponding to two
SPLASH replicates). A higher ‘RNA contacts’ score indicates
better agreement with the SPLASH data. The ‘stretched
bonds’ score is more involved, since there are six possible
assignments of segments 1, 2 and 3 for each virion observed
by EM tomography (figure 2c,d: right). For a given virion, we
select the assignment that permits the most bonds between
nearest neighbours; to obtain the ‘stretched bonds’ score,
we then sum the number of stretched (non-nearest
neighbour) bonds across the 30 observed virions. A lower
‘stretched bonds’ score indicates better agreement with the
virion nearest-neighbour data; an interaction network that
captures all the observed nearest-neighbour occurrences
would have a score of zero. Note that a cyclic network,
compared with any tree-like sub-network, will have a better
(greater than or equal to) ‘RNA contacts’ score and a worse
(greater than or equal to) ‘stretched bonds’ score.

We first calculated ‘stretched bonds’ scores for every
possible cyclic and tree-like interaction network. The best
overall network was a tree (figure 3a) with a ‘stretched
bonds’ score of 34 (13 virions had two stretched bonds, eight
virions had one and nine virions had none). The 131 best net-
works were tree like, while all cyclic networks had ‘stretched
bonds’ scores of 44 or worse. To estimate the statistical signifi-
cance of this result, we generated 1000 shuffled datasets, in
each of which the peripheral segments of all 30 EM-tomogra-
phy-observed virions were randomly permuted. We then
determined the best tree-like network for each shuffled dataset
(figure 3a). The most common network thus found was the
hub-and-spoke network, with a ‘stretched bonds’ score of
48, seen 737 out of 1000 times (by definition the hub-and-
spoke score does not vary when virions are peripherally
shuffled). Across 1000 shuffled datasets, no tree had a
‘stretched bonds’ score of less than 42. We can conclude that
far more than 1000 random draws are required before
we find a shuffled virion dataset with a tree matching the
‘stretched bonds’ score of 34 found for real virions. This
proves both that segment organization in real virions is
highly non-random (p-value less than 0.001 for the null
hypothesis that peripheral segments are randomly ordered)
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shown here, out of 30 measured virions (Methods). (c,d ) Given an interaction
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score is the RNA–RNA interaction propensity measured by SPLASH, summed
over each inter-segment bond in the network (two ‘RNA contacts’ scores
correspond to two SPLASH replicates). Higher ‘RNA contacts’ scores indicate
better agreement with the SPLASH data. The ‘stretched bonds’ score is the
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forms a ‘daisy chain’; topology 23 is the hub-and-spoke network with a cen-
tral ‘master segment’. (Online version in colour.)
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and that a tree-like interaction network captures the relevant
nearest-neighbour statistics.

For the remainder of our analysis, we focus on the 262 144
possible tree-like networks. These fall into 23 topological
classes (figure 2e): topology 1 is the linear network (daisy
chain) and topology 23 is the hub-and-spoke network
(master segment) [10]. We can represent each tree-like network
as a point on a scatter plot (figure 3b), with the horizontal axis
showing its ‘stretched bonds’ score and the vertical axis show-
ing its ‘RNA contacts’ score (points corresponding to the two
SPLASH replicates are labelled X and Y). Trees that are
higher and to the left dominate (i.e. are strictly better than)
trees that are lower and to the right. Trees not dominated by
anyother tree, which jointly optimize the two scores, constitute
the ‘Pareto front’ (the upper-left envelope of the scatter plot).
The leftmost tree on the Pareto front (X1/Y1, also shown in
figure 3a) has the best possible ‘stretched bonds’ score of 34
but a poor ‘RNA contacts’ score. If we try to improve the
‘RNA contacts’ score, the ‘stretched bonds’ score gradually
worsens until the shoulder value of 42 (Y6) past which it
rapidly worsens. This (combined with the fact that 997 out of
1000 shuffled datasets have ‘stretched bonds’ scores above
42; figure 3a) suggests that we should only consider Pareto
trees with ‘stretched bonds’ scores of 42 or less. There are
only eight such tree-like networks (figure 3c), a massive
reduction from the 262 144 initial possibilities. These eight
Pareto trees have a median diameter of four interactions (com-
pared with two for hub-and-spoke and seven for linear) and a
median max-degree of five interactions (compared with seven
for hub-and-spoke and two for linear). Segments 5, 6 and 8 are
always tips; one among 1, 2 or 3 is always a hub. Across these
Pareto trees, all but one interaction connects the set {1, 2, 3}
with the set {4, 5, 6, 7, 8}.

