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ABSTRACT

The construction of a high-quality multiple sequence
alignment (MSA) from copies of a transposable ele-
ment (TE) is a critical step in the characterization of
a new TE family. Most studies of MSA accuracy have
been conducted on protein or RNA sequence fam-
ilies, where structural features and strong signals
of selection may assist with alignment. Less atten-
tion has been given to the quality of sequence align-
ments involving neutrally evolving DNA sequences
such as those resulting from TE replication. Trans-
posable element sequences are challenging to align
due to their wide divergence ranges, fragmenta-
tion, and predominantly-neutral mutation patterns.
To gain insight into the effects of these properties
on MSA accuracy, we developed a simulator of TE
sequence evolution, and used it to generate a bench-
mark with which we evaluated the MSA predictions
produced by several popular aligners, along with Re-
finer, a method we developed in the context of our
RepeatModeler software. We find that MAFFT and
Refiner generally outperform other aligners for low to
medium divergence simulated sequences, while Re-
finer is uniquely effective when tasked with aligning
high-divergent and fragmented instances of a family.

INTRODUCTION

The ongoing explosion in the number of sequenced organ-
isms highlights the need for reliable and thorough auto-
mated genome annotation pipelines. Most of the vertebrate
genome finds its ultimate origin in transposable elements
(TEs) (1–5), which have an enormous impact on genome
activity and evolution (6–9). Due to the volume and diver-
sity of TEs, complete annotation of genomes depends on
accurate identification and modeling of TE families (10). A
central aspect of that process is the gathering of instances
of each family, and the creation of multiple sequence align-
ments (MSAs) of those instances; these MSAs are often

used to derive a consensus sequence (1,11–13) and a pro-
file hidden Markov model (pHMM) (14) for each family.
Profile HMMs have been demonstrated to outperform con-
sensus sequences for the identification of distant copies (15),
however consensus sequences remain an important tool for
interpreting sequence features such as open reading frames,
splice sites, and transcription regulatory sites. In addition,
many analysis tools are tailored to work with sequences
rather than pHMMs and therefore are the focus of this
work. Regardless of the sequence modeling methods, a high
quality family-level TE MSA is critical for sensitive annota-
tion of genomic copies, precise classification of TE families,
reconstruction of encoded proteins, and family age estima-
tion; this motivates an intense interest in the accuracy of
methods producing MSAs for these sequence families.

Computational MSA approaches seek to optimize one
of several scoring models, and an optimal solution of com-
monplace models is computationally intractable (16). Over
the years, a multitude of MSA tools have been developed,
each employing its own set of heuristics for achieving good
alignment speed. The combination of heuristic and scoring
functions leads to varying alignment accuracy. The align-
ment of multiple TE instances poses unique challenges, in
that these copies can exhibit high sequence divergence, are
often very fragmentary, and are dominated by neutral mu-
tation patterns. Here, we seek to evaluate the efficacy of
several commonly used tools in recovering accurate MSAs
of neutrally evolving fragments of transposable element se-
quences.

TEs are prodigious generators of repetitive sequences in
most genomes; their relationships can be difficult to recover
due to rapid lineage bursts, complex recombination histo-
ries, and high rates of neutral mutation. The generation of
an MSA from copies of a TE family is an important step
in reconstructing the ancestral state of the TE and gener-
ating sequence models for genome annotation (15). TE se-
quences complicate alignment in several important ways:
(i) Instances are often fragmented due to poor insertion fi-
delity, large deletions, or interruptions by insertions of other
TEs. (ii) Due to their mostly neutral decay, there are gen-
erally no conserved regions that can anchor the alignment
or open reading frames free from indel accumulation. (iii)
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Copies are often derived from a TE that was rapidly evolv-
ing in a genome; therefore, they represent a mixture of an-
cestral forms. (iv) Low complexity regions and internal rep-
etition are common features. 5. The oldest detectable TE
copies have accumulated over 35% substitutions since their
arrival and given their neutral decay, have a substitution
level of more than 70% between copies. In addition, rarer
nonlinear events such as microduplication and inversion
can further confound alignment.

