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MicroRNAs (miRNAs) participate in the regulation of various important biological
processes by regulating the expression of various genes at the post-transcriptional
level. Podocytopathies are a series of renal diseases in which direct or indirect
damage of podocytes results in proteinuria or nephrotic syndrome. Despite decades of
research, the exact pathogenesis of podocytopathies remains incompletely understood
and effective therapies are still lacking. An increasing body of evidence has revealed a
critical role of miRNAs dysregulation in the onset and progression of podocytopathies.
Moreover, several lines of research aimed at improving common podocytopathies
diagnostic tools and avoiding invasive kidney biopsies have also identified circulating
and urine miRNAs as possible diagnostic and prognostic biomarkers for podocytopathies.
The present review mainly aims to provide an updated overview of the recent
achievements in research on the potential applicability of miRNAs involved in renal
disorders related to podocyte dysfunction by laying particular emphasis on focal
segmental glomerulosclerosis (FSGS), minimal change disease (MCD), membranous
nephropathy (MN), diabetic kidney disease (DKD) and IgA nephropathy (IgAN). Further
investigation into these dysregulated miRNAs will not only generate novel insights into the
mechanisms of podocytopathies, but also might yield novel strategies for the diagnosis
and therapy of this disease.
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INTRODUCTION

Podocytes are highly specialized, terminally differentiated glomerular visceral epithelial cells
that are indispensable for the maintenance of an of intact glomerular filtration barrier in the
kidney (Mathieson, 2011). Due to the restricted proliferation capacity, podocytes are especially
vulnerable to a series of injurious stimuli, such as hyperglycemia, transforming growth factor β
(TGF-β), angiotensin II, as well as adriamycin and puromycin, which could ultimately result in
podocytes loss (Kang et al., 2010; Zhou and Liu, 2015). Glomerular podocytes are the primary
target in majority of glomerular diseases (Arif et al., 2019), mainly including diabetic kidney
diseases (DKD), focal segmental glomerulosclerosis (FSGS), minimal change disease (MCD),
membranous nephropathy (MN), and IgA nephropathy (IgAN), leading to consequent
albuminuria or proteinuria and subsequent renal function decline (Webster et al., 2017;
Torban et al., 2019). Thus, preventing or reversing podocyte injury is an important strategy
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to treat podocyte-associated diseases. In the past decades we
have witnessed dramatic advances in the understanding of
podocyte biology as well as molecular mechanisms involved in
podocyte injury (Mathieson, 2011; Lazzeri and Romagnani,
2015; Zhou and Liu, 2015; Kopp et al., 2020). Nevertheless,
developing podocyte-specific targeted therapeutic strategies is
still a great challenge. Currently, many pharmaceutical agents
such as calcineurin inhibitors (CNIs), glucocorticosteroids
(GCS), and mTOR inhibitors (mTORIs) have been reported
to have protective effects against the podocyte injury.
However, the side effects due to the non-specific nature of
those agents pose a serious concern in the clinical practice
(Mathieson, 2011; Kopp et al., 2020). Thus, identifying the key
molecules that are implicated in different types of
podocytopathies might offer important clues for the
development of new therapeutic strategies for treating
people with proteinuric kidney disease.

MicroRNAs (miRNAs) are a class of non-coding RNAs
(ncRNAs) with an average length of 22 nucleotides, which have
been first discovered by Lee et al., in 1993 (Lee et al., 1993; Yates
et al., 2013). Although miRNAs do not have the ability to encode
proteins, they are able to control the expression of their target genes
at the post-transcriptional level (Borchert et al., 2006; Krol et al.,
2010). Functionally, miRNAs mainly bind to the miRNA response
elements (MREs) in the 3′-untranslated region (3′-UTR) of their
target mRNAs, leading to mRNA degradation and/or mRNA
translational inhibition (Borchert et al., 2006; Filipowicz et al.,
2008; Krol et al., 2010; Yates et al., 2013). It has been predicted that
over 60% of the human protein-coding genes are regulated by
miRNAs (Friedman et al., 2009). Accordingly, as miRNAs are
involved in the modulating the expression of entire gene networks,
dysregulation of certain miRNAs can cause or contribute to a wide
variety of human diseases (Gebeshuber et al., 2013; Badal et al.,
2016; Treiber et al., 2019; Agbu and Carthew, 2021; Schober et al.,
2021; Liu et al., 2022; Zhou et al., 2022). In addition to their critical
roles in modulating gene expression, miRNAs have also been
clinically used as promising non-invasive diagnostic, prognostic,
and predictive biomarkers for several human diseases, such as
malignant pleural mesothelioma, acral melanoma, clear cell renal
carcinoma, HBV-related hepatocellular carcinoma and acute
myocarditis (van Zandwijk et al., 2017; Treiber et al., 2019;
Hong et al., 2020; Blanco-Domínguez et al., 2021). Previous
studies have also indicated that miRNAs play pivotal roles in
the development and progression of various glomerular diseases
associated with podocyte dysfunction (Kato et al., 2009;
Gebeshuber et al., 2013; Lazzeri and Romagnani, 2015; Trionfini
and Benigni, 2017), indicating that they might also represent
potential biomarkers and therapeutic targets for the diagnosis
and treatment of podocytopathies. Moreover, conditional
knockout of Dicer or Drosha, the key enzymatic regulators of
miRNAs biogenesis andmaturation, in a podocyte-specificmanner
results in progressive proteinuria and glomerulosclerosis,
suggesting that miRNAs are also important genomic regulators
of podocyte homeostasis (Shi et al., 2008; Zhdanova et al., 2011).
Yet, the exact molecular mechanisms by which miRNAs modulate
podocyte injury in podocytopathies still remains to be fully
elucidated.

Although a large number of studies have demonstrated the
critical roles of miRNAs in the occurrence and development of
various podocytopathies, to the best of our knowledge, no previous
systematic review has been performed to systematically generalize
the involvement of miRNA dysregulation in podocytopathies. This
review will mainly focus on the current understanding of pathogenic
roles of miRNA dysregulation that links to podocyte injury in
various podocytopathies and shed light on their use as potential
biomarkers and treatment targets for this disease, which would
benefit from further research.

