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Abstract: Skin aging is one of the most evident signs of human aging. Modification of the skin
during the life span is characterized by fine lines and wrinkling, loss of elasticity and volume,
laxity, rough-textured appearance, and pallor. In contrast, photoaged skin is associated with uneven
pigmentation (age spot) and is markedly wrinkled. At the cellular and molecular level, it consists of
multiple interconnected processes based on biochemical reactions, genetic programs, and occurrence
of external stimulation. The principal cellular perturbation in the skin driving senescence is the
alteration of oxidative balance. In chronological aging, reactive oxygen species (ROS) are produced
mainly through cellular oxidative metabolism during adenosine triphosphate (ATP) generation from
glucose and mitochondrial dysfunction, whereas in extrinsic aging, loss of redox equilibrium is caused
by environmental factors, such as ultraviolet radiation, pollution, cigarette smoking, and inadequate
nutrition. During the aging process, oxidative stress is attributed to both augmented ROS production
and reduced levels of enzymatic and non-enzymatic protectors. Apart from the evident appearance of
structural change, throughout aging, the skin gradually loses its natural functional characteristics and
regenerative potential. With aging, the skin immune system also undergoes functional senescence
manifested as a reduced ability to counteract infections and augmented frequency of autoimmune and
neoplastic diseases. This review proposes an update on the role of oxidative stress in the appearance
of the clinical manifestation of skin aging, as well as of the molecular mechanisms that underline this
natural phenomenon sometimes accelerated by external factors.
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1. Introduction
1.1. Human Skin Tissue Structure and Biology

The skin is the largest organ of the human body and is composed of three compart-
ments: the epidermis, the dermis, and the deeper subcutaneous fat tissue (also referred to
as hypodermis) (Figure 1).

The main function of the epidermis is to provide a protective barrier against microbes,
environmental pollution, and ultraviolet (UV) radiation. The epidermis is avascular and
mostly composed of multiple layers of keratinocytes at different differentiation levels.
Immune cells infiltrating the epidermis, especially Langerhans cells, counteract infections.
Melanocytes located at the basal layer of the epidermis produce and distribute the melanin
pigment to surrounding keratinocytes, ensuring the absorption of a broad spectrum of
solar irradiation wavelengths and consequent protection from UV radiation [1], whereas
Merkel cells serve as a touch-perception receptor [2]. The multilayered stratum corneum
(the outermost layer) consists of anucleated, densely keratinized keratinocytes and lipid-
laden extracellular matrix (ECM), to prevent excess trans-epidermal water loss. Lipids
consist of neutral molecules such as sterols, free fatty acids, triglycerides, highly nonpolar
species, and sphingolipids [3]. Keratinocyte precursors proliferate symmetrically and
asymmetrically. The asymmetric division generates two daughter cells with non-identical
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fates; one daughter remains a progenitor while the other commits to cell terminal differ-
entiation. During the differentiation, keratinocytes slowly migrate towards the surface,
finally becoming fully differentiated corneocyte cells that are continuously lost from the
skin surface. Like other epithelial structures with an intense cell turnover, normal epider-
mal homeostasis firmly depends on staminal precursors, and keratinocyte aging is due
to changes in stem cell numbers and functions [4]. Desquamation rates of the stratum
corneum and the resultant renewal of the keratinocyte layer have been calculated at 40–56
days in middle-aged humans [5]. Thus, it has been suggested that the impact of a senescent
phenotype is limited in keratinocytes. Accordingly, in the epidermis from the sun-protected
areas of young and aged donors, p16INK4a-positive cells are mainly melanocytes and less
frequently keratinocytes [6]. In the epidermis, melanocytes are highly differentiated cells
rarely replaced during normal adult skin homeostasis and their turnover occurs only by
stimulation as in wounding and exposure to UV [7]. Melanocyte precursors reside in the
hair bulge and in the epidermis to pigment the hair and skin [8–10]. Additionally, some
melanocyte precursors have been demonstrated in the dermis [11,12].

Figure 1. A schematic representation of the structure and functions of the skin. Human skin is
composed of three layers: the epidermis (the top layer), the dermis (the middle layer), and the
hypodermis (the bottom fatty layer).

The dermis, derived from mesoderm, underlies the epidermis and includes seba-
ceous glands, hair follicles, nerve endings, blood, and lymphatic vessels embedded within
connective tissue, a fiber-dense ECM due to the intense secretory activity of sparse fibrob-
lasts. The dermal compartment also includes a wide repertoire of immune cells, including
macrophages, dendritic cells, natural killer cells, lymphocytes, and mast cells [13]. Collagen
fibers confer resistance to the tissue and elastin keeps skin flexible. In addition to structural
proteins, the relative abundance and the distribution of adhesion proteins (fibronectin,
lamina, fibrillin, tenascin), glycosaminoglycans (hyaluronan, heparin-sulfate, chondroitin-
sulfate), and proteoglycans (versican, aggrecan, neurocan) define the biological properties
of the dermis. This includes the retention and consequent availability of soluble factors,
particularly growth factors and second small messengers [14–16]. Further, the physical
properties of ECM may affect adult mesenchymal stem cell (MSC) proliferation and differ-
entiation potential [17,18]. The specific architecture of ECM might contribute to MSCs’ fate
via direct physical interaction with these cells. Moreover, the loss of stem cell properties
that coincides with the spontaneous differentiation may be due to the response of stem
cells to growth factors, which in turn are influenced by the microenvironment [19]. Histo-
logically, many age-dependent changes affect the structural components of the connective
tissue. Low biosynthesis, increased degradation, and the accumulation of unfunctional
disorganized collagen and elastin fibers impair the tissue integrity during intrinsic aging,
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whereas exacerbated expression of collagen and elastin proteolytic enzymes in sun-exposed
areas leads to the accumulation of partially fragmented elastin fibers, causing the typical
solar elastosis of extrinsic aging [20]. The hypodermis, the bottom layer of cutaneous tissue,
regulates body temperature and makes protection for blood vessels, nerves, muscles, and
bones. It is a well-vascularized connective tissue prevalently composed of adipose tissue
that forms a layer of variable thickness depending on its location in the body and scarce
collagen fibers. Adipose tissue functions in thermal insulation and energy storage, whereas
mesenchymal stem cells are key players in wound healing and re-epithelialization [21].
The depletion of stem cell reserves can compromise the ability to restore spontaneous
tissue repair. Wound healing slows with age, thus older adults frequently have chronic
wounds, with a significant impact on the quality of life of patients and their families [22].
Abnormal repeated requirements of tissue repair, such as in the case of disease-specific
tissue dysfunction or chronic oxidative stress, might lead to premature consumption of the
stem cell reservoir and consequent gain of senescent cells. The intense secretory activity of
subcutaneous adipose tissue includes repair-inducing activators of fibroblasts and stem
cells during wounds and very important signals to modulate hair follicle physiology, while
bacteria-sensing adipocytes produce antimicrobial peptides, supporting innate immune
responses in the skin [21,23]. Adipose-derived stem cells play a key role in protecting
skin from oxidative damage and inflammation by the secretion of bioactive molecules and
antioxidant factors [24,25].