2.3. Comparison with segment co-localization
during infection

We reasoned that segment pairs predicted to directly
interact are more likely to co-localize during infection. The
co-localization index of all 28 segment pairs has been
measured at 8 hours post infection using FISH probes [26].
We compared this co-localization index against the number
of times each of the 28 segment pairs is observed in the pre-
dicted Pareto trees (figure 3f ). We find that these two
quantities are significantly correlated (Methods): their Kendall
rank correlation coefficient is 0.40 (p-value = 0.0034). This pro-
vides strong independent support for our prediction that the
core interaction network is tree like. (The same co-localization
data have also been used to probe the time ordering of
aggregation [27], which we do not address here.)

2.4. Evolution of interaction networks
Our theoretical model of high-fidelity assembly suggests that
the interaction network should be tree like, but does not
select a preferred tree topology. Genetic re-assortment studies
show that inter-segment interactions evolve as the viral strains
diverge [2]. This process can make certain interaction
network topologies more abundant than others in segmented
viral genomes.

Consider first a simple model (figure 4a) in which a tree-
like interaction network is grown by connecting new segments
to randomly chosen existing segments. The probability of
obtaining a certain tree topology can be calculated by enumer-
ating all possible growth orders starting from a single
segment; this is equivalent to counting all consistent ways to
label the segments of a given tree from the oldest to the



1000
0.5

0.2

0.3

0.4
Y6

Y1

Y3

Y1 Y7

Y2 Y4 Y5

X5

Y7Y6

X5
Y7

better

X4

X1

X4

X1 Y3X4

X2 X3

X3
X2X1

Y5
Y4

Y3Y2
Y1

0
25 50 25 100

8 5

3

6

6 1 3

8 5 5 48
6 1 3 7 2

8 6

4 1 2 7 53

4 7

6

6

1

1 1 12 2 67 73 3 2 3 88

3 2

8 5 4

8 6 75

5
7

1 2

6

3 8 6 7 2

5 4

1 3 8

5 54

4

4 4

7

21 4 7 2

75504540
stretched bonds stretched bonds

fr
eq

ue
nc

y

R
N

A
 c

on
ta

ct
s

sh
uf

fl
ed

vi
ri

on
s

real
virions

3530

200

400

600

800

1
75

0

15

30

45

60

8

1 2 3 4 5

virion peripheral neighbors RNA contacts Pareto interactions

segment

se
gm

en
t

6 7 8

7
6
5
4
3
2

1

0.09 8

0

4

0.06

0.03

0

8

1 2 3 4 5
segment

se
gm

en
t

6 7 8

7
6
5
4
3
2

1

8

1 2 3 4 5
segment

se
gm

en
t

6 7 8

7
6
5
4
3
2

(a) (b) (c)

(d) (e) ( f )