Most MSA tools follow the progressive alignment ap-
proach, whereby a guide tree is estimated from the un-
aligned sequences and used to control the order in which
sequences are merged into an increasingly complete MSA
(17). These approaches often re-estimate the guide tree
from the MSA and iterate this process until convergence.
All tools evaluated except Refiner and Dialign employ this
general framework. The differentiating factor for many of
these tools is the objective function for scoring the pair-
wise alignments. Clustal Omega (18), Muscle (19), Kalign
(20) and Dialign-TX (21) employ matrix-based scoring
schemes to either pairs of sequence symbols or a column
profile. T-Coffee (22) introduced a consistency-based scor-
ing scheme in which a library of global/local pairwise align-
ments is used to generate position-specific scoring matrices
(PSSMs) for the progressive alignment phase. Variations on
this approach were later adopted by ProbCons (23), and
MAFFT (24). Dialign bypasses the construction of a guide
tree, and instead constructs an MSA by assembling pair-
wise collinear segment-to-segment alignments. Refiner (25),
based on an ad-hoc approach that we have employed in the
curation of TE families for over a decade, follows a pattern
that we call iterative transitive alignment: all sequences are
locally aligned to a single template sequence and the MSA
is produced by aligning sequences to each other based on
their alignments to the common template. The sequence
representing the centroid of the set is used as the initial
template. When complete, a consensus is computed from
the resulting MSA, and the process is iterated using this
new consensus as the template; iteration continues until
convergence.

Evaluation of MSA tool accuracy usually depends on
protein benchmarks, consisting of real sequences (26–29),
based on structural (PREFAB (19)) or hand-curated align-
ments(e.g. BAliBASE (30), SABmark (31), HomFam (32),
HOMSTRAD (33) and OXBENCH (34)). BRaliBase (35))
stands out as a rare benchmark for nucleotide (RNA) align-
ment. Simulated sequence evolution datasets have also been
used to evaluate MSA tools (36–39), providing the means
to produce larger test sets, a wide range of sequence di-
vergence characteristics, and supporting the generation of
DNA-specific benchmarks. However, these previous studies
focused on constrained sequences (36), protein simulations
(37,38), or ignored the problem of working with fragmented
sequences (36–39).

Sequence simulation tools have themselves evolved over
time. Early efforts focused primarily on the generation of
sequences along a fixed phylogeny, allowing for mutations
based on time reversible substitution models (40–43). These
led to more sophisticated evolvers with support for inser-
tion and deletion (indels) mutations, empirical substitu-
tion matrices, and branch dependent mutation rates (44–

Figure 1. Consensus score loss metric––assessing the quality of a predicted
MSA by comparing the consensus produced by the predicted MSA to the
consensus of the true (reference) MSA through global alignment.

50). Context dependent mutation rates have also been de-
veloped in some simulators; for instance the Evolver pack-
age (51) models special mutation rates for highly mutagenic
CpG dinucleotides, and Trevolver (52) implements a triplet
substitution model that accounts for first-order flanking
effects.

Several metrics have been widely used in the assessment
of predicted MSA datasets. These include the Sum-of-Pairs
Score (SPS, aka developer score) (53,54), Column Score
(CS) (53), and the Alignment Metric Accuracy (AMA) met-
ric (55). SPS is the fraction of aligned residue pairs in the
reference alignment that are correctly aligned in the pre-
dicted alignment. The CS score is the fraction of aligned
columns in the reference alignment that are perfectly re-
constructed in the predicted alignment and is often used
as a measure of specificity in reconstruction of the MSA.
A single misaligned sequence in a MSA can decimate the
CS score, so that CS provides limited power to discrimi-
nate between alignments of highly diverged sequences. The
AMA metric is the fraction of characters in the reference
alignment that are correctly arranged in the predicted align-
ment, either aligned to another character or not aligned (i.e.
aligned to a gap character). This is an appealing metric,
in that it penalizes overalignment in MSA (failure to allow
gaps as appropriate), but it does not factor in gap position
and can therefore be thrown off by radically different gap
positions within the predicted MSA (56). Motivated by the
standard practice of generating centroid sequence models
(consensus sequences) for MSAs of TE families, herein we
introduce a new metric, ‘consensus score loss’ (CSL). CSL
assesses the quality of the MSA by comparing the consen-
sus produced from a predicted MSA to the consensus de-
rived from the reference MSA (Figure 1). We also demon-
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strate an additional approach for assessing the quality of
an MSA in the case of TEs with coding capacity and ap-
ply it to natural copies of several ancient families of DNA
transposons.