1.2. Skin Antioxidant Defense System

To scavenge reactive oxygen species (ROS), cutaneous cells utilize a conspicuous
apparatus of small antioxidant molecules and endogenous enzymes. Ubiquinol (coen-
zyme Q10) is a lipid-soluble intracellular and extracellular radical scavenger that protects
mitochondria and key cutaneous proteins. CoQ10 also inhibits the expression of some
metalloproteinases (MMPs), such as collagenase, preserving the collagen content of the
skin [26]. Vitamin E is implicated in membrane stabilization, preventing lipid peroxidation
and oxidation of unsaturated fatty acids [27,28]. In the skin, vitamin E level is strongly
sensitive to UV-induced depletion [29], and levels of vitamin E also decrease with age [30],
suggesting that impairment in its detoxification activity might be involved in both natural
and photo-accelerated aging. Vitamin C acts by removing free radicals and repairing
oxidized vitamin E [31]. Moreover, in the skin, vitamin C is implicated in procollagen
synthesis and collagen cross-linking [32–34]. The function of superoxide dismutase (SOD)
is to catalyze the breakdown of superoxide radical anion (O2) into hydrogen peroxide
(H2O2) [35]. In mammals, three different isoforms of SOD exert non-overlapping functions.
The isoform that utilizes Cu/Zn as cofactors (SOD1) localizes in the cytoplasm and the
nucleus [36], the isoform that binds Mn (SOD2) localizes in mitochondria, and SOD3, which
also binds Cu/Zn, has been detected mainly in the extracellular space [37]. In vivo studies
in mice evidenced that all three SODs impact skin aging [38–40]. In animal models, SOD2
deletion corresponds to the more dramatic phenotypes with the thinner epidermis, atrophy
of the dermal connective tissue, reduced complexity of the extracellular fiber network,
and a smaller amount of the subcutaneous fat tissue, all of which have been described as
major characteristics [39,41]. Interestingly, Velarde et al. demonstrated an age-dependent
effect of SOD2 depletion in mouse skin. In old mice, SOD2 deficiency delayed wound
closure and reduced epidermal thickness due to exhaustion of premature epidermal stem
cells, whereas in young animals SOD2 deficiency stimulated wound closure, sustaining
epidermal differentiation, despite the induction of cellular senescence in keratinocytes [42].
In human senescent skin, fibroblasts that develop a growth arrest, and morphological and
functional changes, demonstrated an adaptive upregulation of the SOD2 at mRNA and
protein levels due to increased ROS concentrations [43,44]. An important enzyme that
detoxifies hydrogen peroxide (H2O2) is the peroxisomal localized catalase (Cat) [45]. In
the aged human dermis, Cat activity is lower with consequent elevation of H2O2 concen-
tration [43]. By contrast, a parallel increase in ROS and Cat activity has been observed
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in the epidermis [46]. Another supporter of the antioxidant capability of the cell is the
tripeptide glutathione (GSH). The GSH acts as a scavenger because of its thiol functional
group. During the reaction, GSH is oxidized by reactive oxygen radicals and makes a dimer
with another GSH (GSSG). GSH can be retaken in a reducing enzymatic reaction by the
glutathione reductase consuming NADPH [47]. The mouse model demonstrated that not
only the absolute amount of the oxidized GSSG but also the GSSG:GSH increases in the
dermis during aging [48]. In addition to its role as an antioxidant, GSH is also a cofactor
for many metabolic processes. In humans, all eight glutathione peroxidases (GPXs) are
known to reduce hydrogen peroxide in water and stop lipid peroxidation [45]. Overall, the
endogenous antioxidant capacity (enzymatic and non-enzymatic) of the skin is lowered
with age, and the aged skin is more vulnerable to external factors, especially UV radiation,
pollution, and microorganisms [49]. Since the epidermis is more exposed to external stimuli
than the dermis, the ROS load is higher in the epidermis compared to the dermis [50].
Correspondingly, defensive enzymes and non-enzymatic antioxidants are present in higher
concentrations in the epidermis than in the dermis [51]. Particularly, small antioxidants
such as vitamins C and E, glutathione, and ubiquinol, and defensive enzymes such as Cat
and SODs are concentrated in deeper layers of the stratum corneum [29,52,53]. From the
biological point of view, this might correspond to more accurate protection of epidermal
stem cells that mostly reside at the dermal–epidermal junction. On the other hand, the
production of ROS in the epidermis occurs in the deepest layers, especially at the basal
layer, since in the final phase of the differentiation process, keratinocytes of the stratum
corneum lose their nuclei and organelles [54]. Moreover, the promelanogenic effect of
solar radiation promotes the formation of free radicals related to the melanin biosynthetic
pathway at the dermal–epidermal junction [55]. Particularly, in fair-skinned individuals,
pheomelanin is responsible for free radical generation in melanocytes even in absence of
UV [56,57]. Likewise, carriers of melanocortin 1 receptor (MC1R) variants presenting a shift
in melanin synthesis from eumelanin to pheomelanin and consequent elevation of reactive
oxygen species are at increased melanoma risk, independent of their sun exposure [58].

1.3. A Brief Introduction to Skin Aging

Skin aging is a multifactorial biological process macroscopically manifested by modifica-
tion of its appearance due to the progressive decline of physiological functionality (Figure 2).

Fine wrinkles, tissue atrophy with minor elasticity, and remarkable dryness often
accompanied by pruritus are the most common phenotypic changes in aging observed
in all skin areas [59]. However, they diversify among different anatomical regions and
within diverse ethnical groups [60,61]. The subcutaneous adipose tissue is decreased in
some body areas, especially the face, shins, hands, and feet, explaining the visible volume
reduction, while in other body areas, peculiarly the abdomen in males and the thighs in
females, it is augmented. Anatomical differences emerged by the comparative analysis of
facial and abdominal adipocyte gene expression profiles, suggesting a possible implication
in the diverse modification of subcutaneous tissue of these body areas during aging [62].
Sebaceous glands progressively increase in size, but their secretory output is attenuated in
aged individuals [63]. There is a progressive decline in the density of hair follicles, and the
hair shaft diameter is frequently smaller [64]. At the cellular level, aging is characterized by
the accumulation of senescent cells in both the epidermis and the dermis and by a significant
depletion of stem/progenitor cells [65]. Since MSCs do not escape the deleterious effects
of natural aging, their propensity to senesce is firstly determined by intrinsic factors [66].
Aging affects MSCs from a quantitative (stem cells exhaustion) and a qualitative point of
view, since advanced age subcutaneous MSCs lose their osteogenic potential and in turn
augment the adipogenic potential [67]. In line with this idea, Orciani and collaborators
demonstrated that MSCs isolated from the skin do not have an efficient antioxidant defense
system, but their integrity is preserved by the surrounding microenvironment of the
niche [68]. Increased intracellular ROS and lower SOD activity characterizes aged MSCs in
both undifferentiated and differentiated conditions. Diabetic subcutaneous MSCs displayed
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lower proliferation activity, upregulation of pluripotent staminal markers, and a propensity
for neurogenic differentiation. At the same time, normal MSCs cultured in a hyperglycemic
milieu showed an ROS-dependent similar phenotype characterized by low proliferation and
migration, senescent-prone phenotype, and a relatively immature state with an inclination
to neuron-like differentiation [69]. This study demonstrated that metabolic dysfunction,
frequently arising in the elderly, might impact skin aging and its reparative potential.

Figure 2. Age-related changes in the skin. Skin aging results in cumulative detrimental effects charac-
terized by abnormal ECM organization, pigmentary changes, loss of subcutaneous fat, hair greying,
minored hair density, decreased sebaceous gland function, and low-grade chronic inflammation.
Cellular and molecular events reviewed in the text describe the impact of oxidative disequilibrium
on these time-dependent and/or extrinsically accelerated tissue transformations.