PODOCYTOPATHIES

Epidemiology and Etiology of
Podocytopathies
Currently, despite the high incidence of podocytopathies, reliable
epidemiological data on podocytopathies are still lacking (Kopp
et al., 2020). The pathological diagnosis of podocytopathies is
predominantly based on kidney biopsy, but many patients are not
suitable for biopsy or lack of sufficient resources to perform biopsy,
leading to an underestimation of the incidence of podocytopathies. In
spite of the limitation, the prevalence of podocytopathies seems to be
increasing globally, which is a leading cause of the increased prevalence
of end-stage kidney disease (ESKD) (Rosenberg and Kopp, 2017).
Currently, a number of key causes and risk factors have been revealed
(Figure 1), mainly including genetic factors (Qiu et al., 2018), obesity
(D’Agati et al., 2016), diabetes (Tonneijck et al., 2017), low nephron
mass and nephron loss (Luyckx et al., 2017), immunological and/or
soluble factors (Iijima et al., 2014; Kim et al., 2017; Colucci et al., 2019),
vascular endothelial growth factor (VEGF) inhibition (Craici et al.,
2014; Ollero and Sahali, 2015), infectious agents (Cohen et al., 2017;
Nasr and Kopp, 2020) and various toxins (Rosenberg and Kopp, 2017;
Puelles et al., 2019), that predispose individuals to development of
podocytopathies. Alternatively, podocytopathies can be caused by a
combination of diverse genetic and/or environmental risk factors that
lead to podocyte damage, acting together to achieve a threshold effect
for the development of proteinuria.

Mechanisms and Pathophysiology of
Podocytopathies
As terminally differentiated epithelial cells, the primary and
secondary processes of podocytes cover the outer side of the
glomerular basement membrane (GBM), constituting the
glomerular filtration barrier (Wiggins, 2007; Mathieson, 2011).
Foot process effacement (FPE) of podocytes is the earliest
morphological patterns of podocyte injury, which is closely
related to different degrees of proteinuria in the progress of
various podocytopathies (Wiggins, 2007; Kopp et al., 2020).
Although the effacement of podocytes foot process can be
invertible, podocyte detachment from the GBM or death
indicates inevitable podocyte loss, which can be mainly
attributed to different unfavorable factors such as genetics,
metabolism, toxicity or inflammation (Mundel and Shankland,
2002; Mundel and Reiser, 2010). Following damaged podocytes
loss, the remaining podocytes adapt to expand to cover the newly
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denuded GBM, resulting in hypertrophy of remaining podocytes
(Shankland, 2006). In addition, parietal epithelial cells (PECs),
located in the inner portion of the Bowman capsule, are resident
podocyte progenitors that can provide new podocytes following
injury and loss (Ronconi et al., 2009; Eng et al., 2015). Despite
these mechanisms play a beneficial role in the restoration of
podocyte function and decrease proteinuria, they may be
maladaptive or inefficient. Indeed, the capacity of hypertrophic
podocytes is limited, which may be incapable to maintain the
normal structure of podocyte foot processes, leading to enhanced
local shear stresses that may subsequently trigger the process of
podocyte detachment (Shankland, 2006; Fukuda et al., 2012).
Furthermore, the differentiation of PECs into podocytes can be
impaired by unfavorable factors (such as mechanical stress and
proteinuria), ultimately resulting in inefficient podocyte
regeneration or focal scar formation (Peired et al., 2013; Kopp
et al., 2020). Nevertheless, despite certain progress has been
achieved in exploring the molecular mechanisms and
pathophysiology of podocytopathies, we are still far from fully
understanding the pathogenesis of podocytopathies.

Diagnosis and Treatment of
Podocytopathies
Currently, the diagnosis of podocytopathies is predominantly
based on clinical manifestations combined with pathological

findings. Renal biopsy is routinely conducted on all adults
with nephrotic-range proteinuria to guide treatment and
provide prognosis (Mathieson, 2011; Kopp et al., 2020).
However, the decision whether and when to perform a kidney
biopsy in children with persistent non-nephrotic proteinuria is
still controversial (Hama et al., 2012; Leung et al., 2017). A
detailed differential diagnosis of podocytopathies may demand
a combination of personal and family history, clinical
manifestations, histopathological testing, serological inspection,
imaging examination and/or genetic analyses (Wiggins, 2007;
Kopp et al., 2020). Podocytopathies can be regarded as a
consequence of podocyte dysfunction induced by various
genetic and/or environmental elements. The clinical
syndromes associated with podocyte dysfunction mainly
include the following several types: DKD, FSGS, MCD, MN,
Alport’s syndrome, hypertensive, nephropathy (HTN), immune
and inflammatory glomerulonephropathies (Imm/Inf GN)
(Wiggins, 2007; Nagata, 2016).

Therapeutic approaches in the management of patients with
podocytopathies presenting with massive proteinuria or
nephrotic syndrome can vary depending on the population
served and available resources. Children and adult patients
with consistent non-nephrotic proteinuria are primarily
managed with dietary salt restriction and renin-angiotensin
system inhibitors (RASI) (Mathieson, 2011; Ayalon and Beck,
2015). Besides, low-dose thiazide diuretic will have an additive

FIGURE 1 | The underlying causes and risk factors of podocytopathies across the lifespan. A number of causes and risk factors have been revealed, mainly
including genetic factors, immunological and/or soluble factors, VEGF inhibition, adaptive podocyte stress, infectious agents and various toxins, that predispose
individuals to development of podocytopathies. Different risk factors and/or causes of podocytopathies can present at certain phases of life or be preferentially
associated with gender and race. For instance, genetic causes of podocytopathies are more frequent in children and young adults. Podocytopathies associated
with VEGF inhibition are more common in pregnant women. Among the major risk factors leading to the development of podocytopathies, nephron loss, severe obesity
and diabetes are more frequently observed in adult middle-age patients, whereas low nephron mass is more frequent in adolescence or early adulthood. Besides, the
susceptibility gene APOL1 is more prevalent in patients of Black adult. Finally, podocytopathies induced by various toxins and infectious agents can occur at all ages. The
color gradient in each cause and risk factor represents the incidence of podocytopathies at different ages. APOL1, apolipoprotein L1; HCV, hepatitis C virus; EBV,
Epstein–Barr virus; SARS-CoV-2, the virus that causes COVID-19.
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effect on the anti-proteinuric effect. Children and adolescent
patients with new onset nephrotic syndrome in the absence of
histological verification are usually treat with oral steroid therapy
for two to three months (Zhao and Liu, 2020). Nevertheless, due
to the heterogeneous clinical behavior and response to treatment
with steroid, the dose and treatment duration for the steroid
should be adjusted appropriately according to clinical response.
In adult patients, kidney biopsy, laboratory inspections as well as
renal imaging examinations preclude other glomerular disorders,
thereby guiding the management of podocytopathies based on
the underlying etiologies. Glucocorticoids are the first choice for
the treatment of some cases with no specific cause can be
ascertained (Kopp et al., 2020; Medjeral-Thomas et al., 2020).
Patients with sub-nephrotic proteinuria are usually managed with
maximal doses of RASI and followed longitudinally according to
renal function and residual proteinuria. However, increasing
evident suggests that, beyond the basic initial steroid therapy,
a substantial proportion of patients with podocytopathies are in
an urgent need of a personalized treatment plan to prevent
unnecessary drug-related toxicity. Thus, more in-depth
research is needed to get a systemic understanding of the
underlying mechanisms of podocytopathies, so as to provide
novel therapeutic strategies to combat this type of disease.

