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Abstract
Purpose: Isocitrate dehydrogenase 1 (IDH1) has been proven as a prognostic and 
predictive marker in glioblastoma (GBM) patients. The purpose was to preopera-
tively predict IDH mutation status in GBM using multiregional radiomics features 
from multiparametric magnetic resonance imaging (MRI).
Methods: In this retrospective multicenter study, 225 patients were included. A total 
of 1614 multiregional features were extracted from enhancement area, non‐enhance-
ment area, necrosis, edema, tumor core, and whole tumor in multiparametric MRI. 
Three multiregional radiomics models were built from tumor core, whole tumor, and 
all regions using an all‐relevant feature selection and a random forest classification 
for predicting IDH1. Four single‐region models and a model combining all‐region 
features with clinical factors (age, sex, and Karnofsky performance status) were also 
built. All models were built from a training cohort (118 patients) and tested on an 
independent validation cohort (107 patients).
Results: Among the four single‐region radiomics models, the edema model achieved 
the best accuracy of 96% and the best F1‐score of 0.75 while the non‐enhancement 
model achieved the best area under the receiver operating characteristic curve (AUC) 
of 0.88 in the validation cohort. The overall performance of the tumor‐core model 
(accuracy 0.96, AUC 0.86 and F1‐score 0.75) and the whole‐tumor model (accuracy 
0.96, AUC 0.88 and F1‐score 0.75) was slightly better than the single‐regional 
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1 |  INTRODUCTION

Glioblastoma (GBM, WHO grade IV glioma) is the most 
common malignant brain tumor, characterized by genetic 
instability, intratumor heterogeneity, and dismal prognosis.1 
Genomewide‐analysis has revealed that the isocitrate dehy-
drogenase 1 genes (IDH1) are mutated in approximately 12% 
of GBM.2 IDH1 mutations predominantly occur in secondary 
GBMs and younger patients but are much rarer in primary 
GBMs.3,4 IDH1 mutations are associated with longer sur-
vival and are considered as an independent prognostic indica-
tor.5,6 GBMs with IDH1 mutation represent a distinct disease 
entity with a different clinical behavior and genetic charac-
teristics. Detection of IDH1 status is required to guide per-
sonalized therapies and recommended by the World Health 
Organization.7

Currently, the detection of IDH1 mutation focuses on ge-
netic profiling approaches, requiring biopsy or surgical re-
section for tissue sampling. However, biopsy‐based approach 
has been controversial due to its invasiveness, potential 
complications, and possible incomplete sampling caused by 
intratumor genetic heterogeneity.8,9 Substantial assessment 
requires multiregion sampling of the tumor, which currently 
is not widely accepted in clinical practice. An emerging 
technique, radiomics, allows three‐dimensional characteriza-
tion of the imaging phenotypes in the entire heterogeneous 
tumors through high‐throughput extraction of quantitative 
imaging features.10,11 Meanwhile, the advancement of imag-
ing genomics permits correlating qualitative image pheno-
types with molecular data.12 Imaging genomics provides a 
unique opportunity of radiomics to detect underlying molec-
ular properties by noninvasive and repeatable imaging‐based 
approaches.

Several radiomics models associated with IDH1 muta-
tions in low‐ (grade I and II)13-16 and high‐level (grade III 
and IV) glioma16-18 have been reported. Due to the multi-
regional and microenvironmental heterogeneity in GBM,19 

the high prognostic and predictive value of multiregional ra-
diomics model from multiparametric MRI has been widely 
recognized.20-22 It is a reasonable hypothesis that imaging 
features from multiple tumor subregions could have the best 
accuracy in predicting IDH1 mutation than those from single 
subregion. Beyond the accuracy, researchers may be more 
interested in exploring the underpinning of the predictive ra-
diomics features. Building a compact radiomics model with 
a minimal set of imaging features related to IDH1 mutation, 
rather than a model with many well‐fitted features, could be 
more conducive to decipher mechanism underlying an imag-
ing genomics model. However, such an interpretable radio-
mics model built with a minimal set of multiregional MRI 
features associated with IDH1 mutation in GBM is still in 
demand.

In this retrospective multicenter study, we aimed to de-
velop a radiomics model with a minimal set of imaging fea-
tures from multiple tumor subregions in multiparametric 
MRI for pretreatment prediction of IDH1 status in GBM 
patients.