Replicative senescence is principally the result of repeated cell division that induces
gradual shortening of telomeres [70]. Although cellular replication is a major contributor to
telomere dysfunction, it has been largely documented that telomere attrition is accelerated
when cells are exposed to mild, eventually chronic stress, leading to reduced replicative
capacity and a phenotype similar to replicative senescence [71–73]. The physiological
elimination of senescent cells is mainly modulated by the immune system, but the mecha-
nisms involved are not yet completely elucidated. In addition, tissue degeneration may
help senescent cells to escape from immune clearance [74]. In the complicated context
of organismal aging, it is not known to what extent continuous proliferation contributes
to regulating the number of senescent cells, and whether age-related impairment of the
immune system function contributes to the accumulation of senescent cells in old individu-
als [75]. Furthermore, senescence in fibroblasts matches with resistance to apoptosis caused
by UV radiation [76], a characteristic that could influence the persistence of these cells. In a
restricted number of clinical trials, pharmacological treatments, termed “senolytics”, have
been tested to remove senescent cells from the body [77–79]. The prevalent mechanism
of action of senolytic therapies involves the induction of apoptosis in senescent cells or
the stimulation of immune cells to clear senescent cells. Pharmacological clearance of
senescent cells markedly enhances health span [80–82]. Due to the discovery of practicable
“therapeutic” intervention, it has been proposed to consider aging as a real “disease” [83].
Cell-specific functional diversity impacts senescence differently [84,85]. Though one might
expect cells with a rapid turnover to be senescence prone, this does not seem to be the case
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for keratinocytes, since keratinocytes, damaged or not, are physiologically quickly replaced
by new differentiating cells. Instead, fibroblasts could progress through the senescence
program and accumulate functional defects, impacting tissue integrity due to their limited
proliferation rate. The fact that the senescence-associated phenotype is mostly referred to as
long-living post-mitotic cells underlies that elements other than those associated with repli-
cation play a relevant role in the acquisition of the senescent phenotype [86]. A plethora of
stresses can provoke premature cellular senescence, including UV radiation, mitochondria
dysfunction, oxidative stress, DNA damage, epigenetic alteration, and expression of some
oncogenes [87,88]. Thus far, cellular senescence is not only a time-defined process: each cell
experiences senescence conforming to its proliferation speed and its history. Therefore, in
real life, a tissue that underwent exclusively intrinsic aging does not exist. Since skin is the
interface between the body and the external environment, it is constantly or intermittently
in contact with extrinsic stimulation (e.g., ultraviolet light exposure, pollution, smoking,
chemotherapy, radiotherapy, cosmetics, microbial insults, trauma) in addition to intrinsic
factors (e.g., time, genetic factors, hormones, comorbidities) that can impact the senescence
of its cells and on the overall decline of tissue function. Thus, it is considered the organ
of choice for aging studies [89–91]. Moreover, due to the skin’s accessibility, it is a useful
model to test translational approaches in the regenerative medicine field [92,93]. The neolo-
gism of “exposome” has been recently introduced to explain the complex exposures we face
throughout our lives, and encompasses air pollution, climate factors, infections, the food
we ingest, the objects we touch, and the psychological stresses [94]. Exposomes exacerbate
tissue damage, accelerating the aging process [95]. UV radiation is the most potent extrinsic
driver of age-related change in the skin, known as “photoaging”. Photoaging accounts
for approximately 80% of facial aging [96]. Except for pigmentation, which presents the
opposite feature in chronological aging (hypopigmentation) [85,97,98] and in photoaging
(hyperpigmentation) [99,100], intrinsic and extrinsic skin senescence demonstrated several
types of overlapping pathogenic molecular signaling. The common feature of both types
of cutaneous aging is the generation of ROS, impacting DNA, protein, and lipid damage
and the disorganization of the ECM [101]. During naturally occurring aging, collagen and
elastic fibers are partially degraded but form a wider-mashed network. During extrin-
sic aging, the dermis strongly loses collagen type I (Col-I), III, and VII expression [102].
Additionally, the migration of neutrophils after inflammation or UV exposure strongly
accelerates collagen and elastin degradation due to their intense production of MMPs and
elastases [103]. In mice, a comparative analysis of the gene expression profile of young
and old animals revealed that most of the differentially regulated genes encompassed
those induced by oxidative damage and associated with energy metabolism, mitochondrial
function, and turnover [104]. Furthermore, the relevance of redox equilibrium in the aging
process is supported by the proof that human skin fibroblasts from progeria patients, a
premature aging syndrome, show a significant reduction in SOD2, Cat, and GPX expression
and activity at the basal level. Moreover, these cells also demonstrated impaired scavenger
activity under chronic oxidative stress conditions [105].

At the low level, ROS are the first line of defense and are involved in various physi-
ological functions; however, an excessive amount of ROS or an insufficient endogenous
defense system can compromise intracellular redox homeostasis. A large amount of ROS
activates mitogen-activated protein kinases (MAPKs) and critical transcription factors such
as nuclear factor-κB (NF-κB), nuclear factor erythroid 2-like (Nrf2), and c-Jun-N-terminal
kinase (JNK) and transcription factor activator protein 1 (AP-1) [106]. Nrf2 is one of the
most important transcription factors in the cellular response to oxidative stress. Nrf2 cyto-
protective action concerns mainly antioxidant enzymes such as glutathione S-transferase
(GST), heme oxygenase-1 (HO-1), quinone reductase NAD(P)H (NQO1), Cat, SODs, UDP-
glucuronosyltransferases (UGT), epoxide hydrolase (EPHX), γ-glutamylcysteine ligase
(GCL), glutathione reductase (GR), and thioredoxin reductase (TrxR) under normal and
critical circumstances [107]. For this reason, natural Nrf2 modulators received notable
attention in dermatology [108]. AP-1 activation elevates the expression of MMP1, 3, and
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9 in fibroblasts and keratinocytes [109,110]. AP-1 and NF-κB inhibit TGF-β, which is
responsible for Col-I and connective tissue growth factor (CTGF) production [111,112].
ROS-triggered activation of NF-κB also drives an elevation of proinflammatory cytokines
(IL1, IL6, and TNFα) [113], provoking localized phenotypic changes that are independent
of the systemic immune system function [114,115]. Stress-induced senescence is associated
with a marked pro-inflammatory secretory profile of dermal and epidermal cells [116].
Reduced ability to manage persistent inflammation contributes to the occurrence of skin
inflammaging, immunosuppression, and skin cancers [117,118]. Since mitochondria are
the main source of intracellular free radical production [119], dysfunctional mitochondria
contribute to the aging process [120]. At the molecular level, a typical marker of aging is the
low expression level of mitochondrial electron transport chain proteins [121]. A disturbance
of reductive overload of the mitochondrial respiratory chain leads to uncontrolled ROS ac-
cumulation [122]. Characteristic features of the aged dermis and epidermis are the presence
of damaged mitochondria, frequent mitochondrial DNA (mtDNA) deletions, elevated ROS
levels, and oxidative stress [123]. Skin aging and stem cell senescence are characterized
by lower mitochondrial complex I–IV activity [124]. A 4977-base-pair extended region of
mtDNA, coding for genes of complexes I, IV, and V respiratory chain, is frequently deleted
in the aged human skin [125]. This ”common deletion” positively correlates with sun
exposure and skin wrinkles [126]. Damaged mitochondria are selectively sequestered in
double-membrane vesicles and cleared away by lysosome-dependent mitophagy (selective
autophagy of mitochondria). Mitophagy is utilized under cellular stress conditions to pre-
serve healthy mitochondria or to regulate homeostasis when an excess of mitochondria is
present [127]. Older skin had a significantly fragmented mitochondrial network, indicating
poor recycling and excessive mitophagy [128]. Signals of mitochondrial dysfunction are
sensed by the mammalian target of rapamycin (mTOR) or AMP-dependent protein kinase
(AMPK) and calmodulin [129,130]. Conditions that activate mTOR (deregulated autophagy,
oxidative stress, or systemic inflammation) when the cell cycle is blocked lead the cell to
a hypertrophic senescence state [131]. Further, ROS activates the PI3K/mTOR/S6K axis,
leading to an increase in cell volume and protein content [132]. Thus, ROS can be linked
to cell senescence, not only through damaged macromolecules but also through mTOR.
Notably, the activation of mTOR, which promotes cell growth even though the cell cycle
is blocked downstream, causes hypermitogenic senescence. Increased cellular function
(hypertrophy, pro-inflammatory and hypersecretory phenotypes) in a context of reduced
or absent proliferation resembles senescence caused by DNA damage, and it is considered
a distinctive marker of hypermitogenic arrest [133]. Hypertrophy, hyperplasia, and hy-
permitogenic phenotype [134,135] by themselves may cause changes in skin appearance.
In the mouse model, overexpression of the insulin-like growth factor II gene (IGF-2) in
keratinocytes causes overgrowth of the skin, as denoted by wrinkling [136].