Figure 3. Inferring interaction networks from experimental data. (a) We calculated ‘stretched bonds’ scores (based on segment nearest-neighbour occurrences within
30 virions; figure 2c,d; right) for all possible interaction networks on eight segments (over 250 million networks). The best network was a tree (topology 18; white
network) with a score of 34. We repeated the same analysis for tree-like networks alone (262 144 networks) using synthetic datasets in which peripheral segments
of each virion were randomly shuffled. The histogram shows the distribution of best scores obtained for 1000 synthetic datasets, each containing 30 shuffled virions;
the lowest score on shuffled data was 42 (seen three out of 1000 times; the vertical red line shows this cut-off value). The white bar shows instances in which the
best network was hub-and-spoke (topology-23; red network) with a score of 48 (seen 737 out of 1000 times). (b) Scatter plot of ‘stretched bonds’ scores and ‘RNA
contacts’ scores for all 262 144 possible tree-like networks on eight segments. Each grey point corresponds to a single tree; each tree is represented by two points
corresponding to two SPLASH replicates (figure 2c,d: left). Trees that are higher and to the left show better agreement with experimental data. The ‘stretched bonds’
score and ‘RNA contacts’ score are jointly optimized by trees on the Pareto front, which form the upper-left envelope of the scatter plot. We show two Pareto fronts
(blue, X labels; green, Y labels) corresponding to two SPLASH replicates. The black arrow shows the best ‘stretched bonds’ score of 34; the vertical red line shows the
cut-off ‘stretched bonds’ score of 42. (c) The eight Pareto trees with ‘stretched bonds’ scores of 42 or less, corresponding to labels in figure 3b. We also show the two
right-most trees on the Pareto front, which have the best ‘RNA contacts’ scores (grey). (d–f ) Inter-segment associations seen in different data sources. For context,
yellow dots show inter-segment bonds in specific Pareto trees, indicated by their labels from figure 3c. (d ) Frequencies with which segment pairs are observed as
peripheral nearest neighbours across 30 virions; each virion is represented by all six possible assignments of segments 1, 2 and 3, so the maximum possible score is
180. Since the data are symmetric, only the upper-triangular portion is shown. (e) Inter-segment RNA–RNA contact propensities measured by SPLASH. The upper-
triangular and lower-triangular portions represent SPLASH scores for two different replicates. ( f ) The number of times each inter-segment interaction is observed
among all eight Pareto trees with ‘stretched bonds’ scores of 42 or less. Since the data are symmetric, only the upper-triangular portion is shown. The Pareto
interaction map is much more sparse than the virion peripheral neighbour map and the RNA contact map. (Online version in colour.)

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190411

5

newest (Methods). Under this ‘gain-only’ model, the prob-
ability is 4.0 × 10−4 for a hub-and-spoke network, 0.013 for a
linear network and 0.10 for the most probable topology-8 net-
work (figure 4c). A more realistic scenario is one in which
interactions can be gained or lost (figure 4b). If we start with
a viral population in which a given tree topology is fixed, a
gain-plus-loss event can generate a new tree topology that
has a chance of sweeping to fixation (we assume that all
trees have equal fitness, all cyclic networks have low but
non-zero fitness and all disconnected networks have zero
fitness). This can be modelled as a Markov chain whose equi-
librium distribution gives the probability that the population
has a given tree topology (Methods). Under this ‘gain/loss’
model, the probability is 2.2 × 10−5 for a hub-and-spoke
network, 0.088 for a linear network and 0.16 for the most
probable topology-3 network (figure 4c)

While these abstract models cannot capture the evolution-
ary dynamics of real viral populations, they do make certain
robust predictions. We can be confident that the highly
symmetric hub-and-spoke network is extremely unlikely to
arise via the random gain and loss of interactions, unless it is
specifically selected. More generally, we ought to expect inter-
action networks that combine both hub-like and linear
features, rather either purely hub-and-spoke or purely linear
networks. The five topologies represented among the eight
Pareto trees are entirely consistent with this expectation
(figure 4c).