Role of MiRNAs in Podocytopathies
Increasing evidence indicates that miRNAs are critical regulators of
gene expression inmammals, and the dysregulation ofmiRNAs is a
common feature of various human diseases, including
podocytopathies (Kato et al., 2009; Trionfini and Benigni, 2017;
Fan et al., 2020). In the following sections, we will mainly focus on
and summarize the current knowledge on the implications of
miRNAs in the occurrence and development of podocytopathies
as well as their potential value of clinical application in the
diagnosis, treatment and prognosis of this disease.

MiRNAs in Focal Segmental
Glomerulosclerosis
Focal segmental glomerulosclerosis (FSGS) is a group of
clinicopathological syndromes sharing a common glomerular
lesion and characterized by marked proteinuria and podocyte
injury, which is the result of diverse insults directed to or inherent
within the podocyte (D’Agati et al., 2011; Wei et al., 2011; Fogo,
2015). A broad range of factors such as genetic, virus infections,
drugs, and circulating factors can contribute to the pathogenesis
of FSGS, which can be broadly classified into primary (idiopathic)
and secondary forms, with approximately 80% of cases being
primary (D’Agati et al., 2011). Current therapeutic strategies for
FSGS mainly focus on reduction of urinary protein excretion and
preserving renal function (D’Agati et al., 2011; Rosenberg and
Kopp, 2017). Approximately 40% of patients with primary FSGS
who receive kidney transplantation eventually develop recurrent
disease in the allograft (D’Agati et al., 2011). Thus, further
elucidation of circulating-factor caused podocyte damage as
well as understanding the mechanisms of podocyte
stabilization may help to shed new light on the specific
pathogenetic mechanisms involved in primary FSGS.

Recent years have witnessed a flourishing interest in exploring
the underlying role of miRNAs in FSGS (Gebeshuber et al., 2013;
Trionfini and Benigni, 2017). For example, Gebeshuber and
colleagues performed the first study to investigate the role of
specific miRNAs in FSGS (Gebeshuber et al., 2013). In this study
the researchers originally identified miR-193a can be highly
inducible by doxycycline in miR-193a transgenic mice under
the control of a cytomegalovirus (CMV)-tet promotor, whereas
the upregulation of miR-193a in transgenic mice induced by
doxycycline resulted in rapidly progressing FSGS and death from
kidney failure within 12 weeks in heterozygous mice and 6 weeks
in homozygous mice, respectively. Mechanistical studies revealed
that miR-193a may suppress the expression of the Wilms’ tumor
protein (WT1), a transcription factor that is indispensable for
maintaining podocyte differentiation and homeostasis. They
concluded that the enhanced expression of miR-193a in FSGS
unveiled a novel pathogenic mechanism for FSGS and may
provide a novel approach to treat FSGS. Consistent with those
findings, a recent study demonstrated that higher miR-193a level
in urinary exosomes was related to higher probability of primary
FSGS and indicated poor prognosis in children with nephrotic
syndrome (Wang et al., 2021). In another study, the association
between urinary miRNAs levels and disease activity and
treatment response in patients with FSGS was also reported
(Zhang et al., 2014). In order to identify urinary miRNA-
based biomarkers for FSGS disease activity as well as predict
patients responds to steroid therapy, Zhang and his colleagues
performed miRNA profiling among patients with active FSGS
(FSGS-A), FSGS in remission (FSGS-CR), and age- and sex-
matched normal controls. A total of 54 candidate miRNAs were
identified, among which the levels of miR-490, miR-196a, and
miR-30a-5p in urine samples were confirmed to be significantly
upregulated in FSGS-A patients compared with normal controls
and FSGS-CR patients and could be used as sensitive indicators of
disease activity. In addition, the same research group also found
that plasma miR-186 level was significantly upregulated in FSGS
patients with nephrotic proteinuria and declined with disease
remission, which was positively correlated with urinary protein
levels in patients with FSGS, implying the possibility of miR-186
as a specific biomarker for FSGS (Zhang et al., 2015). Whereas,
another study showed that the miR-30 family were highly
expressed in podocytes and downregulated in patients with
FSGS, which protected podocytes against injury induced by
deleterious factors (TGF-β, PAN, or LPS) through targeting
Notch1 and p53 (Wu et al., 2014). And exogenous
overexpression of miR-30a attenuated proteinuria and
podocyte injury in PAN-treated rats (Wu et al., 2014). Wu
et al. also demonstrated that miR-30s were consistently
downregulated in podocytes of FSGS patients and PAN-
treated rats, and identified that downregulation of miR-30s
results in calcium/calcineurin signaling activation, thus leading
to podocyte injury in FSGS (Wu et al., 2015). In addition, other
studies have also reported the involvement of some other
dysregulated miRNAs in FSGS, such as miR-135a (Yang et al.,
2017), miR-155 (Ramezani et al., 2015), miR-206 (Guo et al.,
2016), miR-150 (Qi et al., 2020), miR-106a (Xiao et al., 2018) and
miR-146-5p (Williams et al., 2022).
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Although great progress has been made in elucidating the
critical roles of miRNAs in the initiation and progression of FSGS
(Table 1), the impact of miRNAs on glomerular structure as well
as podocyte foot process effacement have yet to be investigated in
detail. Moreover, currently it is still difficult to figure out the exact
molecular mechanisms involved in the regulation of urinary and
plasma miRNAs expression levels under different states of FSGS.
Alternatively, a better understanding of what mediates the
podocytes injury in FSGS will likely lead to novel therapeutic
strategies. Given the complexity of miRNA regulation, more in-
depth studies are necessary to fully understand their contribution
to FSGS.