2 |  METHODS

2.1 | Study population
In this retrospective study, 651 patients from The Cancer 
Imaging Archive (TCIA) publicly‐available dataset (www.
cancerimagingarchive.net) and three local institutions be-
tween January 2013 and July 2017 were analyzed. The in-
clusion criteria were that patients with (a) newly diagnosed 
histologically‐confirmed GBM and (b) pretreatment MRI 
including axial T1‐weighted, axial T1‐weighted Gadolinium 
contrast‐enhanced, axial T2‐weighted, and T2‐weighted 
fluid attenuation inversion recovery images (short for T1w, 
T1c, T2w, and FLAIR), and (c) known IDH1 genotype de-
termined from tumor tissue and (d) known clinical data in-
cluding age, sex, and Karnofsky performance status (KPS). 

models. The 8‐feature all‐region radiomics model achieved an improved overall per-
formance of an accuracy 96%, an AUC 0.90, and an F1‐score 0.78. Among all mod-
els, the model combining all‐region imaging features with age achieved the best 
performance of an accuracy 97%, an AUC 0.96, and an F1‐score 0.84.
Conclusions: The radiomics model built with multiregional features from multipara-
metric MRI has the potential to preoperatively detect the IDH1 mutation status in 
GBM patients. The multiregional model built with all‐region features performed bet-
ter than the single‐region models, while combining age with all‐region features 
achieved the best performance.

K E Y W O R D S
glioblastoma, IDH1 mutation, magnetic resonance imaging, radiomics
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Exclusion criteria were that (a) patients without confirmed 
IDH1 data and (b) MRI with motion artifact. Finally, 225 
patients were included in this study, consisting of a training 
cohort of 118 patients and an independent validation cohort of 
107 patients. The training cohort comprised 58 patients from 
TCIA and 60 patients from Sun Yat‐sen University Cancer 
Center. The validation cohort comprised 45 patients from 
The 3rd Affiliated Hospital of Sun Yat‐sen University and 
62 patients from Guangzhou General Hospital of Guangzhou 
Military Command. The study was approved by the Ethics 
Committee of Sun Yat‐sen University Cancer Center, the 
Ethics Committee of The 3rd Affiliated Hospital of Sun 
Yat‐sen University, and the Ethics Committee of Guangzhou 
General Hospital of Guangzhou Military Command. Because 
the data in TCIA was deidentified, Institutional Review Board 
approval for TCIA data was not required. Informed consent 
for the patients in three local institutions was waved. Patient 
and tumor characteristics were summarized in Table 1.

2.2 | MR imaging
All local MR images were acquired with 1.5 and 3.0‐T MRI 
systems (Magnetom Verio or Trio TIM, Siemens Healthcare, 
Erlangen, Germany and Discovery MR 750; GE Healthcare, 
Milwaukee, WI, USA). The scanning sequences and param-
eters were: (a) T1‐weighted sequences at repetition time 
milliseconds, 210‐720; echo time milliseconds, 4‐20; sec-
tion thickness, 2.0‐5.0 mm; (b) T1‐weighted Gadolinium 
contrast‐enhanced images at repetition time milliseconds, 
260‐950; echo time milliseconds, 4‐20; section thickness, 
2.0‐5.0 mm; (c) T2‐weighted images at repetition time 

milliseconds, 2137‐10 000; echo time milliseconds, 80‐140; 
section thickness, 3.0‐5.0 mm; (d) T2‐weighted fluid attenu-
ation inversion recovery images at repetition time millisec-
onds, 6000‐11 000; echo time milliseconds, 85‐155; section 
thickness, 2.5‐6.0 mm.

2.3 | IDH1 mutation analysis
For the TCIA patients, IDH1 mutation data were obtained 
from The Cancer Genome Atlas (TCGA) publicly‐available 
dataset corresponding to the TCIA patients. For patients from 
the three local institutions, IDH1 status was assessed by py-
rosequencing approach. The DNA was isolated from paraffin 
sections of tumor tissue using QIAamp DNA FFPE Tissue 
Kit (Qiagen, Hilden, Germany). Pyrosequencing analysis 
was performed using the PyroMark Q96 system (Qiagen) 
with polymerase chain reaction (PCR) products of exon 4 of 
IDH1 containing R132 coding region.