2. The Role of Oxidative Stress in Chronological Senescence of the Skin

In human skin, consistent with all other organs, physiological aging is the natural con-
sequence of the passage of time. Skin that ages only by intrinsic factors virtually does not
exist. Thus, it is generally considered that skin that exclusively undergoes intrinsic aging
is usually present in body areas habitually unexposed to sunlight. Naturally, aged skin
presents fine wrinkles, dryness, thinning, and augmented temperature sensitivity. During
skin aging, sebocytes decrease the size and secretory activity with a significant repercussion
in the surface lipid amount and skin hydration [137]. In menopausal women, a significantly
higher pH of the hydro-lipid film surface and a decrease in sebum production have been
observed, whereas measurements of trans-epidermal water loss showed a minimal varia-
tion in stratum corneum hydration [138]. Chronic itching is likewise common in the elderly
due to dryness. However, it may be caused by the age-related alteration of touch to itch
sensation due to dysfunctional Merkel cells [139]. During aging, keratinocytes acquire a
typical shorter and fatter morphology, while corneocytes become bigger as a result of lower
epidermal turnover [140]. In old skin, the stratum corneum is not replaced as quickly, so the
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skin appears rough and dry. Extreme skin dryness (xerosis) is more susceptible to irritant
dermatitis [141]. As mitosis of keratinocyte precursors in the basal layer of the epidermis is
slowed down, healing requires a longer time. Moreover, there is a reduction in the surface
contact between the epidermis and dermis, which aggravates the delivery of oxygen and
the nutrients in the epidermis [141]. The aging-associated anatomical change includes the
decrease in the number and size of blood vessels, and low architectural complexity that
explains not only the impaired nutrition supplementation but also the removal of metabolic
debris and toxins [142]. Vascular permeability changes, especially in the superficial dermis,
produce adaptative remodeling of the epidermis such as the decrease in several cell layers,
thus reducing the thickness [143,144]. At the tegumentary level, dermis fibers undergo
fragmentation processes and finally lysis. Elastic fiber degeneration is faster than that of
collagen fibers [144]. The age-related decrease in sweat glands might be responsible for
impaired metabolic waste removal and consequent accumulation of toxins on the skin [145].
With aging, hair becomes thinner on the scalp and terminal hair follicles are progressively
miniaturized [146]. As can be easily observed, the natural hair color is lost due to a reduced
transfer of melanin from follicular melanocytes to hair keratinocytes [146]. Intrinsic aging is
mainly regulated by genetic factors affecting the entire body. Most of the genes associated
with a younger appearance are directly or indirectly linked with protective factors such as
DNA repair, response to oxidative stress, cell replication, protein metabolism, or ECM archi-
tecture [147]. Single nucleotide polymorphisms (SNPs) for genes responding to NAD(P)H
dehydrogenase (NADPH), SOD2, SOD3, Nrf2, Cat, and GPX1 have been correlated to skin
aging [147,148]. Since the activation of α-melanocytes hormone (α-MSH)-dependent intra-
cellular signaling not only regulates melanogenesis but also cellular defense mechanisms
in the dermis and epidermis, individuals carrying loss-of-function polymorphic variants
of its receptor, the MC1R, present a reduced capacity to counteract oxidative stress and
DNA damage [149–153]. Correspondingly, loss-of-signaling MC1R polymorphisms are
linked to an increased risk of melanoma and other skin cancers [154–156]. Further, three
different MC1R common polymorphisms, namely R151C, R142H, and D84E, demonstrated
a significant correlation with photoaging [157]. In dermal fibroblasts, α-MSH modulates
collagen metabolism by improving the orientation of the collagen fibers [158–160]. α-MSH
may drive the healing into a more regenerative/less scarring pathway by counteraction
the pro-fibrotic action of TGFβ [160,161]. Recently, a higher prevalence of coarse colla-
gen, pixel, and vessel density in photo-exposed areas has been associated with MC1R
polymorphic variants [162]. Apart from the genetic difference, in the epidermis, the pro-
duction of proopiomelanocortin (POMC), the precursor of α-MSH, increases with age,
whereas its receptor decreases, indicating that α-MSH-dependent intracellular signaling
is deeply involved in the skin aging process [163]. Other genes involved in skin color
regulation, including heterogeneous nuclear ribonucleoprotein (hnRNP), agouti signaling
protein (RALY/ASIP), basonuclin 2 (BNC2), and interferon regulatory factor 4 (IRF4) have
been associated with pigment spot and generally the aged appearance of the skin through
pathways independent of the pigment production [164]. Regarding the dermis, SNPs
of collagen type 1 alpha-2 gene (COL1A2), COL17A1, MMP3, MMP9, and MMP16 are
linked with features of aging [147,148,165,166]. Further, genetic variants of TNF receptor
superfamily member 6b (TNFRSF6B), TNFRSF8, IL6, and NOS1, involved in inflammation,
have been correlated with wrinkle risk [147,148,166]. Altogether, genetic data confirm the
involvement of oxidative stress and inflammation in aging propensity. Epigenetic changes
also participate in the regulation of the homeostasis and regeneration of aged skin [167].
Skin samples from the elderly display increased heterogeneity of global methylation pat-
terns that are characterized by reduced connectivity of gene expression networks probably
mediated by methylation-dependent changes in transcription factor binding [168]. On the
opposite, studies restricted to the epidermis showed very similar methylation patterns
in the epidermis of young and old individuals, demonstrating a limited destabilization
of the epigenome of this tissue compartment during aging [169]. Slowing the cell cycle
coincides with the lengthening epidermal turnover rate resulting in less effectiveness in
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wound healing and desquamation in older adults [170]. Physiological changes in skin
color due to aging alone are minimal. With the aging of the non-sun-exposed skin, pig-
ment is light and homogenously distributed. An inverse relationship between age and
the proliferative activity of melanocytes has been observed independently of skin pho-
totype [97,98,171,172]. Thus, reduced skin pigmentation and tanning response after UV
exposure make aged skin more vulnerable to solar radiation [173,174]. When occurring,
the white spots in aged skin are usually stellate pseudo scars or idiopathic guttate hypome-
lanosis [173]. Recently, Victorelli and collaborators proposed a central role of senescent
melanocytes in skin aging priming because their secretory activity diminishes basal ker-
atinocyte proliferation and guides the epidermis to atrophy in in vitro 3D human epidermal
equivalents [175]. This seems to be due to paracrine CXCR3-dependent mitochondrial
ROS activation, which in turn induces telomere dysfunction in neighboring cells. Epidemi-
ologic studies further evidenced age-related changes in melanocytic nevi [176]. During
life, there is a gradual lessening in the number of common and atypical nevi [173,177].
In the skin, cells positive for senescence markers p16INK4a and senescence-associated
lysosomal beta-galactosidase (SA-βgal) physiologically accumulate with age in the epi-
dermis and the dermis [178–180]. Senescent cells are in a non-proliferative metabolically
active state and constantly produce several pro-inflammatory mediators, proteases, and
mitogenic factors in a state known as the “senescence-associated secretory phenotype”
(SASP) [181]. SASP spreads senescence in neighboring cells, tissues, and organs, as it
functions in an autocrine and paracrine manner [182,183]. Studying human in vitro skin
equivalent, Adamus and collaborators demonstrated that the age of the keratinocyte’s
donor strongly impacts the model’s quality [184]. For these cells, non-univocal results
have been reported in the literature regarding the expression of the proliferation marker
Ki-67 in skin biopsies since inverse correlation with p16INK4a was observed by some
authors [184,185], whereas others reported no change [179] or an increase [186]. From a
functional point of view, biological aging manifests as a decreased physiological reserve
that oxidizes DNA, enzymes, and proteins. Structural and functional dermal changes are
the major contributor to the skin aging appearance [187,188]. The rate of proliferation
and the total number of fibroblasts, the most abundant cell type of the dermis, decreases
progressively with age, suggesting that lower fibroblast cellularity could be responsible for
the occurrence of age-related features, particularly for the decreased collagen production
that has been estimated at 75% lower in people aged ≥80 years [180,189,190]. Studies at a
proteomic level highlighted age-dependent dermal fibroblast secretion patterns including
inflammatory regulators, mitogens, angiogenic factors, and MMPs. MMPs degrade matrix
components, causing less effective epidermal anchorage, skin relaxation, and decreased
interstitial fluid [191,192]. More in detail, “skin-aging-associated secreted proteins”, or
SAASP, in addition to the classical SASP, are enriched in molecules involved in elastic fiber
formation, glycosphingolipids, and sphingolipid metabolism. Apart from ECM organiza-
tion, SAASP has been associated with the regulation of insulin-like growth factor (IGF)
transport and uptake by IGF binding proteins (IGFBPs), alteration in adherent junctions’
interactions (N-cadherin and Cadherin-11), glucose and carbohydrate metabolism, and
capability of glutathione synthesis and recycling. Specifically, a lower level of expression
of glutathione-s-transferase (GST) in middle-aged and old fibroblasts explains the of loss
detoxification capability in intrinsically aged skin [193]. Naturally, aged dermal fibroblasts
with reduced mechanical force downregulate TGFβRII, thus impairing the TGFβ/SMAD
signal transduction pathway [194]. Reduced contractile force and migratory potential of
old fibroblasts have been proposed as biomarkers of dermal aging processes [195,196].
Abnormal TGFβ/SMAD3 signaling in turn results in repression of CTGF-dependent type I
collagen synthesis as well as stimulation of MMP1-induced type I collagen degradation,
leading to dermal thinning [112,197]. Reciprocal regulation of TGFβ and ROS strongly
impact normal and pathological connective tissue remodeling [198,199]. Reduced levels of
tissue inhibitors of metalloproteinases (TIMPs) are a consequence of natural aging [200].
Interestingly, Salzer and collaborators demonstrated that aged upper (papillary) dermal
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fibroblasts progressively acquire the characteristics of the lower (reticular) dermis, with
a minor expression of ECM proteins and gain of adipogenic markers [201]. Since it has
been proposed that reticular fibroblasts are in a more advanced stage of differentiation than
papillary fibroblasts, it seems plausible that the transition from the papillar to reticular state
is related to the relentless terminal differentiation process of post-mitotic cells [202,203].
Another recent study proposed a specific feature of chronological age-related partial loss
of dermal fibroblasts described as “loss of cellular identity” [204]. In detail, old papillary
fibroblasts presented fewer papillary and more reticular gene expression profiles, while
the reticular counterpart presented a less decided reticular gene expression profile [205].
This observation is of interest since dermal ECM produced by papillary fibroblasts better
supports epidermal longevity compared to reticular-generated ECM [206]. A compara-
tive analysis of matched papillary and reticular fibroblasts revealed that intrinsic aging
differentially impacts these two cell populations. Colony growth at low culture density
and growth rate in mass is strongly reduced in papillary fibroblasts compared to reticular
fibroblasts [203]. This could be explained by the more pronounced exposition of superficial
dermis to external stimuli and the consequent impact on the redox equilibrium of the
papillary dermis. A recent work pointed out the attention to the effect of intrinsic age on
the differentiation capacity of a restricted population of fibroblasts localized within the
conjunctival junctions that connect the dermis to the hypodermis, i.e., dermo–hypodermal
junction fibroblasts [207]. These cells displayed distinct age-related features when com-
pared to papillary and reticular fibroblasts, presenting attenuated osteogenic differentiation
potential, no adipocyte differentiation capacity, and unmodified chondrocyte differenti-
ation capacity [207]. Intrinsic aging also reduces subcutaneous fat with accompanying
increased vessel disorganization, loss of cellularity, and vascularity [208]. The lack of
microvascular organization in the skin has retained the cause of age-related deficits in
the diffusive transport capacity of the skin vasculature [142]. During chronological aging,
the body undergoes a continuous increase in systemic low-grade inflammation, a process
known as ”inflammaging” [209,210]. Such chronic aging-related inflammatory response is
marked by an increase in systemic levels of IL1, IL6, and IL33, as well as TNF, IFNγ, and
GM-CSF [211,212]. The relationship between the senescence of skin-resident immune cells
and inflammaging has not been fully understood yet. In aged skin, decreased self-renewal
capacity of in situ Langerhans cell progenitors causes a reduced number of their mature
counterparts. Additionally, the lower migration propensity of these cells in geriatric indi-
viduals contributes to impaired skin barrier integrity [212,213]. In addition, Langerhans
cells in aged skin express a low amount of human beta-defensin-3, which is an important
antimicrobial peptide produced in response to microbial infection or skin dysbiosis [214].
Thus far, the lessening of skin barrier function facilitates pathogens and pollution invasion
driving low-grade chronic inflammation. Thus, when not locally restricted, the presence of
inflammatory markers in senile skin might mirror a more complicated dysfunction of the
immune system. Inflammaging has a widely recognized role in most common age-related
diseases such as Alzheimer’s Disease, Parkinson’s Disease, heart diseases, multiple sclero-
sis, atherosclerosis, cancer, type II diabetes, and many others [215,216]. Finally, a defective
epidermal barrier resulting from aged skin is also linked to age-related alternations to the
gut and skin microbiome consisting of millions of bacteria, fungi, and viruses [217,218].
Investigations regarding the skin microbiome and its association with common clinical skin
aging parameters including pigmentation, wrinkles, and texture demonstrated a clear age-
dependent microbial signature attributing a causative effect of the altered skin microbiome
in skin aging promotion [219].