To the best of our knowledge, no formal evaluation of
MSA tools has been previously conducted in the context
of TE sequence families. To study this, we developed a
new sequence simulator (TEForwardEvolve), and used it
to generate a benchmark of simulated MSAs. Using this
benchmark, supplemented with a small collection of an-
cient mammalian DNA Transposon families, we evaluated:
MUSCLE, MAFFT, Dialign-TX, Kalign, FSA, Clustal
Omega, ProbCons and T-Coffee, along with our Refiner
approach. We demonstrate that MAFFT generally outper-
forms other generic alignment tools, and that our Refiner
method produces comparable results for low-divergence se-
quences, and superior alignments when confronted with
high levels of sequence fragmentation and sequence diver-
gence.

MATERIALS AND METHODS

Tree generation

A custom-made tool (genRandomTETrees.pl) was used to
simulate phylogenetic trees for DNA Transposon and LINE
TE families. For DNA Transposons, which exhibit a star-
like phylogeny (Figure 2A), the tree is expanded by ran-
domly choosing a parent node from the existing tree and
appending a new child node with a random branch length
between 0 and 10. Once the target number of extant nodes
has been reached (100), the post-extinction phase of the se-
quence lifecycle is simulated by adjusting extant (leaf) node
branch lengths to reach the target root-to-leaf length (100).
Branch lengths in the tree do not equate to a specific unit
of time; rather, they establish the relative duration of each
branch. For the purposes of sequence simulation, the no-
tional duration of a branch (i.e. the amount of mutation) is
controlled by the simulator parameter ‘generations per unit
time’ (GPUT).

To simulate master-gene model phylogenies such as seen
in LINE families (Figure 2B), the tree is expanded by
adding a randomly determined number of children (2–5)
with randomly chosen branch lengths (0–5) to the current
parent node (initially the root of the tree). One of the new
children is randomly picked to be the new parent node
(or ‘master gene’) and the process is iterated until the tar-
get number of extant nodes is reached (100). The branch
lengths for extant nodes are then adjusted in a similar man-
ner to the DNA transposon trees.

Sequence simulation

While there are many sequence evolution simulators cur-
rently available, none provide all the features necessary
for realistic TE sequence simulation in one package: nu-
cleotide simulation, indel simulation, context dependent
(trinucleotide) substitution matrices, and fragmentation
simulation. Inspired by the release of TRevolver (52), which
supports tri-nucleotide substitution context, we developed
TEForwardEvolve, which supplements tri-nucleotide sub-
stitution with simulation of indels and fragmentation.

For each class of TE, the simulator is provided a pro-
totypical TE sequence (in this study: Tigger1/Charlie1 for
DNA transposons and L2/CR1 for LINEs), a simulated
phylogenetic tree, a context-dependent substitution rate
matrix, indel parameters, the number of generations rep-
resented in the tree, and fragmentation parameters. The
substitution rate matrix consists of all triplet pairs where
the center base is allowed to change and the edge bases
provide 1bp of flanking context (64 × 64 matrix); rates
were derived from a study of 160 000 non-coding sites in a
set of mammalian genomes (57). Indel lengths were mod-
eled using a power law (Zipfian) probability distribution
(insertion/deletion mean length = 1.7, insertion/deletion
max length = 20) with an occurrence rate of 0.20 (inser-
tion rate = 0.08, deletion rate = 0.12) relative to an average
substitution rate of 1. Finally, fragmentation is simulated
by selecting fragment sizes from a log normal distribution,
a minimum fragment size and a randomly chosen start po-
sition to select only a portion of the parent sequence for du-
plication. Optionally, a minimum number of full-length se-
quences may be set such that fragmentation begins only af-
ter the minimum number of full-length sequences has been
generated.

To study the impact of sequence substitution level,
TEFowardEvolve was run with increasing values for the
generations-per-unit-time (GPUT) simulation parameter
(100–6000). This translates to an average Kimura diver-
gence range of 1–52% for Tigger1 and 1–44% for L2 simula-
tions. To study the impact of fragmentation, TEForwardE-
volve was run with increasing levels of fragmentation (mean
copy lengths ranging from 1200 down to 75, with a stan-
dard deviation of 300, minimum fragment size = 50, min-
imum full-length sequences = 2) at two substitution levels
(GPUT 100, 3000). For each parameterization, 10 replicate
simulations were run.