miRNAs in Minimal Change Disease
Minimal change disease (MCD) is one of the main causes of
nephrotic syndrome, which is typically defined as lacking
significant visible glomerular structure alterations by light
microscopy and the widespread effacement of podocyte foot
processes on electron microscopy without electron-dense
deposits (Floege and Amann, 2016). Although the exact
etiology of MCD remains unclear, glomerular permeability
factors are considered as important contributors to the
pathogenesis of MCD (Clement et al., 2011). Current
treatment of MCD predominantly relies on corticosteroids
(Maas et al., 2016). However, steroid-sensitive individuals
frequently develop recrudesce or steroid resistance, which
eventually results in a part of patients requiring second-line
steroid-sparing immunosuppression (Vivarelli et al., 2017).
Steroid-resistance occurs in approximately 10%–30% of adult
cases, which occurs more frequently and earlier in children
(Waldman et al., 2007). Recently, several newer agents, such
as rituximab, have been utilized in adult patients with MCD

aiming to decrease the risk of adverse effects of steroid therapies.
However, due to the extremely high cost, rituximab currently
cannot replace steroid as a first-line treatment for MCD
(Munyentwali et al., 2013). Moreover, in the pediatric setting,
renal biopsy is usually not performed unless steroid-resistance is
observed (Vivarelli et al., 2017). Hence, there is an urgent need for
developing alternative strategies to treat MCD as well as
identifying novel non-invasive methods to diagnose MCD.

Recent evidence has revealed that dysregulation of certain
miRNAs is linked to MCD progression and clinical outcome,
suggesting they might be considered as potential diagnostic
markers and therapeutic targets for MCD. To date, numerous
studies have demonstrated the critical role of miRNAs in FSGS
progression. In this regard, published data on MCD is relatively
scarce. One recent study has reported that exogenous
overexpression of miR-499 could ameliorate MCD symptoms
as well as attenuate the foot-process effacement of podocytes in
PAN-induced MCD mouse model (Zhang et al., 2018).
Mechanistical studies showed that miR-499 may exert a
protective effect on podocytes by suppressing the expression of
the catalytic calcineurin isoforms α (CnAα) and β (CnAβ),
leading to a decreased activity of calcineurin signaling in
podocytes. Zheng et al. identified that miR-27b aggravated
PAN-induced podocyte dysfunction in a primary podocyte
model through targeting inhibition of adenosine receptor 2B
(Adora2b), an intracellular pro-survival protein (Zheng et al.,
2018). Lu et al. proposed that miR-150 had the potential to
differentiate MCD from other nephropathy subtypes (Lu et al.,
2015). In addition, a growing body of evidence has indicated that
dysregulation of certain miRNAs in body fluid of patients with
MCDmay serve as diagnostic markers and prognostic indicators,
mainly including plasma levels of miR-192 (Cai et al., 2013), miR-

TABLE 1 | MiRNAs in focal segmental glomerulosclerosis.

MiRNA Dysregulation Target In vitro
model

In vivo
model

Effects Reference

miR-193a Up WT1 Podocytes FSGS patients
FSGS mice

Promotes podocyte dysfunction Gebeshuber et al.
(2013)

miR-193a Up — Podocytes FSGS patients As a diagnostic marker Wang et al. (2021)
miR-490 miR-196a
miR-30a-5p

Up — — FSGS patients Positively associated with disease
activity

Zhang et al. (2014)

miR-186 Up — — FSGS patients As a specific biomarker Zhang et al. (2015)
miR-30s Down Notch1 and p53 Podocytes FSGS patients

FSGS rats
Loss of miR-30s facilitates podocyte
injury

Wu et al. (2014)

miR-30s Down TRPC6, PPP3CA, PPP3CB,
PPP3R1, NFATC3

Podocytes FSGS patients
FSGS rats

As essential regulators of calcium/
calcineurin signaling

Wu et al. (2015)

miR-135a Up TRPC1 Podocytes FSGS patients
FSGS mice

Promotes podocyte injury and
apoptosis

Yang et al. (2017)

miR-155 Up — — FSGS patients As a diagnostic and prognostic
maker

Ramezani et al.
(2015)

miR-663 miR-1915 Down — — FSGS patients As a diagnostic and prognostic
maker

Ramezani et al.
(2015)

miR-206 Up WT1 Podocytes FSGS mice Promotes podocyte injury Guo et al. (2016)
miR-150 Up SOCS1 Podocytes FSGS patients

FSGS mice
LNA-anti-miR-150 attenuates
podocyte injury

Qi et al. (2020)

miR-106a Down CXCL14 Podocytes FSGS patients Suppresses podocyte apoptosis Xiao et al. (2018)
miR-146b-5p Up TRAF6 — FSGS patients As a new type of biomarker Williams et al.

(2022)
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30b, miR-30c, miR-34b, and miR-34c (Ramezani et al., 2015) and
urine level of miR-1225-5p (Ramezani et al., 2015).

Although many miRNAs have been identified to be
dysregulated in MCD (Table 2), the precise mechanism of
action of these miRNAs in MCD pathology remains unclear
due to the lack of direct in vivo experimental evidence.
Furthermore, since researchers have proposed that MCD and
FSGS are in fact different histological manifestations of the same
disease processes, those miRNAs that were found to play a key
role in FSGS may also be involved in the pathogenesis of MCD,
which deserves to be further investigated.

MiRNAs in Membranous Nephropathy
Membranous nephropathy (MN) is defined as a complex
pathological disorder of the glomeruli that occurs sporadically
in all age groups (Couser, 2017). The deposition of immune
complexes and the formation of membrane attack complexes
contribute to the structural disturbances in podocytes, which
ultimately lead to the development of massive proteinuria (Ronco
et al., 2021). Clinically, MN often presents as nephrotic syndrome
with variable outcomes, among which one-third of patients remit
spontaneously, another third display variable degrees of
persistent proteinuria without renal function exacerbation,
while the remaining third develop to ESKD (Ronco et al.,
2021). Cyclophosphamide-based therapy protocols have long
been the standard therapy because they have been shown to
prevent the occurrence of renal failure, but they put patients at a
higher risk of developing cancer (Cattran and Brenchley, 2017).
Besides, treatment plans with CD20-targeting agents are well
tolerated, but patients achieve durable clinical remissions at low
rates, and strong evidence of their effectiveness in preventing
renal disease progression is still lacking (Ruggenenti et al., 2017;
Ronco et al., 2021). Accordingly, developing new antigen-specific
immunotherapies as well as identifying novel diagnostic and
therapeutic targets for MN are of great importance for the
development of effective therapeutic strategies to battle this
disease.