3. The Role of Oxidative Stress in Extrinsic Aging of the Skin

In addition to the physiological mechanism of aging, exposure to UV light and envi-
ronmental pollutants accelerate the acquisition of the aged phenotype. UV light is the major
extrinsic agent responsible for skin aging. Premature photoaged skin typically presents
with increased thickness of the epidermis, irregular pigmentation, and dermal connec-
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tive tissue damage including the typical solar elastosis, laxity, dullness, roughness, and
alteration of the vascular system [220]. The primary modification of the dermis during
photo-accelerated aging regards structural components: collagen, elastin, and glycosamino-
glycans. In older skin, the collagen network looks disorganized, and the ratio of collagen
type III (Col-III) to I has been shown to increase due to less Col-I production [221]. Dissimi-
lar to chronologic skin aging, MMP-induced collagen degradation and elastin degeneration
are key mechanisms in photoaging [222]. In addition, the reduction in fibrillin structures
and Col-VII involved in the bond between epidermis and dermis contribute to wrinkling
formation [223]. Photoaging occurs principally due to UVA and UVB irradiation, which
based on their distinct physical properties, induces different partially overlapping bio-
logical responses including abnormal ROS accumulation and/or DNA damage in both
the epidermal and dermal compartment [224]. The fact that photoaging is largely due to
oxidative disequilibrium is confirmed by the efficacy of topical antioxidants in UV-induced
damage prevention [53,225]. Overall, depending on the cell type and the intensity of the
stress, cells can either transiently block the cell cycle and repair the damage before restart-
ing cell proliferation or enter apoptosis if the sensed damage is too serious. Therefore,
sub-cytotoxic acute or chronic stress can induce premature senescence. Several pieces of ev-
idence revealed that under the same conditions, human fibroblasts predominantly respond
via senescence, while epithelial cells prefer to exert apoptosis [185,226]. Together with the
cell-specific turnover rate, this partially explains the preferential detection of the senescent
markers in the dermal compartment compared to the epidermal one. The magnitude of
photodamage depends on constitutional factors, e.g., skin phototype (skin color, capacity to
tan) and frequency and/or intensity of sunlight exposure [227]. The main cause of sunburn
is UVB radiation. Skin UVB exposure results in the enhancement of NF-kB signaling. This
signaling pathway is responsible for the augmented secretion of inflammatory mediators
(IL1, IL3, IL6, IL8, IL7, IL10, and TNFα) by keratinocytes [228]. Exposure to UV light
also activates lipoxygenase and cyclooxygenase pathways (LOX and COX-2), resulting in
the production of leukotrienes and prostaglandins [228,229]. Prostaglandin E-2 (PGE-2)
has a prominent role in the development of skin damage associated with both intrinsic
and extrinsic aging. Studies focused on full-thickness sun-protected skin showed that
both PGES-1 (PGE Synthase-1) and COX-2 expression progressively increased in dermal
fibroblasts with age [230]. Additional studies confirmed higher COX-2 enzyme expression
in chronologically aged skin and photoaged skin compared to young skin [231]. In addition,
inflammatory cells such as lymphocytes, eosinophils, mast cells, and mononuclear cells are
incremented [232]. This complex cascade of inflammatory events might determine local
and potentially also systemic immunosuppression, which may not only undermine the
control of dysplastic and neoplastic skin lesions but also favor immuno-pathological and
infectious skin diseases [233]. Lower energy UVA rays penetrate deeply to the dermis, gen-
erating ROS that exacerbate the UVB-dependent mutagenic risk [234,235]. If not repaired,
DNA mutations persist through subsequent cell subdivisions causing precancerous lesions
(actinic keratosis) and skin cancers (basal cell carcinomas BCC, squamous cell carcinomas
SCC, and melanoma).