2.4 | Image preprocessing and multiregional 
segmentation
Image preprocessing was critical for extracting stable fea-
tures and achieving reproducible results in this multicenter 
study where MRI data were acquired from multiple scanners. 
All images were preprocessed to standardize the intensity 
and geometric variations of the MRI data. First, a N4ITK cor-
rection was used to correct the bias field distortion.23 After 
skull stripping, all voxels were isotropically resampling into 
1 × 1 × 1 mm3. With the ITK software (https://itk.org/), rigid 
body registration was performed with the mutual information 

T A B L E  1  Patient and tumor characteristics of the study population

Characteristic Training cohort Validation cohort P

No. of patients 118 (52.44%) 107 (47.56%)

Sex 0.941

Female 48 (40.68%) 43 (40.19%)

Male 70 (59.32%) 64 (59.81%)

Age (y) 0.960

Mean (Range) 53.6 (10‐85) 53.3 (9‐80)

≤65 94 (79.66%) 85 (79.44%)

>65 24 (20.34%) 22 (20.56%)

KPS 0.963

Mean 80.93 79.72

≤70 37 (31.36%) 31 (28.97%)

>70 81 (68.64%) 76 (71.03%)

IDH1 0.821

Mutated 10 (8.47%) 10 (9.35%)

Wild‐type 108 (91.53%) 97 (90.65%)

IDH1, isocitrate dehydrogenase 1; KPS, Karnofsky performance status.

https://itk.org/
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similarity metric using T1c as a template. To standardize the 
intensity variation between MRI acquisitions across multi-
center study, an efficient landmark‐based piecewise intensity 
mapping was used for histogram matching.24 Having normal-
ized T1w, T1c, T2w, and FLAIR images, the brain was au-
tomatically segment into five classes: the non‐tumor region 
and four tumor subregions including necrosis, edema, non‐
enhancement area, and enhancement area. The segmentation 
procedure was automatically accomplished by using a convo-
lutional neural network (CNN)‐based method.25 To train the 
CNN model, real patient MR data from the Multimodal Brain 
Tumor Image Segmentation Benchmark (BRATS) 2017 was 
used.26 BRATS is a well‐established benchmark for training 
and evaluating brain tumor segmentation algorithms, provid-
ing publicly‐available standard glioma MRI datasets (T1w, 
T1c, T2w, and T2 FLAIR) with expert‐outlined tumor subre-
gions (necrosis, edema, non‐enhancement area, and enhance-
ment area).

2.5 | Multiregion radiomics 
feature extraction
From the segmented subregions, high‐throughput imaging 
features were extracted, including location features, geom-
etry features, intensity features, and texture features. To 
fully characterize the tumor heterogeneity, we extracted in 
total 1614 image features from multiple tumor subregions, 

including necrosis, enhancement area, non‐enhancement 
area, edema, solid core (the whole tumor except edema), and 
whole tumor. The radiomics features extracted were summa-
rized in Table 2.

The location features indicating the tumor geographic 
epicenter were defined by two features (region and side, as 
shown in Table 2) according to the VASARI guideline.27 The 
locations were determined by three neurologists (H.B. with 
12‐year experience in neuroradiology; Y.C. and C.L., each 
with 5‐year experience in neuroradiology) and two radiolo-
gists (Y.L. and J.Z., each with more than 7‐year experience 
in neuroradiology). The geometry features characterized 
the three‐dimensional shape of tumor subregions. A total of 
28 geometry features were extracted. The intensity features 
described the first‐order distributions of the voxel intensi-
ties within the subregions. For six extraction subregions in 
four MR modalities, 336 intensity features were extracted. 
The texture features described the high‐order distributions 
of the intensities. The texture features were extracted using 
the gray‐level co‐occurrence matrix (GLCM), gray‐level 
run length matrix (GLRLM), gray‐level size zone matrix 
(GLSZM), and neighborhood gray‐tone difference matrix 
(NGTDM) methods. GLCM measured image properties re-
lated to second‐order statistics (textural properties between 
two voxels). GLRLM reflects the distribution of gray‐levels 
of runs, where a gray‐level run is a set of consecutive collin-
ear voxels having the same gray‐level value. Different from 

T A B L E  2  A summary of the radiomics features extracted. Note that there were two different calculations for both GLCM Homogeneity and 
GLCM Informational Measure of Correlation, which can be found in ref. [27]

Feature classes Feature names

Location features Region (Frontal, Temporal, Insular, Parietal, Occipital, Brainstem, Cerebellum); Side (Right, Left, Bilateral)

Geometry features Volume, Subregion Proportion, Surface area, Longest Diameter, Solidity, Eccentricity, Compactness, Spherical 
Disproportion, Surface Area to Volume Ratio, Sphericity

Intensity features Max Value, Median Value, Min Value, Mean Value, Range, Energy, Entropy, Variance, Kurtosis, Uniformity, Root 
Mean Square, Skewness, Standard Deviation, Mean Absolute Deviation