With the continuous advancement of high-throughput
sequencing technology and calculation methods, hundreds of
dysregulated miRNAs have been identified and are proposed to
potentially play significant roles in the pathogenesis of MN
(Table 3). Nevertheless, only few miRNAs have been
confirmed to be involved in MN. For instance, Sha et al.
analyzed renal tissues from MN patients and found that miR-
186 was significantly decreased in MN (Sha et al., 2015). In
addition, they demonstrated that Ang II treatment significantly

down-regulated the level of miR-186 in cultured podocytes, while
ectopic expression of miR-186 attenuated Ang II-induced
podocytes apoptosis. The expression levels of miR-217 were
found to be consistently decreased in MN tissue and plasma
by Li and her colleagues (Li et al., 2017). In vitro studies proposed
that miR-217 silencing induced podocytes apoptosis through
targeting tumor necrosis factor superfamily member 11
(TNFSF11). However, whether miR-217 could regulate
TNFSF11 expression in vivo, and whether such relation
between them could make a contribution to the pathology of
MN, still require further investigation. Nonetheless, they
proposed that absolutely quantifying plasma miR-217 could be
an advantageous diagnostic biomarker for MN. Besides, another
research also identified that miR-130a-5p was downregulated in
the renal biopsy specimens from MN patients, which could
attenuate Ang II induced-podocyte apoptosis through
modulating PLA2R expression (Liu et al., 2018), however, this
study also lacked in vivo experiments. Apart from these, some
miRNAs, not yet experimentally confirmed, were proposed as
potential diagnostic biomarkers for MN, including miR-98, miR-
375, miR-7-5p, miR-615-3p, miR-577 (Chen et al., 2014), let-7a-
5p, let-7c-5 (Barbagallo et al., 2019), miR-195-5p, miR-192-3p,
miR-328-5p (Zhou et al., 2019), miR-106a and miR-19b (Wu
et al., 2021), indicating that the exact role of miRNAs in the
occurrence and the progression of MN is far less understood and
remains an enigma.

Collectively, based on these current reports, targeting
inhibition or ectopic expression of certain miRNAs in
podocytes might yield new strategies for MN diagnosis,
prevention, and therapy.

MiRNAs in Diabetic Kidney Disease
Diabetic kidney disease (DKD) is a major microvascular
complication of diabetes mellitus and the leading cause of
chronic kidney disease (CKD) and ESKD worldwide, which
occurs in approximately one-third of type 1 diabetes mellitus
(T1DM) patients and 40% of type 2 diabetes mellitus (T2DM)
patients (Alicic et al., 2017). The global surge in DKD prevalence
parallels the dramatic increase in the incidence of diabetes
worldwide (de Boer et al., 2011). Progressive increase in
proteinuria and progressive deterioration of renal function are
major clinical manifestations of DKD (Doshi and Friedman,
2017). Despite current strategies for DKD management,
mainly including lifestyle modification, intensive control of
glycemic, blood pressure and lipid as well as albuminuria-
reducing, have meaningfully improved outcomes for diabetes

TABLE 2 | MiRNAs in minimal change disease.

MiRNA Dysregulation Target In vitro
model

In vivo
model

Effects Reference

miR-499 Down CnAα, CnAβ Podocytes MCD mice Protects podocytes from cytoskeletal damage Zhang et al. (2018)
miR-27b Down Adora2b Podocytes — Enhances PAN-induced podocytes death Zheng et al. (2018)
miR-150 Down — — MCD patients As a potential typing indictor Lu et al. (2015)
miR-192 Up — — MCD patients As a diagnostic and prognostic maker Cai et al. (2013)
miR-30b/c, miR-34b/c Up — — MCD patients As a diagnostic maker Ramezani et al. (2015)
miR-1225-5p Up — — MCD patients As a diagnostic maker Ramezani et al. (2015)
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complications, DKD still poses a major risk factor for the
development of ESKD (Alicic et al., 2017). Multiple lines of
evidence have demonstrated that podocyte injury or loss plays
a critical role in the development and progression of DKD, which
ultimately leading to proteinuria and further renal damage
(Mathieson, 2011; Reidy et al., 2014). Therefore, identifying
the key molecules that may be involved in podocyte injury
will provide new clues in developing novel diagnostic,
therapeutic and prevention strategies for DKD.

Growing body of evidence suggests that dysregulation various
of miRNAs may serve not only as diagnostic biomarkers but also
as therapeutic targets for several malignant tumors (Beg et al.,
2017; van Zandwijk et al., 2017). Furthermore, in recent years,
with the deepening of researches, the roles of miRNAs in the
pathogenesis of podocyte injury in DKD have received more
attention. Many previous studies have systematically elucidated
that the ectopic expression or knock down/out of indicated
miRNAs could exert a significant effect on high glucose (HG)
induced podocytes injury in vitro, as well as in rodent models of
DKD. For example, ectopic expression of miRNA-23b in diabetic
kidneys attenuated diabetes-induced podocyte injury, reduced
proteinuria as well as effectively mitigated DKD progression in
diabetic mice, indicating a protective role of miR-23b in DKD
podocyte injury (Zhao et al., 2016). Another study by the same
research group reported that miR-25 expression levels were
significantly decreased in the sera of diabetic patients as well
as in kidney tissues from diabetic mice (Liu et al., 2017). Further
in vivo studies indicated that overexpression of miRNA-25 via
intravenous injection of an miR-25 mimic was shown to
ameliorate podocyte injury in diabetic mice. Mechanistic
studies revealed that miRNA-25 exerted its protective role in
DKDmainly through targeting inhibition of cell division cycle 42
(CDC42) expression, a downstream effector of Ras that can lead
to congenital nephrotic syndrome and glomerulosclerosis. A
more recent study also suggested the protective role of miRNA
against podocyte injury in DKD. In this study, miR-10a and miR-
10b were identified to be predominantly expressed in the kidney
and significantly downregulated in podocytes under diabetic
conditions, which acted as endogenous inhibitors of the