MSA evaluation

For each sequence evolution simulation, TEForwardEvolve
provides a reference MSA for comparison to the MSAs pre-
dicted by the alignment tools. The qscore (19) tool was used
to compute various metrics on the predicted MSAs includ-
ing SPS, which is the fraction of aligned residue pairs in
the reference alignment that are correctly aligned in the pre-
dicted alignment.

We also define a new score metric ‘consensus score loss’
(CSL), which assesses the quality of the predicted MSA
by comparing (aligning) the consensus derived from it to
the consensus derived from the reference MSA. If the pre-
dicted MSA is accurate, its induced consensus will be highly
similar to the consensus from the reference MSA, and an
alignment of the two consensus sequences will produce a
high score, whereas an inaccurate predicted MSA will pro-
duce a low score; CSL characterizes MSA quality by com-
puting the amount of the optimal consensus alignment
score that is lost by using a predicted MSA. Specifically: let
Cp be the consensus sequence derived from the predicted
MSA, and Cr the consensus sequence produced from the
reference MSA (Figure 1). To measure similarity of Cp to
Cr, CSL aligns them to each other via Needleman-Wunch
global pairwise alignment (58) Cp ∼ Cr, and aligns Cr to it-
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Figure 2. Phylogenetic trees for simulations: (A) random template phylogeny generated typical of DNA transposons, and (B) master gene phylogeny for
LINE families.

Table 1. MSA Software evaluated––the version of each tool evaluated
and any specific parameters provided

Tool Version Parameters

MUSCLE v3.8.31
MAFFT L-INS-i v7.407 –localpair –maxiterate 1000
Dialign-TX v1.02
Kalign v2.0.4 -gpo 80 -gpe 3 -tgpe 3 -bonus 0
FSA v1.15.9
Clustal Omega v.1.2.4
Refiner v2.0.2a
T-Coffee v13.45.0.4846264
Probcons v1.12

self to produce alignment Cr ∼ Cr. If the predicted MSA
is perfectly accurate, Cp will be identical to Cr, so that
score(Cp ∼ Cr) = score(Cr ∼ Cr). An inaccurate predicted
MSA will cause score(Cp ∼ Cr) < score(Cr ∼ Cr). CSL
quantifies this by calculating the fraction of the ideal score
that is lost with the predicted alignment: (score(Cr ∼ Cr) -
score(Cp ∼ Cr)) / score(Cr ∼ Cr) In the case of an extremely
poor predicted MSA, the predicted consensus may lead to
a negative global alignment score(Cp ∼ Cr), so that >100%
of the score is lost. For the analysis presented here, align-
ment was performed with a custom scoring matrix and gap
parameterization described in the supplemental materials.

MSA tools and parameters

The MSA tools covered in this evaluation are shown in Ta-
ble 1, including versions and any non-default parameter set-
tings. No attempt was made to optimize parameters aside
from ensuring that DNA specific defaults were used. For
Kalign, the DNA/RNA default parameters were based on
instructions on the software website (https://msa.sbc.su.se/
cgi-bin/msa.cgi). For MAFFT, the linsi algorithm was cho-
sen based on the guidance on the software website (https:
//mafft.cbrc.jp/alignment/software/).

Refiner methodology

Our Refiner method works by establishing a single template
sequence, aligning all sequences to that template, then pro-
ducing an MSA based on the way that those sequences align
to the template (in what we call a transitive alignment).
In the first pass, the template is chosen from the input se-
quences by picking the sequence with the best cumulative

pairwise alignment score to all other sequences or roughly
the centroid of the set. The resulting MSA is used to pro-
duce a consensus, which is used as the template for iterative
rounds of transitive alignment, in the form of Expectation
Maximization. The tool currently supports either RMBlast
(59) or ABBlast (60) for pairwise alignment, although any
sensitive aligner would suffice. This process is repeated un-
til convergence; see (25,61) for details. The final reference
sequence is the consensus for the family.

In this local-alignment strategy, characters that do not
align to the template sequence are either arbitrarily aligned
to each other (internal insertions) or not included in the
alignment at all. This is not a problem in the context of
RepeatModeler, since these are not part of high occupancy
columns, so not part of the final consensus. For the purpose
of MSA SPS evaluation, all characters must be present in
the final alignment, so we simply add all such characters to
the MSA such that they are not aligned to any other char-
acter.