Texture features

GLCM features Contrast, Correlation, Autocorrelation, Energy, Variance, Dissimilarity, Entropy, Sum Average, Sum Entropy, Sum 
Variance, Difference Variance, Difference Entropy, Cluster Prominence, Cluster Shade, Maximum Probability, 
Homogeneity 1/2, Informational Measure of Correlation 1/2, Inverse Difference Moment Normalized, Inverse 
Difference Normalized

GLRLM 
features

Short Run Emphasis, Long Run Emphasis, Gray‐Level Nonuniformity, Run‐Length Nonuniformity, Run Percentage, 
Low Gray‐Level Run Emphasis, High Gray‐Level Run Emphasis, Run‐Length Variance, Short Run Low Gray‐Level 
Emphasis, Short Run High Gray‐Level Emphasis, Gray‐Level Variance, Long Run Low Gray‐Level Emphasis, Long 
Run High Gray‐Level Emphasis

GLSZM 
features

Small Zone Emphasis, Large Zone Emphasis, Gray‐Level Nonuniformity, Zone‐Size Nonuniformity, Zone Percentage, 
Low Gray‐Level Zone Emphasis, High Gray‐Level Zone Emphasis, Zone‐Size Variance, Small Zone Low Gray‐Level 
Emphasis, Small Zone High Gray‐Level Emphasis, Gray‐level Variance, Large Zone Low Gray‐Level Emphasis, Large 
Zone High Gray‐Level Emphasis

NGTDM 
features

Coarseness, Contrast, Busyness, Complexity, Strength

GLCM, gray‐level co‐occurrence matrix; GLRLM, gray‐level run length matrix; GLSZM, gray‐level size zone matrix; NGTDM, neighborhood gray‐tone difference 
matrix.
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the gray‐level run, GLSZM makes use of the gray‐level size 
zone, which is a flat area with the same gray‐level. NGTDM 
reflects a gray‐level difference between voxels with certain 
gray‐level and their neighboring voxels. All texture features 
were calculated with 26‐voxel connectivity in 13 directions, 
where the intensities were quantized to 64 gray‐levels using 
a Lloyd‐Max quantization method. The detailed calculation 
of the texture features can be found in ref. [28]. A total of 
1248 texture features were computed from six extraction 
subregions and four modalities. All radiomics features were 
extracted using an in‐house Matlab program. There are also 
several open‐source tools for extraction of radiomics fea-
tures, such as python package pyradiomics and R package 
Radiomics.

2.6 | Data balancing
Because mutated IDH1s were rare in GBM, the classes (mu-
tated and wild‐type IDH1) were not equally represented, as 
shown in Table 1. This imbalance could lead to poor predic-
tive accuracy for the minority class for most machine learn-
ing‐based classification models. Resampling was a commonly 
used method to address the imbalanced learning problems. 
Here we used the synthetic minority over‐sampling technique 
(SMOTE) algorithm29 to improve the imbalance, where more 
minority instances were generated along a line joining a mi-
nority instance and its selected nearest neighbors. After in-
tensive testing, the instance number of minority class was set 
to 64 to achieve an optimal classification result. Particularly, 
54 extra instances were generated from the minority class, 
while the majority class remained unchanged. Note that the 
data balancing was performed only on the training dataset. 
The R package smotefamily was used for data balancing.

2.7 | Feature selection and classification
The feature selection was assumed to discover a minimal 
set of features relevant to IDH1 mutation. A random forest‐
based wrapper method, named Boruta, was used for relevant 
feature selection.30 Boruta algorithm has been successfully 
used in genomics analysis to select genes related to cancer, as 
in the way here to select features relevant to IDH1 mutation. 
Boruta evaluated relevant features iteratively by comparing 
the importance of original features measured by random for-
est with that achieved by artificially added random features. 
A random forest algorithm was performed iteratively to 
measure the feature importance. In each iteration, if a feature 
achieved higher importance than the artificially added ran-
dom features, it was deemed relevant. Otherwise, that feature 
was considered irrelevant, leading to the removal of the fea-
ture. The process was repeated to achieve statistical signifi-
cance and finally generate a minimal set of the most relevant 
features. The R package Boruta was used to build the model.