NLRP3 inflammasome in DKD, thereby protecting podocytes
against injury in DKD (Ding et al., 2021). Besides, other studies
have also reported the protective role of miRNAs in against
podocyte injury DKD, such as miR-146a (Lee et al., 2017),
miR-29a (Lin et al., 2014), and miR-93 (Badal et al., 2016),
which may act as potential therapeutic targets for DKD.
While, Zhou et al. have demonstrated that up-regulated miR-
27a exacerbated HG-induced podocytes injury in vitro and
contributed to unfavorable renal function and increased
podocyte injury in diabetic rats in vivo (Zhou et al., 2017). In
addition, Kölling and colleagues suggested that therapeutic miR-
21 silencing could ameliorate DKD in mice models (Kölling et al.,
2017). Apart from these, other miRNAs also played detrimental
roles in diabetes-induced podocytes injury, like miR-29c (Long
et al., 2011), miR-182-5p (Ming et al., 2019), miR-20b (Wang
et al., 2017), miR-503 (Zha et al., 2019), miR-193a (Mishra et al.,
2018) and so on. In a word, dysregulation of many miRNAs
indeed plays various harmful roles in the initiation and
progression of podocyte injury in DKD (Table 4).

These lines of evidence suggest that miRNAs have dual roles in
DKD-induced podocyte injury, targeting inhibition or ectopic
expression of indicated miRNAs in podocytes would have
protective effects against podocyte injury in DKD, thus
deserving further investigation.

MiRNAs in IgA Nephropathy
IgA nephropathy (IgAN) is the most common primary
glomerulonephritis worldwide (Roberts, 2014; Rodrigues et al.,
2017). Patients with IgAN can present with a wide range of
symptoms, from asymptomatic microscopic hematuria to rapidly
progressive glomerulonephritis (Roberts, 2014; Rodrigues et al.,
2017). Currently, there is still no specific treatment for IgAN and
patients are managed with the aim of controlling blood pressure
and maintaining renal function. The pathology of IgAN is mainly
characterized by the deposition of pathogenetic polymeric IgA1-
IgG immune complexes in the glomerular mesangium,
proliferation of mesangial cells, increased synthesis of
extracellular matrix and infiltration of many types of immune
cells, including macrophages, monocytes and T cells (Lai et al.,

TABLE 3 | MiRNAs in membranous nephropathy.

MiRNA Dysregulation Target In vitro
model

In vivo
model

Effects Reference

miR-186 Down P2X7 Podocytes MN patients Antiapoptotic effect of podocytes Sha et al. (2015)
miR-217 Down TNFSF11 Podocytes MN patients As a useful diagnostic biomarker Li et al. (2017)
miR-130a-5p Down PLA2R Podocytes MN patients MN

mice
Prevents angiotensin II-induced podocyte
apoptosis

Liu et al. (2018)

miR-98 miR-375 Up — — MN patients As novel biomarkers for the diagnosis and
treatment

Chen et al. (2014)

miR-7-5p miR-615-3p
miR-577

Down — — MN patients As novel biomarkers for the diagnosis and
treatment

Chen et al. (2014)

let-7a-5p let-7c-5p Up IL6 MYC — MN patients As potential diagnostic biomarkers Barbagallo et al.
(2019)

miR-195-5p Up PPM1A — MN patients As a potential biomarker Zhou et al. (2019)
miR-192-3p Up RAB1A — MN patients As a potential biomarker Zhou et al. (2019)
miR-328-5p Down BRSK1 — MN patients As a potential biomarker Zhou et al. (2019)
miR-106a miR-19b Down PTEN — MN patients As new biomarkers for the diagnosis of MN Wu et al. (2021)
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2008; Lai et al., 2016). In addition, emerging evidence indicates
that podocyte injury is singularly important in the pathogenesis
of IgAN and has been considered as a key mechanism leading to
the disease progression (Hill et al., 2011; Lai et al., 2016).
Nevertheless, the precise molecular mechanisms underlying
podocyte injury in IgAN have not been fully understood.
Thus, it is urgent to identify novel key molecules underlying
podocyte injury in IgAN that can potentially serve as early
diagnostic biomarkers and/or therapeutic targets for IgAN.

Over the past decade, we have witnessed a flourishing of
studies aimed at exploring the biological functions of miRNAs
in the occurrence and development of IgAN (Szeto and Li, 2014).
Hundreds of dysregulated miRNAs have been identified in IgAN,
some of which have been proposed to play significant roles in the
pathogenesis of IgAN. For example, Dai and his colleagues
performed the first genome-wide analysis of miRNAs
expression profiling in kidney biopsy samples from 11 patients
with IgAN and 3 normal controls and found that the expression
levels of miR-200c, miR-141, miR-205 and miR-192 were
associated with disease severity and progression in IgAN
patients (Dai et al., 2008). In another study, they further
investigated miRNA expression in renal biopsy samples from
six patients with IgAN and normal renal cortex samples from six
patients with renal cancer by high-throughput sequencing
technology and identified 11 upregulated miRNAs and 74
downregulated miRNAs in IgAN. Further bioinformatic
analysis indicated that these dysregulated miRNAs were
mainly involved in the regulation of the macro molecular
metabolism, the nitrogen compound metabolic process and
biosynthetic process (Tan et al., 2013). Although neither study
further explored the exact roles of these dysregulated miRNAs in
IgAN, they provided new directions for investigating the
pathogenesis of IgAN. Another study found that miR-21
expression level was up-regulated remarkably in glomerular
tissues of patients with IgAN compared to that of the healthy
control people (Bao et al., 2014b). Further studies revealed that
mesangial-derived cytokines could up-regulate miR-21 in
podocytes and inhibition of miR-21 prevented fibrogenic
activation in podocytes. Interestingly, the relationship between
miR-21 and podocytopathy is inspired by the clinical study