The consensus caller used by Refiner employs two stages.
The caller initially identifies the highest scoring character
(‘A’,‘C’,‘G’,‘T’,‘N’ or ‘–’) for each column from the subset
of sequences aligning over it. The first step uses a matrix
that reflects observed neutral DNA substitution patterns
and is similar to matrices developed for RepeatMasker. For
organisms with CpG methylation, which causes high con-
version of CG to CA and TG, a second pass evaluates all
dinucleotides in the initial consensus sequence for reassign-
ment to ‘CG’ by registering the frequency of the most com-
mon products of CpG mutation, aligned CA and TG dinu-
cleotides (61).

RESULTS

Simulated trees and sequences

We chose two TE classes to simulate, the Long Interspersed
Nuclear Element (LINE), and the DNA transposon, to de-
termine if their starkly different phylogenies lead to differ-
ences in the relative performance of MSA tools. The rela-
tionship of DNA transposon copies (Figure 2A) is typically
a (near) star phylogeny (62,63), with any branching occur-
ring randomly and early on. This reflects the fact that, due
to random selection of the genomic template by the trans-
posase, class II transposons tend to exhibit a short burst

https://msa.sbc.su.se/cgi-bin/msa.cgi
https://mafft.cbrc.jp/alignment/software/


NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 2 5

Figure 3. MSA accuracy with respect to sequence divergence. The MSA alignment accuracy for each method assessed using the sum-of-pairs (SPS) score
over a wide range of sequence divergence. For each tool/divergence combination, 10 replicates were performed, with 100 sequences per replicate. The center
line of each band shows the mean SPS score for the tool, while the surrounding shaded region shows the 95% confidence interval. (A) The Tigger1 DNA
transposon family average SPS scores over 10 replicates. (B) The L2 LINE family average SPS scores over 10 replicates.

of activity before going extinct (1,64), and leave many neu-
trally decaying copies in the genome.

DNA transposon star phylogenies may be contrasted
with those of LINEs (Figure 2B), in which most copies
are derived from a single dominant lineage of LINE TEs
(the so-called master-gene model of evolution (65,66)); the
resulting phylogenies approach those of pseudogenes of
a rapidly evolving cellular gene (67). Phylogenetic trees
approximating the evolutionary patterns of DNA trans-
posons and LINE families were randomly generated using
a custom-made tool (see Methods).

Sequences were simulated along these trees using a for-
ward evolution sequence simulator seeded with a class-
specific TE consensus sequence (see Materials and Meth-
ods). The DNA transposon sequence simulation was seeded
with the Tigger1 family consensus (68), and the LINE
tree was seeded with the L2 consensus (1). Simulation
was run with ten replicates at 18 evolutionary time incre-
ments, producing 180 simulated sequence sets and reference
MSAs (100 sequences each). The evolutionary time incre-
ments generated sequences ranging from 0.01 to 0.5 average
Kimura (69) sequence divergence. Evaluation with Char-
lie1 (DNA transposon) and CR1 (LINE) produced simi-
lar results, and are presented in the supplementary material
(S2.2; Figures 1 and 2).

Alignment reconstruction accuracy

We computed SPS for all methods over a wide range of se-
quence divergence and for both TE classes (Figure 3). SPS
results were significantly separated for both the DNA trans-
poson simulations (P-value = 2.49e–22) and the LINE sim-
ulations (P-value = 1.98e–29; both p-values computed us-
ing the Kruskal–Wallis H test (70)). Furthermore, MAFFT
and Refiner significantly outperformed other methods, ac-
cording to a Wilcoxon signed rank test (71) see Supplemen-
tary material S1.1 for the full pairwise comparison table).

Alignment as a basis for consensus sequences

Consensus sequences can be derived from MSAs by choos-
ing the most likely ancestral base at each position in the

MSA (considering only positions with high occupancy)
(72); this has, for example, long been the source of fam-
ily consensus sequences used in annotating TEs. When TE
copies form a star phylogeny, which appears to be the case
for most class II transposon copies in mammals (73), the
consensus will be identical to the ancestral sequence of the
active TE. In case of the LINE MSA, a consensus may ap-
proach an average of the evolving active TE. We computed
the CSL measure for each tool at a variety of divergence lev-
els (Figure 4), showing the extent to which computed align-
ments support recovery of accurate consensus sequences.