UV radiation stimulates keratinocytes and fibroblasts to secrete numerous cytokines
that are responsible for the proliferation of melanocytes and transient melanogenesis acti-
vation [236–239]. Fibroblasts isolated from habitually sun-exposed skin produce a greater
amount of promelanogenic factors, such as hepatocyte growth factor (HGF), stem cell factor
(SCF), and keratinocyte growth factor (KGF), whereas keratinocytes secrete α-MSH, SCF,
prostaglandins, endothelin (ET), KGF, granulocyte-macrophage colony-stimulating factor
(GM-CSF), and basic fibroblast growth factor (bFGF) [239–241]. The pigmentation response
is an adaptation that prevents further DNA damage. Consequently, photoaged skin is
characterized by irregular areas of pigmentation and hyperpigmented lesions [242,243].
Clinically, these dyspigmentations are known as solar lentigines (SL). Hyperpigmentation
of this nature occurs due to changes in melanin synthesis, distribution, and turnover main-
tained by the focally increased number of melanocytes in the epidermis [244]. However,
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since decreased melanin removal rather than increased melanin production is considered
the cause of hyperpigmented age spots, keratinocytes play a central role in this type of
hyperpigmentation [245]. Melanin-loaded keratinocytes in SL show a lower proliferative
capacity, altered differentiation, and are resistant to apoptosis. In addition, enhanced
expression of p16INK4a and enlarged cell body size in SL suggest that keratinocytes are
in a senescent condition [245]. In line with the idea that intrinsic factors could make the
difference in the impact of extrinsic insult responses, darker skin types produce fewer
radicals in the UV light compared to light skin types, whereas no differences were observed
in the visible and infrared light [117]. This is mostly due to the prominent presence of
pheomelanin in lighter skin amplifying UV-induced ROS formation [246]. Thus, in the
dermatology practice, skin-type-specific sun protection is desired [247]. Apart from UV
light, other radiation sources significantly impact skin aging. Infrared radiation, visible
light, and artificial light promote ROS formation [248]. Infrared radiation causes photoag-
ing and erythema, whereas visible light and artificial light stimulate inflammatory factors
and hyperpigmentation [248]. Extensive clinical data demonstrated that outdoor (smog,
ozone, particulate matter, etc.) and indoor (tobacco, solid fuel) pollution act in synergy
with UV light in premature skin aging appearance [249,250]. A correlation between the
number of years and packs of cigarettes smoked and the degree of skin aging has been
documented [251]. Smokers have less skin elasticity and a reduced amount of collagen
due to the low level of collagen synthesis [249]. Smoking promotes keratinocyte dysplasia
and roughness of the cutis, and a dose-dependent relationship between wrinkling and
smoking has been demonstrated [89,252]. In vitro exposure to tobacco extract induced
the MMP1 expression by activating the aryl hydrocarbon receptor signaling pathway in
human keratinocytes and fibroblasts [253]. An in vivo study confirmed a higher level of
MMP1 expression in the dermis of smokers compared to non-smokers, resulting in collagen
and elastin breakdown [254]. Due to an increase in ROS, reactive nitrogen species (RNS),
DNA damage, protein, lipid oxidation, and altered mitochondria homeostasis, pesticides
are a potential risk for skin aging and carcinogenesis [255,256]. Among exposome factors,
dicarbonyl compounds such as glyoxal and methylglyoxal displayed the capacity to trig-
ger oxidative stress-induced senescence in fibroblasts and keratinocytes [257–259]. These
dicarbonyl compounds come from environmental exposure or food consumption [260].
However, age and metabolic diseases, such as diabetes, compromise the detoxifying ac-
tivity of glyoxalases, leading to the accumulation of toxic glycation end products [261].
Accordingly, antioxidant exogenous supplementation with dietary antioxidants and/or
cutaneous treatment with antioxidant molecules have been proven beneficial to improve
photoaging [262]. However, the penetration in the stratum corneum of some antioxidants
might be challenging. Several anti-aging strategies attempt to reduce (or avoid) exposure
to UV and to reinforce the antioxidant capacity of the skin. The combination of both
strategies is desired, since sun protection does not offer an appropriate protection to resist
UVA-induced ROS. Numerous lines of evidence support the hypothesis that antioxidant
compounds such as ascorbic acid, polyphenols, tocopherols, and other natural substances
limit the concentration of free radicals, attenuating oxidative stress and slowing down
the process of aging [263]. Ascorbic acid (vit C) directly scavenges ROS generated by
UV radiation and promotes the biosynthesis of elastin and collagens [264]. In addition,
phytochemicals such as resveratrol, quercetin, and green tea extract act as antioxidants
to scavenge free radicals or ROS and have been reported to be effective in decreasing or
retarding the progression of the aging process [265]. In addition, some phytochemicals
act as anti-inflammatory agents by inhibiting the production of inflammatory mediators
and cytokines and as stimulators of fibroblasts [266]. More recently, oral administration
of bioactive collagen peptides to prevent skin aging has attracted more and more atten-
tion. Different formulations demonstrated efficacy in increasing skin hydration, elastin,
pro-collagen I, and fibrillin, reducing wrinkle width [267,268] and increasing dermal matrix
synthesis. Similarly, in preclinical animal models, oral supplementation plant polysaccha-
rides extracted from Tremella fuciformis and Sargassum fusiforme enhanced SOD, Cat, and
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GPX activity significantly and decreased ROS and malondialdehyde levels, improving skin
damage following UV exposure [264,269]

4. ROS and Hair Greying

One of the simplest indicators of aging in humans is hair greying or ”canities”. This
fascinating phenomenon, characterized by loss of pigment production and deposition
within the hair shafts [270], has attracted the attention of researchers for years and has
led to a better comprehension of the intricate relationship between genetic, metabolic,
neuroendocrine, and oxidative factors in its manifestation. Hair greying occurs in all
individuals independent of sun exposure and results from the progressive loss of hair
follicular melanocytes with age. This could result from numerous impaired processes,
including follicular melanocyte death, migration or differentiation failure of melanocyte
stem cells, or melanocyte stem cell depletion or death. Of course, when speaking about
aging, the “free radical” theory is one of the most widely experimented with (Figure 3).

Figure 3. The involvement of oxidative stress in the greying process. In young and healthy subjects,
melanocytes in pigmented hair follicles can deal with the low endogenous oxidative stress caused by
the melanin biosynthetic pathway. This is due to the adequate presence of endogenous antioxidant
levels and the high DNA repair activity. In old subjects, however, reduced production of endogenous
antioxidants and repair enzymes induce deleterious oxidative stress damage in pigment-producing
cells. This results in the accumulation of senescent inactive melanocytes around the dermal papilla
and at the outer root sheath, no melanocyte stem cells at the bulge area, and consequent a non-
pigmented hair shaft.

Excluding UV light, hair follicles (HFs) can be exposed to other sources of ROS such
as intrinsic metabolic by-products [271] and extrinsic agents (inflammatory process, smoke,
drugs, poor nutrition). Indeed, the frequent 4977 bp mitochondrial DNA deletion (a
marker of oxidative stress) is more frequent in greying HFs than in matched pigmented
follicles, and melanocyte death by oxidative stress is increased in greying follicles [272].
The presence of highly vacuolated melanocytes within the HF, a cellular appearance that
is ROS induced, corroborates the ”free radical theory of hair greying”. Some grey hair
melanosomes were identified within auto-phagolysosomes, suggesting the removal of
damaged melanosomes [273]. To cope with oxidative stress, the HF possesses an extremely
elaborate antioxidant system [274]. A progressive failing of this system has been described
in studies confronting prematurely grey hair follicles to pigmented ones, evidencing a
downregulation of Cat, GPX1, and SODs in the former. These are accompanied by a
20-fold reduced expression of genes involved in melanogenesis such as Tyrosinase (TYR),
Tyrosinase-Related Protein-1 (TYRP1), Microphthalmia Transcription Factor (MITF), Paired
Box-3 (PAX3), POMC, KIT Proto-Oncogene, Receptor Tyrosine Kinase (KIT), and SRY-Box
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Transcription Factor 10 (SOX10) [275]. In a study of aging, Kauser et al. have also shown
that follicular melanocytes age more than their epidermal counterparts, highlighting lower
expression of Cat in follicular melanocytes [276]. In the same study, TRP-2 was signifi-
cantly lowered in the older epidermal melanocytes, but at the same time, it was strongly
elevated in the aged follicular melanocytes [276]. Compellingly, TRP-2 depletion has not
been confirmed in eyelashes and eyebrows of the same patient group, suggesting possible
anatomical differences between hair follicles of these locations. Lower antioxidant capacity
due to depletion of TRP-2 from pigmented bulbar melanocytes suggests an additional
antioxidant pathway that could affect hair greying. The intrinsic Cat deficiency could
justify the high concentration of H2O2, which has been described in greying HFs in several
reports [272,277]. Of note, the inadequate activity of Cat activity has been depicted in
vitiligo, a common depigmentation disorder characterized by local or diffused destruc-
tion of melanocytes in the skin [278–281] sometimes presenting loss of hair pigmentation
during disease progression [282]. Furthermore, Wood et al. have reported the inhibition
of Tyrosinase, the key enzyme of the melanin biosynthetic pathway, by elevated levels of
H2O2 [283]. This observation, coupled with the intrinsic ROS generation characteristic of
melanogenesis [284], could justify an age-dependent melanin synthesis defect in the HF
and, thus, hair greying. Accordingly, amelanotic melanocytes at the outer root sheath are
somewhat less affected by oxidative damage and survive for a long time even within the
white, aging hair follicles [285]. Another hypothesis has considered a possible “bleach-
ing” phenomenon of the melanin pigment induced by H2O2 [286], even though bleached
melanosomes have not yet been reported in hair follicles [287]. Of course, an obvious
source of ROS is UV radiation, and Lu et al. have shown premature HF melanogenesis
termination after UVB irradiation [288]. Altogether, these observations documented a high
susceptibility to oxidative stress of HF melanocytes, implying an important role in the hair
greying phenomenon. Ex vivo cultured human hair follicles demonstrated ROS-induced
hair growth retardation, suggesting that oxidative disequilibrium intersects with diverse
aspects of HF biology [289]. Oxidative stress and the aging process of HF are associated
with reduced expression of the protective factor Bcl-2 [271]. Bcl-2 has a critical role in
melanocyte maintenance, with knockout mice displaying accelerated greying [290]. By
increasing Bcl-2 expression, melanocyte populations in the hair bulb and melanocyte stem
cells in the bulge could be maintained, preventing hair greying. Finally, the compromised
redox equilibrium has also been linked to the pathogenesis of androgenetic alopecia, a
common heritable, androgen, and age-dependent process that results in large reductions
in scalp hair density [291,292]. However, it is important to consider that ROS has an am-
bivalent function in hair biology. One key example of ROS relevance in HF physiology is
the mitochondrial ROS-dependent activation of β-catenin and Notch signaling during HF
development [293]. Based on this, photobiomodulation therapy, effective treatment for hair
loss, benefits ROS-dependent stimulation of the Akt/GSK3β/β-catenin signaling pathway
to drive quiescent hair follicle stem cells and alleviate HF atrophy [294].