conducted by Kong et al., which had found that the actual
level of urinary albumin excretion correlated with the urinary
level of miR-21 (Kong et al., 2012), indicating miR-21 may be
involved in the pathogenetic mechanisms linking albuminuria in
IgAN. Besides, Guo et al. indicated that miR-200b/c/429 cluster
alleviated inflammation in IgAN by targeting TNF-like weak
inducer of apoptosis (TWEAK) (Guo and Liao, 2017). And
Osamu et al. suggested that glomerular miR-26a expression
decreased significantly in both IgAN mice and patients, which
was closely linked to the progression of podocyte injury in IgAN
(Ichii et al., 2014). In addition, other studies have also reported
the involvement of some other dysregulated miRNAs in IgAN,
such as miR-223 (Bao et al., 2014a), miR-590-3p (Zhai et al.,
2019), miR-133a/b (Jin et al., 2018), miR-320 (Li et al., 2018),
miR-100-3p, miR-877-3p (Liang et al., 2016), miR-23b (Li H.
et al., 2021), miR-214-3p (Li Y. et al., 2021), and miR-150-5p
(Pawluczyk et al., 2021). IgAN appears to be a systemic disease in
which the kidneys are damaged as innocent bystanders (Wyatt
and Julian, 2013). Serino et al., for the first time, analyzed their
global miRNA expression profile in peripheral blood
mononuclear cells (PBMCs) of seven IgAN patients and seven
healthy participants and revealed a novel pathophysiological
mechanism whereby upregulation of miR-148b contributed to
the aberrant IgA1 glycosylation through inhibiting core 1, β1, 3-
galactosyltransferase 1 (C1GALT1) mRNA expression, providing
a potential pharmacologic target for IgAN (Serino et al., 2012).
Intriguingly, this result was further confirmed in a recent study
that miR-148b expression level was significantly up-regulated in
tissues from IgAN patients and positively correlated with eGFR
(Wen et al., 2018). Apart from these, many circulating or urine
miRNAs, not yet experimentally confirmed, were proposed as
potential diagnostic biomarkers for IgAN, like miR-146a, miR-
155 (Wang et al., 2011), miR-148b and let-7b (Serino et al., 2016;
Kouri et al., 2021), indicating that these circulating and urine
miRNAsmay have a good potential for diagnosing IgAN and they
deserve to be fully exploited in the future.

Despite the limited number of available studies, some
interesting miRNAs have been identified as potentially relevant
to the pathogenesis of IgAN (Table 5). Although the above-
mentioned studies shed new light on the pathogenesis of IgAN,

TABLE 4 | MiRNAs in diabetic kidney disease.

MiRNA Dysregulation Target In vitro
model

In vivo
model

Effects Reference

miR-23b Down G3BP2 Podocytes DKD patients DKD mice Exerts protective effects against podocyte injury Zhao et al. (2016)
miR-25 Down CDC42 Podocytes DKD patients DKD mice Shows protective effects against podocyte injury Liu et al. (2017)
miR-10a/b Down NLRP3 Podocytes DKD patients DKD mice Negatively regulates inflammation in diabetic kidney Ding et al. (2021)
miR-146a Down Notch1 ErbB4 Podocytes DKD mice As a biomarker for disease progression Lee et al. (2017)
miR-29a Down HDAC4 Podocytes DKD mice Ameliorates diabetes-induced podocyte injury Lin et al. (2014)
miR-93 Down Msk2 Podocytes DKD patients DKD mice Attenuates podocyte injury Badal et al. (2016)
miR-27a Up PPARγ Podocytes DKD patients DKD rats Promotes podocyte injury Zhou et al. (2017)
miR-21 Up PTEN Podocytes DKD patients DKD mice Promotes podocyte dysfunction Kölling et al. (2017)
miR-29c Up SPRY1 Podocytes DKD mice As a novel therapeutic target in diabetic nephropathy Long et al. (2011)
miR-182-5p Up CD2AP Podocytes DKD patients Induces podocyte apoptosis Ming et al. (2019)
miR-20b Up SIRT7 Podocytes — Contribute to HG-induced podocytes apoptosis Wang et al. (2017)
miR-503 Up E2F3 Podocytes DKD rats Contributes to podocyte injury Zha et al. (2019)
miR-193a Up APOL1 Podocytes — Prevents podocytes dedifferentiation in HG condition Mishra et al. (2018)
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these studies all included small sample sizes and their results had
limited adjustment for multiple potential clinical confounders.
Furthermore, there is currently no accepted standard protocol for
functional assessment of identified candidate miRNAs.
Therefore, further research is urgently needed to address those
shortages.

Collectively, the above studies indicated that miRNAs may
have played critical regulatory roles in the processes of
podocytopathies (Figure 2), which may serve as promising
diagnostic biomarkers as well as therapeutic targets clinically.

Potential Therapeutic Applications of
MiRNAs
Mature miRNAs have unique characteristics, including short
sequences as well as high homology across multiple vertebrate
species, which make them potentially suitable as therapeutic
targets for the treatment of various diseases. Currently,
targeted manipulation of miRNAs in kidney can be achieved
through exogenous delivery of specific miRNA inhibitors to block
miRNA function or synthetic miRNA mimics to restore the
expression level of a particular miRNA. However, no miRNAs
are in clinical trials for podocytopathies at the moment. Whereas,
to date, there are already some miRNA-based trials that have
entered phase I or phase II clinical trials, showing significant
clinical promise (Mellis and Caporali, 2018). This includes miR-
16-based miRNA mimic for malignant pleural mesothelioma

(van Zandwijk et al., 2017), miR-34a mimics in patients with
advanced solid tumors (Beg et al., 2017; Hong et al., 2020), anti-
miR-103 and anti-miR-107 for the treatment of type 2 diabetes
and obesity (Trajkovski et al., 2011), miR-29a-3p mimics for
scleroderma (Maurer et al., 2010), anti-miR-155 for cutaneous
T-cell lymphoma andmycosis fungoides (Babar et al., 2012), anti-
miR-122 for chronic hepatitis C virus (HCV) infection (Janssen
et al., 2013), and anti-miR-21 for Alport syndrome (Gomez et al.,
2015).