Effect of sequence fragmentation

We evaluated the effect of fragmentation on MSA recon-
struction as above, comparing the predicted MSA to the ref-
erence MSA, assessing both low divergence (1% avg Kimura
divergence (69)) and high divergence (28% avg Kimura) se-
quences. The mean fragmentation size was varied from 75
to 1200 bp, based on observed fragmentation patterns in
mammalian TE copies (Supplementary material S2.5). Fig-
ure 5 shows the effects of fragmentation level on SPS for
a DNA transposon simulation and provides a visualiza-
tion of the patterns for the fragmentation extremes. Most
tools performed well on low-divergence sequences over a
wide range of fragment sizes; at higher sequence divergence
and fragmentation, Refiner outperforms all methods tested
(Wilcoxon P-value ≤ 1.1e–11), with MAFFT, Dialign and
FSA outperforming the rest. We also explored the effect of
fragmentation on the accuracy of MSA-derived consensus
sequences, as in the previous section (Figure 6). At high se-
quence divergence levels, Refiner was the only tool with par-
tial retention of correct alignment score, showing that it ef-
fectively produces MSAs that yield accurate consensus se-
quences. We found similar results when we seeded the sim-
ulation with the LINE tree and the L2 sequence (Supple-
mentary material S2.3).

Comparison with natural sequence

We selected four DNA transposons: Zaphod (74), Zaphod2
(75), Tigger10 (76) and Arthur2 (77) to compare reconstruc-
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Figure 4. Accuracy of derived consensus sequence with respect to sequence divergence. Comparison of the predicted MSA-based consensus with the
reference MSA-based consensus, for a range of sequence divergences. (A) For simulated Tigger1 sequences with variable levels of Kimura divergence,
this plot shows the fraction (score(Cr ∼ Cr)-score(Cp ∼ Cr))/ score(Cr ∼ Cr), which corresponds to how effective the computed MSA is at producing a
consensus sequence (Cp) that agrees with the one for the simulated sequence (Cr). Scores are for the Needleman-Wunsch (NW) global alignment algorithm
(see Materials and Methods). Center line of each band shows the mean loss of score for each tool, while the surrounding shaded region shows the 95%
confidence interval. (B) The same fraction-of-optimal-score is captured, but for sequences simulated from L2.

Figure 5. MSA accuracy with respect to sequence fragmentation. (A.1) The SPS results for simulations of Tigger1 (1% Kimura divergence) over increasing
levels of sequence fragmentation. Fragment lengths are sampled from a distribution around the given mean (x-axis) with a standard deviation of 300.
Center line of each band shows the mean SPS for each tool, while the surrounding shaded region shows the 95% confidence interval. (A.2) A visualization
of the fragmentation of the reference MSA for the least fragmented and most fragmented datasets. Each line represents a single fragment; warmer colors
represent higher sequence divergence over 10 bp windows in the alignment. (B.1) The SPS results for simulations of Tigger1 (28% Kimura divergence) over
increasing levels of sequence fragmentation, with fragment length sampled as above. (B.2) Heatmap visualization of the fragmented MSA, as with (A.2),
but for the higher divergence Tigger1 benchmark.
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A

B

Figure 6. Accuracy of derived consensus with respect to sequence fragmentation. Comparison of the predicted MSA-based consensus with the reference
MSA-based consensus, for fragmented sequences. (A) Fraction of ideal sequence alignment score, as in Figure 4; input sequences are low-divergence
fragments (1% Kimura divergence) as from Figure 5A. (B) Same as in A, but with high-divergence fragment inputs (28% Kimura divergence) as from
Figure 5B.

tion accuracy at the protein level. These were selected for
their extreme age (Tigger10 and Arthur2 predate the com-
mon ancestor of marsupials and placental mammals) and
the high divergence of human copies to each other are ex-
pected to pose a challenge for MSA tools. For these fam-
ilies, there exist high quality manually created consensus
sequences, supplemented by copies from reconstructed an-
cestral mammalian genomes (78). As DNA transposons,
they are expected to have a star phylogeny, so that an ac-
curate MSA should recreate the ORFs of the active ele-
ments. For each family, 100 annotated genomic instances
from the human genome were sampled randomly from all
members of the family, and aligned with each tool. A con-
sensus was generated from each predicted MSA, then blastx
(default: matrix = blosum62, E = 10.0, gap open = 11,
gap ext = 1) was used to compare the consensus to the
curated transposase proteins from our RepeatMasker Re-
peat Protein Database. To avoid the potential for circular-
ity due to the fact that we were involved in both the cura-
tion of the protein sequence and the present assessment of
alignment, we also searched the MSA consensi against ho-
mologs for these proteins found in the RefSeq NR database.
For each comparison, the union of blastx results with an e-
value <0.001 were plotted (Figure 7) against the full length
protein. Though none of the MSA-derived consensus se-
quences is able to produce a full-length blastx match to
the related protein sequence, one tool (Refiner) demon-
strates clearly superior MSA-based blastx results: (i) only
consensus sequences derived from the Refiner MSAs had
matches for all elements and, (ii) Refiner-based blastx align-
ments were much longer and higher-scoring. This surpris-

ing result underscores the value of evaluating reverse trans-
lation quality among other metrics for TEs with coding
regions.