3. Discussion
The mechanism by which the influenza virus packages its
genome is a natural instance of a self-assembly process.
There is growing interest in exploring the general principles
of self-assembly across contexts: in complex multi-component
biological systems such as ribosomes [31] and viruses [11]; and
in synthetic systems such as colloidal aggregates and DNA
tiles [32]. Kinetic assembly processes, in which aggregation
reactions are driven out of equilibrium, allow greater control
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(master segment) topologies (red networks) as well as high-probability
topology 3 (grey network). The hub-and-spoke network is exceedingly
unlikely under either evolutionary model. (Online version in colour.)
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and higher yield of desired final products [31,32]. However,
out-of-equilibrium irreversible reactions can also lead the
system down futile or frustrated paths [29]. Here, we identify
a simple design principle—a tree-like network of irreversible
interactions—that provably achieves perfect fidelity.

Our approach is distinct from the challenge of finding the
time ordering of aggregation [27], which by definition is a
tree whose nodes are clustered states and whose directed
edges are reactions. The objects of our study are networks
that could be cyclic or tree like, whose nodes are segments
andwhose undirected edges are physical interactions. Our sto-
chastic growth model (figure 1) does not select or require a
single growth order; all growth orders consistentwith the inter-
action network are permitted. The prediction that the network
is tree like then follows from the requirement of fidelity. This is
due to a surprising property of tree-like interaction networks:
they inexorably funnel growing aggregates towards the desired
final product. Moreover, this is achieved at the highest possible
rate, since every aggregation reaction is productive (unlike
equilibrium binding/unbinding reactions).

The purely theoretical preference for a tree-like interaction
network allows us to extract useful information from the
measured interaction propensities of vRNP segments. Since
both our primary experimental datasets (EM tomography of
nearest neighbours [8] and SPLASH RNA–RNA interaction
measurements [20]) correspond to packaged virions, they
cannot distinguish the irreversible interactions that drive
genome assembly from weaker ones that stabilize the final
assembled genome, or even incidental nearest-neighbour
associations. This is why the virion peripheral neighbour
map (figure 3d ) and RNA contacts map (figure 3e) are both
fairly dense. By requiring the interaction network to be tree
like and focusing only on Pareto trees, we remove such false
positives to predict a sparse set of core interactions (figure 3f ).