To compare radiomics features from different tumor 
subregions, four single‐region models and three multire-
gional models were built. The four single‐region models 
were built based on imaging features from the enhance-
ment area, non‐enhancement area, necrosis, and edema, re-
spectively. The three multiregional models were built with 
imaging features extracted from the tumor core, the whole 
tumor, and all six regions (as introduced in the feature ex-
traction subsection). Furthermore, a combined model was 
built based on all‐region radiomics features and clinical 
factors (sex, age, and KPS). When building the seven ra-
diomics models and the combined model, Boruta was used 
for feature selection and random forest model was used for 
predicting IDH1 mutation. A clinical model based on clin-
ical factors alone was also built using random forest. After 
a set of testing, the tree number of all random forest mod-
els was set to 300, as increasing the tree number did not 
bring significant performance gain. Gini index was used as 
an importance measure. The R package randomForest was 
used for model building.

2.8 | Statistical analysis
The statistical analysis was done with R software, version 
3.4.3 (https://www.r-project.org/). Two‐sided P value of 
<0.05 was considered significant. The differences in sex, 
age, KPS, and IDH1 mutation status between the training 
and validation data sets were assessed. According to the 
guideline in ref. [26], the segmentation algorithm was tested 
via BRATS online evaluation tool, where the segmentation 
performance of three regions (the whole tumor, the tumor 
core, and the enhancement area) was evaluated in terms 
of DICE score, sensitivity, and specificity. All classifiers 
were trained on the training cohort and tested on the inde-
pendent validation cohort. The classification performance 
was assessed by using several indices, including accuracy 
(ACC), sensitivity (SEN, also referred to as recall), speci-
ficity (SPE), and precision (PRE). The overall performance 
was evaluated using the area under the receiver operating 
characteristic (ROC) curve (AUC). The maximum value of 
the Youden index (sensitivity + specificity−1) was used 
as the cutoff. The DeLong method was used for statistical 
comparison of AUCs.31 As suggested in ref. [32], for com-
prehensive evaluations of the classification performance 
on the imbalanced dataset, the precision‐recall curves 
(PRC) and F1‐score were calculated. The PRC, defined 
by plotting precision rate over the recall rate, could give 
a more informative picture of an algorithm’s performance 
than conventional ROC in the presence of imbalanced data. 
F1‐score, defined as 2 precision∙recall/(precision + recal), 
provided more insight into the functionality of a classifier 
than the accuracy metric. All indices were calculated for 
both training and validation cohorts.

https://www.r-project.org/
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3 |  RESULTS

No difference was found between the training dataset and the 
validation dataset in sex, age, KPS, and IDH1 mutation status 
(P = 0.821‐0.963, as shown in Table 1). The multiregional 
segmentation result was shown in Figure 1. The segmenta-
tion performance was summarized in Table 3, where each 
measure was given as mean ± standard deviation. For the 
all‐region radiomics models, eight features remained after 
feature selection, as shown in Table 4. The features selected 
for building the tumor‐core model, the whole‐tumor model, 
and four single‐region models were shown in Table 5. For 
the combined models, six imaging features and age remained 
after feature selection, as shown in Table 5. Among four sin-
gle‐region radiomics models, the model built from edema 

region achieved the best accuracy of 96% and the best F1‐
score of 0.75, while the model built from non‐enhancement 
region achieved the best AUC of 0.88 in the independent 
validation cohort. Generally, the overall performance of the 
tumor‐core model (accuracy 0.96, AUC 0.86, and F1‐score 
0.75) and the whole‐tumor model (accuracy 0.96, AUC 0.88, 
and F1‐score 0.75) was slightly better than the single‐re-
gional models. The all‐region radiomics model achieved an 
improved overall performance of an accuracy 96%, an AUC 
0.90, and an F1‐score 0.78 in the validation cohort. Among 
all models, the combined model achieved the best perfor-
mance of accuracy 97%, AUC 0.96, and F1‐score 0.84 in the 
validation cohort. The ROC and PRC curves for three mul-
tiregional models, four single‐region models, and the com-
bined model in the validation cohort were shown in Figures 

F I G U R E  1  Multiregional segmentation result. The enhancement area, non‐enhancement area, necrosis, and edema were shown in green, 
yellow, purple, and blue, respectively

Tumor region DICE score Sensitivity Specificity

Whole tumor 0.885 ± 0.050 0.889 ± 0.082 0.971 ± 0.012

Tumor core 0.831 ± 0.100 0.845 ± 0.066 0.988 ± 0.009

Enhancing area 0.867 ± 0.108 0.825 ± 0.117 0.989 ± 0.005

T A B L E  3  A summary of the 
segmentation performance

T A B L E  4  A summary of the selected features used for building the all‐region model