Many in vivo studies have focused on the therapeutic potential
of manipulation of miRNAs in podocytopathies and promising
therapeutic results in halting podocyte injury and ameliorating
proteinuria have been achieved by knocking down miR-193a
(Gebeshuber et al., 2013; Mishra et al., 2018), miR-150 (Qi et al.,
2020), miR-27a (Zhou et al., 2017), and miR-21 (Kölling et al.,
2017) or ectopic expressing miR-30s (Wu et al., 2014; Wu et al.,
2015), miR-499 (Zhang et al., 2018), miR-27b (Zheng et al., 2018),
miR-93 (Badal et al., 2016), miR-23b (Zhao et al., 2016), miR-25
(Liu et al., 2017), miR-10 (Ding et al., 2021) and miR-29a (Lin
et al., 2014). Currently, efficient kidney in vivo transfection has
been successfully achieved through intraperitoneal, intravenous
or subcutaneous injection of indicated miRNA mimics or
inhibitors (Trionfini et al., 2015; Henique et al., 2017).
However, despite promising therapeutic applications, several
obstacles must be conquered before miRNA-based therapies
for podocytopathies can ultimately be translated into clinical
practice, mainly including developing efficient methods to

TABLE 5 | MiRNAs in IgA nephropathy.

MiRNA Dysregulation Target In vitro
model

In vivo
model

Effects Reference

miR-21 Up PTEN Podocytes IgAN patients Inhibition of miR-21 prevented fibrogenic
activation

Bao et al. (2014b)

miR-200b miR-
200c miR-429

Down TWEAK Podocytes IgAN patients Alleviates inflammation, serve as promising
therapeutic target

Guo and Liao, (2017)

miR-26a Down — Podocytes IgAN patients
IgAN mice

Regulates podocyte differentiation and
cytoskeletal integrity

Ichii et al. (2014)

miR-223 Down Importin α4
and α5

GEnCs IgAN patients Provide a noninvasive method for evaluating
the severity of IgAN

Bao et al. (2014a)

miR-590-3p Up HMGB2 PBMCs IgAN patients May contributes to the severity of IgAN Zhai et al. (2019)
miR-133a miR-
133b

Up FOXP3 PBMCs IgAN patients Inhibits Treg differentiation in IgAN Jin et al. (2018)

miR-148b Up C1GALT1 PBMCs IgAN patients Provides novel therapeutic approaches to
IgAN

Serino et al. (2012)

miR-320 Up PTEN Peripheral
B cells

IgAN patients Promotes the B cell proliferation Li et al. (2018)

miR-100-3p miR-
877-3p

Down IL-8 IL-1β Mesangial
cells

IgAN patients Regulate overproduction of IL-8 and IL-1β in
mesangial cells

Liang et al. (2016)

miR-23b Down Gremlin 2 Mesangial
cells

IgAN patients
IgAN mice

Offer a novel therapeutic target for the
treatment of IgAN

Li et al. (2021a)

miR-214-3p Up PTEN Mesangial
cells

IgAN patients
IgAN mice

Accelerates Mesangial cells proliferation Li et al. (2021b)

miR-150-5p Up — — IgAN patients As a potential mediator and marker of
disease progression

Pawluczyk et al. (2021)

miR-148b Up MEGALIN LLC-PK1 IgAN patients May affect renal uptake and metabolism of
essential substances

Wen et al. (2018)

miR-146a miR-155 Up — — IgAN patients Suggests an immunoregulatory role Wang et al. (2011)
miR-148b let-7b Up — — IgAN patients Appears to be novel noninvasive biomarkers Serino et al. (2016), Kouri

et al. (2021)
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specific delivery of miRNA mimics or inhibitors to podocytes as
well as avoiding the potential toxicity and adverse effects in other
tissues and organs. Fortunately, so far, several strategies have been
developed to partially overcome these limitations, such as using
plasmids expressing indicated miRNAs or short-hairpin RNAs
containing podocyte-specific promoters. In addition, the current
standing diagnosis of podocytopathies predominately relays on
kidney biopsy (Kopp et al., 2020), hence, there is an urgent need
to develop novel non-invasive diagnostic methods for the
detection and monitoring of such diseases. Emerging evidence
suggests that many circulating or urine miRNAs are useful
indicators of podocytopathies, such as miR-193a (Wang et al.,
2021), miR-186 (Zhang et al., 2015), miR-192 (Cai et al., 2013),
miR-217 (Li et al., 2017), and miR-146a (Lee et al., 2017).
Therefore, measuring indicated miRNAs in the urine or
plasma as a potential mechanism for monitoring accelerated
podocyte loss non-invasively holds good potential for clinical
application, which warrants further validation.

CONCLUSION

In this review, we summarized current literature related to the
pathogenic role of miRNA dysregulation in the pathogenesis of
podocytopathies. We majorly focused on narrating the roles and
values of these dysregulated miRNAs in the occurrence, progression,
clinical diagnosis, treatment and prognosis of podocytopathies, which
may provide theory and clinical basis for the future clinical treatment
and research of this rare disease. Over the past few decades our
knowledge towards the critical role of podocytes in the onset and
progression of proteinuric kidney disease has achieved tremendous
progress. The importance ofmiRNAs in thefield of podocytopathies is
increasingly recognized as they allow researchers to gain a deeper
understanding of podocytopathies pathways as well as provide a
rationale for the development of novel diagnostic and possibly
therapeutic strategies. Moreover, the strategies of miRNA-based
therapy that either restores or abolishes miRNA expression and
activity are very attractive, especially now that the several miRNA-

FIGURE 2 | Schematic diagram showing the main dysregulated miRNAs and their corresponding downstream targets in various podocytopathies. Changes in
miRNAs in podocytes occurring in focal segmental glomerulosclerosis (FSGS), minimal change disease (MCD), membranous nephropathy (MN), diabetic kidney
diseases (DKD), and IgA nephropathy (IgAN). Dysregulation of indicated miRNAs contributes to podocyte injuries including podocyte foot process effacement and
podocyte loss due to cell death or detachment from the glomerular basement membrane.
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targeted therapeutics have reached clinical development. By now,
targeted manipulation of miRNA expression as an effective
antiproteinuric therapy has been revealed only in experimental
models of podocytopathies because many safety concerns have not
been settled, from the delivery methods to the potential toxicity and
adverse effects in other tissues and organs. Furthermore, due to the
highly pleiotropic nature of miRNAs, it is unlikely that a single
miRNA will be able to accurately diagnose and predict a certain
disease. Given the involvement of many different miRNAs in
podocytopathies, we firmly believe that a panel of miRNAs would
potentially be more useful than a single miRNA as a biomarker.
Collectively, further research in this area will continue to identify new
therapeutic targets as well as sensitive and specific diagnostic
biomarkers for podocytopathies.
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