Further studies are needed to select the correct tree
from among the predicted Pareto trees. Mutational studies
could directly probe interacting regions, such as by swapping
packaging signals between different RNA segments [15].
For example, the virus grows poorly when packaging signals
of segments 1, 3, 5 and 7 are replaced with that of segment
6, but grows well when the same swap is done for segments
2, 4 and 8 [15]. This is most consistent with Pareto tree X3, in
which segments 1, 3 and 7 are internal, while the remaining
segments are tips. In the predicted Pareto trees, almost all
direct interactions involve segments 1, 2 or 3 (which encode
vRNP-associated polymerase proteins PB2, PB1 and PA),
whereas there are almost no direct interactions between
segments 4, 6 and 7 (which encode capsid proteins HA, NA
and M). This could enhance the re-assortment of the immuno-
genic capsid protein varieties between different influenza
strains [3]. We will need a principled approach to incorporate
information from these and other disparate data sources.
Nevertheless, multiple lines of evidence (measurements of seg-
ment co-localization [26,27]; non-random nearest-neighbour
propensities in packaged virions [8]; and viral growth rates
upon swapping packaging signals [15]) support our hypoth-
esis that the core interaction network underlying influenza
genome assembly is tree like. Our results not only provide
insight into the dynamics of infection, but also have impli-
cations for understanding how new influenza strains emerge
via genomic re-assortment and evolution.
4. Methods
4.1. Stochastic simulation of genome assembly
We model genome assembly using a Monte Carlo simulation
with discrete time steps. An interaction network on M segment
types is specified, with either orientationally flexible or orienta-
tionally rigid bonds. We assume two segments of the same
type cannot bind to one another, and a given segment type can
bind to at most one copy of a given other segment type. We initi-
alize the simulation with N copies of each segment type. As the
simulation proceeds, the segments irreversibly aggregate into
clusters. Within each cluster, we form satisfied bonds between
every pair of segments that can interact. At each time step, we
select two of the clusters at random. We aggregate them into a
single large cluster if a pair of segments, one from each cluster,
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has an unsatisfied bond. For the rigid bonds case, we must also
check that the two clusters do not both include the same segment
type, since these would compete to occupy the same spatial pos-
ition. We continue the simulation until no further aggregation
events are possible. The final fidelity is then calculated as the
fraction of clusters that are of the desired type, containing
precisely one copy of each segment type.
 shing.org/journal/rsif
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4.2. Proof that tree-like networks have 100% fidelity
The proof is by contradiction. We are given a flexible or rigid
tree-like interaction network on M segment types, and given N
copies of each segment type. The maximal cluster has exactly
one copy of each of the M segment types. Suppose the final fide-
lity at the end of the aggregation process is less than 100%. There
must be at least one cluster C with fewer than M segment types.
Since the interaction network is connected, there must be at least
one pair of segment types X and Y that interact, such that X is in
C and Y is not in C. So, the copy of X in C has an unsatisfied
bond with Y. Since no further aggregation events are possible,
every copy of Y either has a satisfied bond with a copy of X or
(for the rigid bonds case) has an unsatisfied bond with X but
belongs to a cluster C0 that cannot aggregate with C. This implies
that C and C0 both include some segment type Z. Any such Z is
(directly or indirectly) connected to X in C and to Y in C0. Since
we already know that X and Y can directly interact, this would
mean the interaction network contains a cycle, which we know
is not the case. Therefore, no such cluster C0 exists. The only
remaining possibility is that all N copies of Y have a satisfied
bond with X. Since a given segment type can bind to at most
one copy of a given other segment type, this implies that all N
copies of X have a satisfied bond with Y, contradicting our asser-
tion that there is at least one copy of X that has an unsatisfied
bond with Y. This completes the proof.
4.3. Proof that cyclic networks have less than 100%
fidelity

We are given a flexible or rigid cyclic interaction network on M
segment types, and given N copies of each segment type. To
show that the average final fidelity is less than 100%, it is suffi-
cient to show that there is at least one possible trajectory of the
stochastic aggregation process with final fidelity less than
100%. First, we treat the flexible case. Consider any length-L
cycle in the interaction network, containing a pair of segment
types X and Y that interact. We can grow two linear (L− 1)-
sized clusters C and C0 by single-segment-addition reactions so
that C contains one copy each of all L segment types except Y,
and C0 contains one copy each of all L segment types except X.
C and C0 can then aggregate via the X-Y interaction to form a
futile cluster containing two copies each of (L− 1) segment
types. This ensures the final fidelity is less than 100%. Next we
treat the rigid case. Since a given segment type can bind to at
most one copy of a given other segment type, the minimal
length of a cycle is 3. Consider any length-3 cycle in the inter-
action network, containing segments X, Y and Z (the proof for
a length-L cycle for any L≥ 3 is identical). If N is odd, first
form a single cluster XYZ by single-segment-addition reactions,
leaving an even number of copies of each segment type X, Y
and Z. If N is even, proceed to the next step. Let half of each seg-
ment type aggregate with its ‘left neighbour’ and the remaining
half with its ‘right neighbour’ to form dimers XY, YZ, XZ. No
further aggregation reactions are possible, since for any pair of
dimers both will include the same segment type. The dimers
are said to be frustrated. This ensures that the final fidelity of
at least one trajectory is less than 100%, so the average final
fidelity is less than 100%.
4.4. Scoring interaction networks
‘RNA contacts’ score (figure 2c,d: left): from SPLASH measure-
ments, we obtain the total number of interactions observed
between each segment pair (data from electronic supplementary
material, table 2; datasets 3,4 in [20]). We normalize this across all
segment pairs to obtain an RNA–RNA contact propensity. The
‘RNA contacts’ score of a given interaction network is the sum
of contact propensities of the interacting segment pairs.