5. Contribution of ROS in Common Age-Related Skin Diseases
5.1. Evidence of the Impact of ROS and Age-Related Skin Alteration on Tissue Vulnerability

Skin aging also represents a health risk, resulting in skin fragility. Age-dependent
changes affecting both the adaptative and innate immune response have been well doc-
umented in older humans [295]. The immunosenescence consists of three main events:
reduced immune response; increased production of autoantibodies; and inflammation
(chronic, sterile, low-grade inflammation). The decrease in cutaneous immune functions
facilitates a series of bacterial infections including cellulitis (particularly of the lower legs),
erysipelas, necrotizing fasciitis, impetigo, folliculitis, and furunculosis [296,297]. Fungal
and viral infections are also more frequent in the elderly [296,298]. Opposite, chronic,
low-grade inflammation typical of elderly individuals could serve as a stimulus for the
onset of autoimmunity [299]. Moreover, the possible release of self-antigens by dam-
aged keratinocytes that contribute to the production of antibodies against neo-antigens
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might be enhanced by skin barrier impairment [297]. Accordingly, Bullous Pemphigoid,
a subepidermal autoimmune blistering disease, is common in elderly patients [300,301].
Low antioxidant capacity/redox disequilibrium has been proven in Bullous Pemphigoid as
well as in other non-age-related autoimmune skin blistering diseases [302]. Sporadically,
epidermal injury following UVA and psoralen UVA (PUVA) therapies has been reported as
a causative factor in attraction of autoantibodies [303,304]. Benign mucous membrane pem-
phigoid, paraneoplastic pemphigoid, and pemphigus Vulgaris are also more prevalent in
the elderly [305]. Moreover, evidence of oxidative-stress-mediated pathogenic mechanisms
has been reported for pemphigus Vulgaris [306–308] (Figure 4).

Figure 4. Schematic representation of the involvement of oxidative stress in common age-related
skin diseases. Progressive structural and functional degeneration of the skin leaves it prone to a wide
variety of very common cutaneous diseases. The onset of most of these clinical conditions involves
extrinsic activation of cutaneous immune cells in a redox-dependent manner. This includes a reduced
immune response, production of autoantibodies, and chronic low-grade inflammation. Structural,
biochemical changes, accumulation of senescent cells, and age-related stem cell depletion impact the
cutaneous repair capacity. Metabolic alterations in aged skin do not fully support the physiological
function of the skin and its appendages.

Structural and functional degeneration of the skin leaves it prone to various common
cutaneous diseases, including eczema [309], contact and allergic dermatitis [310], seborrheic
dermatitis [305], seborrheic keratoses (SK, a benign epithelial skin tumor) [311], and various
forms of neoplasms. The onset of most of these clinical conditions is triggered by extrinsic
activation of cutaneous immune cells in a redox-dependent manner [312–314]. Several
age-associated characteristics of the cutaneous tissue might represent a hostile environment
for wound healing. These include an abundance of ROS, persistent inflammation, and
increased destruction of ECM components [315]. Further, age-associated deficits in mi-
crovascular function and poor staminal reservoir contribute to deficits in tissue healing in
the older population [316]. Changes in the skin that occur in the elderly, especially dermal
vascular changes, pH, and skin thickness, might directly or indirectly affect percutaneous
penetration of drugs with a relevant consequence in pharmacotherapy. Albeit not linked to
the classical idea of aging, several dermatological disorders are associated with the gain of
senescent cells. For example, senescence-related acquired pathological pigmentary alter-
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ation including vitiligo and melasma have been described to be associated with premature
senescence of the entire skin [241,317–319]. Harmed mitochondrial electron transport chain
complex I activity in vitiligo cells, a high level of mitochondrial malate dehydrogenase
activity, lower ATP production, and a diminished capacity to cope with stressful stimuli
indicate an important role of mitochondrial defective functionality in the pathogenesis of
vitiligo [320,321]. In vitiligo melanocytes, chronic oxidative stress drives the acquisition of
a pro-inflammatory premature senescent phenotype [281]. Similarly, melasma (melanotic
hypermelanosis) is a chronic relapsing hyperpigmentary disease presenting evidence of
oxidative stress, subclinical inflammation, and several senescence markers [322,323]. In
melasma, senescent-associated markers have been documented exclusively in disease-
involved skin areas, whereas in vitiligo patients, the presence of the senescence feature
has been delineated as a diffuse trait of the epidermis and the dermis in both lesional
and non-lesional skin [238,281,324], suggesting an intrinsic susceptibility to premature
senescence of vitiligo patients. Accordingly, for vitiligo, disease risk has been partially
attributed to polygenic variants [325].

5.2. Contribution of ROS in Age-Related Skin Cancers

In old skin, most serious conditions are related to forms of neoplasms, such as a
precancerous lesion (including actinic keratosis (AK) and lentigo maligna) resulting from
the focal proliferation of mutated cells, and tumors. Merkel cell carcinoma [326], non-
melanoma skin cancers [327,328], and malignant melanoma [328,329] are more frequent
in the elderly due to somatic mutations accumulated over time. In melanoma, age is also
an important prognostic factor. Accordingly, multivariate analyses demonstrate that age
and Breslow thickness are the strongest independent adverse prognostic factors [329,330].
Both melanoma and non-melanoma occur prevalently on sun-exposed areas of the skin
and present a severe response to solar radiation. UV-induced skin carcinogenesis is a
complex and continuous biological process caused by different wavelengths. The two most
abundant UV-induced DNA lesions, cyclobutane pyrimidine dimer (CPD) and the pyrim-
idone photoproduct (6-4PP), are due to UVB [331]. The increment of ROS that in turn
could damage DNA by the formation of 7,8-dihydro-8-oxyguanine (8-oxodG) is largely
dependent on UVA [332]. It is widely documented that sunscreens are also an important
aspect of photoprotection, confirmed by their efficacy in reducing photocarcinogenesis
and photoaging [333,334]. Further, several topically or systemically administered com-
pounds confer protection against oxidative stress in dermal and epidermal cells. Vitamin
D and related metabolites have been found to facilitate keratinocyte survival after UVB
exposure [335], enhancing DNA repair [336,337]. Nicotinamide (NAM), a water-soluble
vitamin B3 derivate, enhances DNA repair and mitigates the UV-induced suppression of
immunity at the cellular level, whereas in clinical trials NAM in both topical and oral forms
decreased trans-epidermal water loss and the development of cancers [338]. Thompson et al.
demonstrated that nicotinamide lowered levels of 8-oxo-7,8-dihydro-2′-deoxyguanosine
and cyclobutane pyrimidine dimers (two products of photolesions) in keratinocytes after
exposure to both types of UV rays [339].