DISCUSSION

Using our new method TEForwardEvolve, we simulated the
evolution of TE families over a wide variety of sequence
divergence and fragmentation to investigate the impact on
MSA prediction quality. The evaluated tools exhibited simi-
lar patterns of performance degradation for both TE classes
as the sequence divergence was increased, with statistically
significant performance differences among them. For full-
length sequence inputs, MAFFT and Refiner maintained
the highest alignment accuracy over the range of diver-
gences. Surprisingly, the phylogenetic structure of the sim-
ulated trees did not produce a noticeable effect on align-
ment performance, suggesting that the results would hold
for other TE classes.

SPS (aka the developer score) is an established and gen-
erally informative measure of global MSA reconstruction;
however, it doesn’t appear to fully reflect the performance
of MSA tools in the context of consensus sequence predic-
tion. This can be seen most clearly in the performance of Re-
finer at high sequence divergences, where it is outcompeted
by MAFFT’s SPS score while simultaneously producing su-
perior accuracy of the MSA-derived consensus sequence.
Local alignment appears to be key to explaining the differ-
ence. The consensus is negatively influenced by the tendency
of many MSA tools to force mismatched sequence regions
together in the MSA (55,79); local alignment avoids this
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Figure 7. Protein reconstruction assessment for four mammalian TE families using 100 human-derived copies. A consensus model was built from each
MSA and compared to the known curated transposase protein sequence and to distant homologs found in the NCBI NR protein database using blastx
(matrix: BLOSUM62). For each method, the union of blastx results with e value <0.001 are plotted below the full-length database protein; the range of
blastx coverage is captured in colored boxes, and the lowest e-value for the set is displayed.

at the expense of a complete alignment. In addition, short
regions of misalignment in an MSA, while not penalized
heavily by the SPS metric, can lead to incorrect consensus
generation. For example: with highly fragmented sequences,
FSA occasionally produced alignments where a majority
of the sequences were incorrectly anchored at the start of
the alignment for a short stretch (3 bp) followed by large
gaps before continuing in roughly the correct location in the
overall MSA (see Supplementary material S2.4). In cases
such as this, the alignment artifact would cause a consen-
sus caller to consider the sequences contained in the gap as
probable insertions and generate a dramatically shortened
consensus.

Our results suggest that even low levels of fragmentation,
when combined with higher sequence divergence, poses a
significant challenge to MSA tools. Faced with fragmentary
input, Refiner produced MSAs that were significantly more
accurate than other tools, highlighting the value of its it-
erative transitive alignment approach for this challenging
form of input. For this study, fragmentation is simulated as
a random process, whereas fragmentation processes exhibit
biases for many TE classes (e.g. 5’ truncation in LINE ele-
ments, or the generation of solo LTRs through recombina-
tion). We plan to extend our simulator, TEFowardEvolve,
to explore the effect of these fragmentation architectures on
MSA prediction as well as additionally consider SINE and
LTR TE classes.

Finally, simulation results were validated with an eval-
uation using manually curated protein sequences, known
homologs, and instances of the TE family sequences that
once encoded them. Only one tool (Refiner) was consis-
tently successful in computing an MSA-based consensus
that matched the corresponding proteins in a blastx search.
The classification of a TE family is greatly facilitated by

comparing to existing TE protein databases, underscoring
the importance of an accurate MSA reconstruction. This
analysis was restricted to DNA transposons due to the lim-
ited availability of ancient TE protein reconstructions. Nat-
ural sequences present the most compelling benchmark;
however, it is difficult to obtain large enough samples for
a complete parametric analysis. We plan to further extend
this aspect of the benchmark as a complement to the simu-
lated datasets.
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TEForwardEvolve, genRandomTETrees, analysis scripts,
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