No. Selected feature Type Region Modality

f1 Root Mean Square Intensity Enhanced T1c

f2 GLCM_Contrast Texture Enhanced T1c

f3 GLRLM_Low Gray‐level Run Emphasis Texture Core T1

f4 GLRLM_Short Run Low Gray‐level Emphasis Texture Edema FLAIR

f5 GLSZM_Gray‐level Nonuniformity Texture Edema T2

f6 GLSZM_Large Zone High Gray‐level Emphasis Texture Enhanced T1c

f7 GLSZM_Zone‐Size Variance Texture Whole Tumor T2

f8 NGTDM_Business Texture Non‐enhanced T1

GLCM, gray‐level co‐occurrence matrix; GLRLM, gray‐level run length matrix; GLSZM, gray‐level size zone matrix; NGTDM, neighborhood gray‐tone difference 
matrix.
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2 and 3, respectively. The DeLong analysis found that in the 
validation cohort the AUC of the all‐region model was sig-
nificantly higher than those of all single‐region models, while 
the AUC of the combined model was significant higher than 
those of all the other models (P < 0.05). To further reveal 
the relevance of the selected eight multiregional features with 
the IDH1 mutation status, the feature maps were presented in 
Figure 4 for an IDH1‐mutated patient and an IDH1‐wild‐type 
patient. The performance of all predictive models was sum-
marized in Table 6.

4 |  DISCUSSION

The major finding of this study was that radiomics‐based 
classification with a minimal set of multiregional MRI 
features allowed for prediction of IDH1 mutation in GBM 
with high accuracy. The all‐region model outperformed the 
single‐region models or predictive model built with clini-
cal factors alone. Recent studies have revealed the multire-
gional and microenvironmental heterogeneity in GBM.8,9 
It highlights the value of multiregional imaging features 
in spatially distinct habitats, some of which harbor het-
erogeneous tumor populations.19,33 The prognostic value 
of multiregional radiomics features has been recognized 
in GBM.20,22 However, many existing studies relating im-
aging features with IDH mutation lack regional analysis, 
expressing imaging phenotype as a single value from a 

single tumorous region.13-15 The work in ref. [17] predicted 
IDH1/2 genotypes with multiregional radiomics features in 
a combined cohort of grade III and IV gliomas. The work 
in ref. [34] investigated six regional imaging parameters to 
estimate IDH1 mutation status in GBM. To our knowledge, 
multiregional radiomics model for prediction IDH1 status 
in GBM has not been evaluated.

Several previous studies predicted IDH1 mutations with 
visually‐assessed morphological features, volumetric vari-
ables, and blood flow parameters.34,35 These features may 
not fully characterize the imaging phenotypes, thusly limited 
the potential of imaging genomics models. The studies in 
ref. [13] and [17] constructed their machine learning‐based 
radiomics models using 110 and 386 radiomics features for 
IDH status prediction, respectively. They could have risk of 
overfitting on future observations as the feature number was 
significantly high (even higher than the numbers of patients 
used for training the models). As a well‐recognized principle 
in machine learning field, a small (possibly minimal) feature 
set can increase both the model generalizability and inter-
pretability. The work in ref. [14] built a more compact model 
for prediction of IDH1 status in low‐grade glioma with three 
single‐region features. In the above studies, the AUCs ranged 
from 0.79 to 0.92 while the accuracies ranged from 80% to 
90%. Our 8‐feature all‐region model and combined model 
achieved higher accuracy (96% and 97%) and AUC (0.90 
and 0.96) in a multicenter independent validation cohort. 
Our study was based on 1614 features derived from multiple 

T A B L E  5  A summary of the selected features used for building the single‐region models, the tumor‐core model, the whole‐tumor model, and 
the combined model

Models Selected features

Enhanced Root Mean Square_Intensity_T1c, Energy_Intensity_T2, GLCM_Contrast_T1c, GLCM_Informational Measure of 
Correlation 1_T1c, GLCM_Homogeneity 1_T1c, GLCM_Inverse Difference Moment Normalized_T2, GLRLM_Gray‐
level Variance_FLAIR, GLSZM_Large Zone High Gray‐level Emphasis_T1c

Non‐enhanced Energy_Intensity_T2, GLCM_Contrast_FLAIR, GLCM_Energy_T1c, GLRLM_Low Gray‐level Run Emphasis_T1c, 
GLRLM_Run‐length Nonuniformity_T2, GLSZM_Zone‐Size Variance, NGTDM_Business_T1