Independent of sun exposition, during the aging process, the skin gradually loses the
capacity to counteract redox disequilibrium. Importantly, an age-related decline in the
expression and activity of DNA repair proteins has been demonstrated, indicating that
an organism is naturally predisposed to accumulate genomic and mitochondrial DNA
mutations over time, which could further increase exposure to other ROS sources, impacting
cancer probability [340]. Yet, independent of UV exposure (photoaging), intrinsic aging is
perhaps the most important cancer risk factor. Furthermore, the production of ROS is a
common cellular event occurring during the exposure to many, if not all, modifiable cancer
risk factors, and it is generally accepted that increased ROS levels have a tumor-promoting
effect in the early stages of the tumorigenic process [341,342]. Thus, mitigation of oxidative
skin damage by topical or oral delivery of extrinsic antioxidant supplements may have
therapeutic benefits in preventing melanoma and non-melanoma skin cancers.
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Deregulated ROS in cancer are involved in cell cycle progression and proliferation, sur-
vival, apoptosis, intracellular adhesion, and cell migration. Nevertheless, from the tumor-
centric point of view, senescence is a potent barrier to tumor progression. Melanocytic
nevi are considered an excellent in vivo example of senescence protection of precancerous
cells. Melanocytes in the nevi display features of oncogene-induced senescence, including
intact telomeres, high p16INK4a expression, and SA-β-galactosidase activity [343–347].
This phenotype is mostly referred to as the mutational activation of BRAF and/or N-RAS,
present in up to 81% of melanocytic nevi [348]. Apart from its function in cell cycle regula-
tion, p16INK4a is involved in the prevention of ROS accumulation [349,350]. p16INK4a
regulates mitochondrial biogenesis, dynamics, and function [349,350]. The central role of
p16INK4a in melanocyte biology is demonstrated by the fact that individuals with famil-
ial CDKN2A gene (encoding p16INK4a and p14ARF) deficiency (also known as Leiden
syndrome or Familial Atypical Multiple Mole Melanoma syndrome) have a character-
istic accumulation of nevi and an increased melanoma risk [351]. Nevi remain growth
arrested for a long time and infrequently develop into melanomas [352,353]. Thus, primary
melanomas are considered a paradigm of senescence evasion. A decrease or loss of the
tensin homolog (PTEN) and consequent activation of the PI3K/AKT signaling pathway
may abolish senescence status, facilitating the melanocytic nevi progression into dysplastic
nevi or melanoma [354]. A similar situation has been described for the keratinocyte lineage.
Sasaki et al. showed ROS-induced senescence in normal epidermal keratinocytes might
be triggered by upregulation of p16INK4a through demethylation in its promoter region.
Since this genomic regulation has been not found in SCC cell lines, a key role in coun-
teracting malignant transformation of normal human epidermal keratinocytes has been
proposed [355]. However, the presence of p16INK4a-positive senescent cells in both benign
(SK) and potentially malignant age-related skin lesions (AK) underlines the dual nature of
senescence in cancer [356]. In keratinocytes, due to the renewal process regulated mainly by
the proliferation/apoptosis ratio, reduced death of damaged cells causes cancer onset. At
the molecular level, in keratinocyte carcinomas, p53 is the critical regulator of cell fate. P53
plays a critical role in supporting the DNA repair process and restoring genome stability.
In genetically unstable cells, p53 can induce apoptosis, maintaining tissue homeostasis and
tumor suppression [357]. However, loss-of-function of tumor suppressor p53 mutation,
which is very frequent in the skin due to the repeated UV insult, impairs the physiological
DNA repair machinery activity leading to the accumulation of further oncogenic mutations
and expansion of pre-neoplastic clones [358]. Consistent with the early involvement of p53
in skin carcinogenesis, a wide number of studies documented p53 mutation in AK [359].
Interestingly, mutations at particular p53 codons are present in sun-exposed normal human
skin at different frequencies depending on genetic background and lifestyle [360,361] and
are considered a valid predictor of risk for basal cell carcinoma [362].

In the contest of skin cancer, pre-existing ECM alterations occurring in both aging and
photoaging acquire a prominent interest in disease onset, progression, and invasion. The
accumulation of senescent fibroblasts in habitually sun-exposed skin might direct stroma
modification onto a tumor-promoting one [363,364]. Meanwhile, several reports have
consistently suggested a mechanistic link between the aging microenvironment and neo-
plastic disease progress in several tissues, including the skin [365]. Aging-related fibrosis
and the resulting increase in tissue stiffness have also been suggested to fuel carcinogene-
sis [366,367], possibly via alterations in the mechanical force balance between ECM, cell,
and cytoskeleton [368]. The microenvironment surrounding benign nevi and melanomas
displays greater stiffness than healthy skin, suggesting that physical assets of the tissue
impact melanoma onset or progression [369]. Instead, in the contest of melanoma, modifi-
cation of dermal ECM architecture and compromission of basement membrane integrity
can facilitate the invasion of tumor cells. Accordingly, copious production of MMPs has
been frequently reported in melanoma lesions [370]. Several studies have investigated the
expression and activity of antioxidant enzymes in skin cancer cell lines, demonstrating a
disequilibrium of the redox state within these cells [371]. Sander et al. reported that in



Antioxidants 2022, 11, 1121 18 of 33

human melanoma and non-melanoma skin cancer the natural redox balance is perturbed,
leading to the accumulation of lipid peroxides and the formation of α, β-unsaturated
aldehydes, including malondialdehyde (MDA) [372], which was shown to be mutagenic
and carcinogenic [373]. MDA can combine with free amino groups of proteins, resulting
in MDA-modified protein adducts, which in turn can be used as a measure for oxidative-
stress-induced lipid peroxidation [374]. Intriguingly, significantly elevated MDA levels
were found in SCC [375]. Primary and metastatic melanoma has a better antioxidant status
than other skin tumors, including non-melanoma skin cancers [376]. Higher activity of Cat
and SODs explains increased resistance of melanoma cells to oxidative stress compared
to normal melanocytes and melanocytic nevi, suggesting that the acquisition of a robust
antioxidant network is prominent for melanoma development [377,378]. A significant
increase in plasma MDA and Cat activity but a simultaneous low SOD activity has been
recorded in melanoma patients [379]. The elevation of both intracellular and extracellular
ROS by tumor cells plays an important role in driving tumorigenesis by shaping the tumor
microenvironment [380].

A particular feature of tumor stroma is the increased number of fibroblasts, patho-
logically activated and referred to as cancer-associated fibroblasts (CAFs). Due to the
extraordinary tumor stroma paracrine dialogue, fibroblasts progressively acquire a molecu-
lar signature that partially overlaps with the stress-induced premature senescence one. This
includes the release of molecules critically involved in metabolic and immune reprogram-
ming of the tumor stroma with an effect on angiogenesis and resistance to therapy [381,382].
Extensive data demonstrated that ROS exerts a pivotal role in the process of fibroblast acti-
vation. It is known that ROS can be transferred from cancer cells to neighboring fibroblasts.
ROS affects CAF’s features by promoting the conversion of fibroblasts to myofibroblasts
that contribute to the tumor progression and spreading processes [383]. ROS activates CAFs
that in turn enhance tumorigenesis by activating signaling pathways crucial for tumor cell
proliferation and epithelial to mesenchymal transition [383]. As for other cancer types, the
secretory profile of fibroblasts residing within the tumor margins or infiltrating melanoma
substantially overlaps with that of senescent dermal fibroblasts [384,385]. It is important to
underline that in contrast to the aging process that is characterized by a reduced number
of dermal fibroblasts, skin neoplasms are permeated by the ratio of augmented fibrob-
lasts/myofibroblasts, and that the presence of a large number of myofibroblasts in the
tumor microenvironment has been associated with an elevated risk of invasion, metas-
tasis, and a poor prognosis [364,386]. Paracrine TGFβ release by tumor cells causes an
increase in NAD(P)H oxidase activity and triggers ROS-dependent fibroblast conversion
into myofibroblasts by alpha-smooth muscle actin (α-SMA) gene transcription [387]. This
crosstalk between tumor cells and CAFs could be abrogated with the addition of Cat [388].
Conversely, the decrease in oxidative stress in the tissue surrounding a tumor can slow
down cancer growth and counteract its metastatic potential. Undeniably, SOD2 in CAFs
can act as tumor suppressors [389].

6. Conclusions

Aging, as a broad term, encompasses several visible cutaneous phenomena such as
skin wrinkling, atrophy, hair greying, and xerosis. Furthermore, since the skin gradually
loses its structural and functional characteristics, skin aging is associated with several other
processes such as viral, bacterial, and fungal infections, autoimmune blistering diseases,
eczema, contact dermatitis, seborrheic dermatitis, and both melanoma and non-melanoma
skin cancer. In this review, we provided an overview of the role of ROS in the appearance
or the worsening of several age-related signs. We highlighted the importance of the former
in both intrinsic and extrinsic aging. Indeed, chronic perturbation of redox equilibrium in
the skin induces senescence and persistent inflammation. Overall, the understanding of the
molecular mechanisms implicated in ROS formation and contrast is important to prevent
physiologic skin aging and to compensate for functional deficits implicated in premature
skin aging. However, the major challenging point is the definition of preventive strategies
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capable of sustaining the cutaneous intrinsic defense network. According to the minor
capacity to preserve redox equilibrium, the elderly population needs to be more effectively
treated to avoid an overabundance of ROS. On the other hand, pharmacological targeting of
specific signaling pathways implicated in antioxidant/oxidant imbalance might represent
a therapeutic opportunity for specific pathophysiological conditions frequently associated
with aging, such as autoimmune disorders, chronic inflammation, and a multiple sequential
skin cancer setting.
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