‘Stretched bonds’ score (figure 2c,d: right): from EM tomogra-
phy, we obtain the arrangement of segments within packaged
virions [8]. Segments 1, 2 and 3 cannot be distinguished by this
method; for a given interaction network, we find the assignment
of 1, 2 and 3 within each virion that has the most interactions
between nearest neighbours. The ‘stretched bonds’ score of the
network is the sum of the number of stretched (non-nearest
neighbour) bonds across virions. The observed segment arrange-
ments for 30 virions are shown below (data from figure 3; fig. S4
in [8]). Each string represents a single virion, starting with the
central segment and moving clockwise over peripheral segments;
‘?’ represents segments 1, 2 or 3.

4:87??65?, 4:86?57??, 4:857?6??, 4:85?6?7?, 4:8?75?6?,
4:8?75??6, 4:8?7?5?6, 4:8?6?75?, 4:8?6?7?5, 4:8?5?7?6,
4:8??765?, 4:8??75?6, ?:8754?6?, ?:8746?5?, ?:86547??,
?:8647??5, ?:86?57?4, ?:86?47?5, ?:8564?7?, ?:856?7?4,
?:856?47?, ?:8547?6?, ?:85?6?74, ?:847?6?5, ?:84657??,
?:8?674?5, ?:8?6?745, ?:8?546?7, ?:8?5?746, ?:8?4756?

4.5. Comparison of predicted segment interactions with
measured segment co-localization

The presence of specific segments in cellular RNA foci at 8 hours
post infection has been measured using FISH probes [26]. The
Pearson correlation coefficient of dual-probe intensities serves
as a co-localization index for the corresponding segment pair.
Here, we use the mean Pearson correlation coefficient for each
segment pair, averaged across measurements of multiple cells
(data from fig. 3 in [26]). We compare this against the number
of occurrences of these segment pairs in the eight Pareto trees.
Across the 28 segment pairs, we find a Kendall rank correlation
coefficient of τ = 0.40 between these two quantities. To estimate
statistical significance, we carry out the same analysis using ran-
domly permuted data. The τ values from the random data are
greater than or equal to the observed value of 0.40 in 340 out
of 100 000 random replicates (p-value = 0.0034).

4.6. Modelling the evolution of tree-like interaction
networks

Gain-only model (figure 4a): we are given segments labelled 1,
… ,N (this is an arbitrary label unrelated to vRNP segment iden-
tity). At each step of the process, we take a tree with L segments
and add segment L + 1 to a randomly chosen segment in the tree.
We start with segment 1 and stop when we reach a tree with N
segments. We record the final tree topology, ignoring segment
labels. The statistical weight of a given tree topology under this
process can be calculated as follows. List all distinct segment
types, up to isomorphism (e.g. the hub-and-spoke topology has
only two distinct segment types). Pick a segment type, root the
tree at this segment and label it 1. Calculate the number of dis-
tinct ways, up to isomorphism, to label the remaining
segments 2,… ,N such that label values always increase along
every branch. Summing this number over all distinct root seg-
ments gives the statistical weight of a given tree topology. To
get the gain-only probability, we normalize this by the combined
statistical weight of all possible tree topologies.

Gain/loss model (figure 4b): we model transitions between
N-segment tree topologies as a discrete Markov chain. We are
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given a starting tree with N arbitrarily labelled segments and
(N − 1) inter-segment interactions. There are (N− 1)(N− 2)/2
possible new inter-segment interactions. Adding a single new
interaction gives a network with a single cycle. Removing any
interaction in the cycle gives back a tree (e.g. removing the
newly added interaction gives back the original tree). Summing
over all possible gain-plus-loss events and ignoring segment
labels, we find the transition probability from the initial tree
topology to any other tree topology. The gain/loss probability
over tree topologies is the equilibrium distribution of this
Markov chain.
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