Necrosis Skewness_Intensity_T2, Energy_Intensity_T1c, Root Mean Square_Intensity_T1c, GLCM_Informational Measure of 
Correlation 1_T1c, GLCM_Informational Measure of Correlation 2_T1c, GLRLM_Gray‐level Variance_T1

Edema Energy_Intensity_T2, GLCM_Difference Entropy_FLAIR, GLCM_Informational Measure of Correlation 1_FLAIR, 
GLRLM_Low Gray‐level Run Emphasis_T2, GLRLM_Short Run Low Gray‐level Emphasis_FLAIR, GLRLM_Gray‐
level Nonuniformity_T2, GLSZM_Gray‐level Nonuniformity_T2, GLSZM_Zone‐Size Variance_FLAIR

Tumor core Uniformity_Intensity_T1c, Energy_Intensity_T1c, GLCM_Dissimilarity_FLAIR, GLCM_Inverse Difference Moment 
Normalized_T2, GLRLM_Low Gray‐Level 
Run Emphasis_T1c, GLRLM_Gray‐Level Nonuniformity_T2, GLSZM_Nonuniformity_FLAR, NGTDM_Business_T1

Whole tumor GLCM_Contrast_T1c, GLCM_Correlation_T1, GLCM_Information Measure of Correlation 1_FLAR, GLCM_Inverse 
Difference Moment Normalized_T2, GLRLM_Gray‐level Nonuniformity_T1c, GLRLM_Short Run Low Gray‐Level 
Emphasis_T2, GLSZM_Small Zone Low Gray‐Level Emphsis_FLAIR

Combined Age, GLCM_Contrast_Enhanced_T1c, GLRLM_Low Gray‐level Run Emphasis_Core_T1, GLRLM_Short Run Low 
Gray‐level Emphasis_Edema_FLAIR, GLSZM_Gray‐level Nonuniformity_Edema_T2, GLSZM_Zone‐Size Variance_
WholeTumor_T2, NGTDM_Business_Nonenhanced_T1

GLCM, gray‐level co‐occurrence matrix; GLRLM, gray‐level run length matrix; GLSZM, gray‐level size zone matrix; NGTDM, neighborhood gray‐tone difference 
matrix.
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3D tumor subregions in multiparametric MRI, allowing for 
a more comprehensive characterization of the radiological 
heterogeneity. To improve both generalizability and inter-
pretability, we selected a minimal set of the most relevant 
multiregional features by means of the Boruta algorithm.30 To 
overcome the inherent intensity variability across multicenter 
MRI acquisitions, we normalized the image intensity via an 
effective landmark‐based mapping approach.24 To tackle the 
imbalanced learning problems caused by the low incidence 
of GBM IDH1 mutations (12%2), we resampled the data by 
using a minority class oversampling method.28 These efforts 
may offer potential to improve the prediction performance.

Our results show that among all single‐region models the 
model built from edema area achieved the highest accuracy 
(0.96) and F1‐score (0.75), while the model built of non‐en-
hancement area reached the highest AUC (0.88). It indicated 
that the imaging phenotypes within distinct tumor subregions 
may contribute differently to the outcome. The work in ref. 
[33] has demonstrated that tumor heterogeneity is not lim-
ited within the solid core margins but also involves the edema 
area. A recent study in ref. [36] has demonstrated that radio-
mics features from the edema predicted survival better than 
from enhancement area and necrosis. The work in ref. [37] 
showed that a greater proportion of non‐enhancing area is 
associated with IDH1 mutation in GBM. Interpretation of 
the different predictive power of regional imaging features 
remains challenging. We tried to understand the results from 
the basic radiomics hypothesis—imaging phenotypes could 
be the expression of underlying biological or genetic hetero-
geneity.10,11 Genetic heterogeneity is typically due to random 
mutations and is the result of a predictable Darwin selection 

of successful cellular adaptive strategies to local microenvi-
ronmental conditions.38 Multiple studies contend that spa-
tially distinct subregions harbor heterogenous subclones, 
each with a distinct set of microenvironmental selection 
forces.19 Based on the hypothesis, imaging features charac-
terizing regional variations in blood flow, cell density, and 
necrosis could identify regional variations in microenviron-
mental selection forces. The feature maps gave an example of 
how multiregional imaging features radiologically quantified 
the multiregional variations.

Previous genomics study has revealed that IDH1 muta-
tions are much more common in younger GBM patients.3 A 
high‐resolution gene expression analysis has demonstrated 
that pediatric and adult high‐grade glioma are clearly distin-
guished by the absence of IDH1 hotspot mutations.39 Our re-
sult showed that age was selected by the combined model as a 
predictor of IDH1 mutations, reflecting the previous observa-
tions. Combing age with multiregional imaging features re-
sulted in a better prediction performance than using imaging 
features or clinical factors alone. Similar results have been 
observed in ref. [17], confirming the advantage of combin-
ing radiomics features with age for predicting GBM IDH1 
mutation status.

There were several limitations to our study. First, al-
though this study was based on multicenter cohorts, larger 
prospective cohorts from more institutes should be involved 
to demonstrate the potential clinical utility of our model. 
Larger multicenter cohorts also have great potential to im-
prove the performance of the machined learning‐based ra-
diomics approach, especially for this imbalanced learning 
problem. Second, our model made use of four MR modal-
ities. Recent studies have shown that MR spectroscopy, 

F I G U R E  2  Receiver operating characteristic (ROC) curves 
of the multiregional and single‐region radiomics models in the 
independent validation cohort, where the area under the receiver 
operating characteristic curve (AUC) for each model was displayed
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F I G U R E  3  Precision‐recall curves (PRC) of the multiregional 
and single‐region radiomics models in the independent validation 
cohort, where the F1 score for each model was displayed
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F I G U R E  4  Feature maps of the eight all‐region features for an isocitrate dehydrogenase 1 (IDH1)‐mutated patient (top) and an IDH1‐wild‐
type patient (bottom). The feature maps illustrated how the selected features radiologically quantified the multiregional variations. Specifically, 
the features f1 measured the quadratic mean of the intensity within the enhancement area; f2 measured the amount of local variations present in the 
enhancement area; f3 indicated the spatial distribution of low‐level intensity within core area; f4 characterized the joint distribution of both low‐level 
intensity and short run length within edema; f5 quantified the nonuniformity of gray‐level within edema; f6 described the distribution of both high‐
level intensity and large area size within the enhancement area; f7 described the variance of the size of area with the same gray‐level in the whole 
tumor region; f8 described the spatial rate of intensity change within the non‐enhancement area

T A B L E  6  A performance summary of the single‐region radiomics models, multiregional radiomics models, clinical model, and combined 
model

Models

Primary cohort Independent validation cohort

ACC SEN SPE PRE AUC F1 ACC SEN SPE PRE AUC F1

Enhance 0.97 0.95 0.98 0.97 0.97 0.96 0.95 0.60 0.99 0.86 0.80 0.71

Non‐enhance 0.95 0.91 0.97 0.94 0.96 0.93 0.88 0.70 0.98 0.78 0.88 0.74

Necrosis 0.95 0.91 0.96 0.93 0.94 0.92 0.95 0.60 0.99 0.86 0.80 0.71

Edema 0.98 0.94 0.99 0.99 0.95 0.97 0.96 0.60 0.99 0.99 0.84 0.75

Tumor core 0.97 0.91 0.99 0.99 0.95 0.95 0.96 0.60 0.99 0.99 0.86 0.75

Whole tumor 0.98 0.96 0.99 0.99 0.96 0.98 0.96 0.60 0.99 0.99 0.88 0.75

All‐region 0.97 0.94 0.99 0.98 0.97 0.96 0.96 0.70 0.99 0.88 0.90 0.78

Clinical 0.84 0.80 0.86 0.87 0.84 0.75 0.79 0.72 0.85 0.85 0.80 0.71

Combined 0.94 0.91 0.95 0.89 0.94 0.90 0.97 0.80 0.99 0.89 0.96 0.84

The all‐region model achieved an improved overall performance compared with single‐region model in terms of accuracy and ACU, while the combined model achieved 
the best overall performance (in bold).
ACC, accuracy; AUC, area under the receiver operating characteristic curve; PRE, precision; SEN, sensitivity; SPE, specificity.
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diffusion‐weighted imaging (DWI), diffusion tensor imaging 
(DTI), and arterial spin labeling (ASL) perfusion MR imag-
ing are promising in predicting IDH1 mutation status in gli-
oma.34,40-42 Incorporating features calculated from these new 
modalities may potentially improve the performance of our 
multiregional model.

In conclusion, the radiomics‐based model with a minimal 
set of multiregional features from multiparametric MRI has 
the potential to noninvasively detect the IDH1 status in pre-
operative GBM patients. The multiregional radiomics mod-
els performed better than the single‐region models, while 
combining age with multiregional features achieved the best 
prediction performance.
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