Contents lists available at ScienceDirect

Data in brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data on ¹³⁷Cs concentration factor of freshwater fish and aquatic organisms in lake and river ecosystems

Yumiko Ishii ^{a, *}, Shin-ichiro S. Matsuzaki ^b, Seiji Hayashi ^a

 ^a Environmental Impact Assessment Section, Fukushima Branch, National Institute for Environmental Studies, 10-2 Fukasaku, Miharu Town, Tamura County, Fukushima, 963-7700, Japan
^b Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, 16–2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan

ARTICLE INFO

Article history: Received 18 November 2019 Received in revised form 16 December 2019 Accepted 16 December 2019 Available online 1 January 2020

Keywords: Fukushima Radiocesium Aquatic biota Concentration factor

ABSTRACT

This article provides the data which were analyzed in the research article "Different factors determine ¹³⁷Cs concentration factors of freshwater fish and aquatic organisms in lake and river ecosystems" (Y. Ishii, S. S. Matsuzaki, S. Hayashi, 2019) [1]. Radionuclide accumulation in aquatic organism is defined in terms of the concentration factor (CF), which is calculated as the radionuclide concentration in the organism (Bq kg⁻¹) divided by that in the surrounding water (Bq L⁻¹). Quantification of the radionuclide CF allows estimation of environmental radionuclide transfer and the potential risks of consuming fish contaminated with the radionuclide. We calculated the ¹³⁷Cs CF values for freshwater fish and aquatic organisms using the monitoring data of multiple sites in five rivers and three lakes of Fukushima in years 2013-2017 after the Fukushima Dai-ichi Nuclear Power Plant accident. The data also include the ¹³⁷Cs activity concentration of the water and water chemistry data (pH, biochemical oxygen demand, chemical oxygen demand, dissolved oxygen, electric conductivity, salinity, total organic carbon, suspended solid concentration, turbidity) at each sampling location associated with each CF value.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/).

DOI of original article: https://doi.org/10.1016/j.jenvrad.2019.106102.

* Corresponding author.

E-mail address: ishii.yumiko@nies.go.jp (Y. Ishii).

https://doi.org/10.1016/j.dib.2019.105043

^{2352-3409/© 2019} The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

Specifications table

Subject area	Environmental Science
More specific subject area	Pollution
Type of data	Tables and Figures
How data was acquired	Coaxial germanium detectors (Canberra GC2020 [Mirion Technologies, San Ramon, CA, USA], Canberra GC4020 [Mirion Technologies], ORTEC GMX 60–83 [Ametek Ortec, Oak Ridge, TN, USA], and GEM 40–76 [Ametek Ortec]) and well-type germanium detectors (Canberra GCW2523 [Mirion Technologies] and ORTEC GWL–90–15–XLB–AWT [Ametek Ortec])
Data format	Raw and analyzed
Experimental factors	The ¹³⁷ Cs activity concentrations were measured for the wet whole-body samples of freshwater
	fish and other aquatic organisms from five rivers and three lakes in Fukushima Prefecture after
	the Fukushima Daiich Nuclear Power Plant accident.
Experimental features	The ¹³⁷ Cs activity concentrations and their concentration factors, which are defined as the ratio of ¹³⁷ Cs activity in the samples (Bq kg ⁻¹ fresh weight) to that of ¹³⁷ Cs activity in the water (Bq L^{-1}), were calculated for freshwater fish and other aquatics organisms.
Data source location	Uda river, Mano river, Niida river, Ota river, Abukuma river, Lake Hayama, Lake Akimoto, and Lake Inawashiro in Fukushima Prefecture, Japan
Data accessibility	Data presented in this article
Related research article	[If your data article is related to a research article, please cite your associated research article here].
	Author's name: Yumiko Ishii, Shin-ichiro S. Matsuzaki, Seiji Hayashi
	Title: Different factors determine ¹³⁷ Cs concentration factors of freshwater fish and aquatic
	organisms in lake and river ecosystems
	Journal: Journal of Environmental Radioactivity
	DOI: doi.org/10.1016/j.jenvrad.2019.106102

Value of the data

- This data can be useful for researchers for the estimation of the radiological risks associated with the freshwater ecosystem.
- The data can be useful for comparison of ¹³⁷Cs bioaccumulation with other regions or other ecosystems.
- The data can be useful for further research of the factors affecting ¹³⁷Cs accumulation in freshwater aquatic organisms.

1. Data

The dataset contains the ¹³⁷Cs activity concentrations and their concentration factors (CF), which are defined as the ratio of ¹³⁷Cs activity in the samples (Bq.kg⁻¹ fresh weight) to that of ¹³⁷Cs activity in the water (Bq.L⁻¹), of freshwater fish and other aquatic organisms in Fukushima. We compiled the data from the Radioactive Material Monitoring Surveys of the Water Environment [2] sponsored by the Japanese Ministry of the Environment (MOE). Information about the sampling sites in Fukushima is presented in Fig. 1 (Map of the sampling sites), Fig. 2 (Pictures of the sampling sites) and Table 1 (List of sampling sites). The ¹³⁷Cs CF values are summarized for freshwater fish species (Table 2) and other freshwater aquatic organisms (Table 3). The datasets which were used to calculate the ¹³⁷Cs CF values and associated water chemistries are attached as a supplementary file to this article as Appendix A (freshwater fish species) and Appendix B (other freshwater aquatic organisms).

2. Experimental design, materials and methods

2.1. The MOE monitoring

The MOE monitoring data were obtained for ¹³⁷Cs activity concentrations for freshwater fish and aquatic organisms at multiple sites in Fukushima Prefecture since 2011, after the Fukushima Daiichi Nuclear Power Plant accident. The MOE monitoring dataset presented the following advantages: low

Fig. 1. Map of locations of sampling sites. ¹³⁴Cs and ¹³⁷Cs total depositions in Fukushima are shown in gray scale, according to data from the 5th Airborne Radiation Monitoring by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) in 2012. This map used the digital topographic tile of the Geospatial Information Authority of Japan.

¹³⁷Cs activity in water was quantified without it going below the detection limit; a large number of concentration factor (CF) values of fish and other aquatic organisms can be evaluated in a wide geographical range in Fukushima; and the water quality was measured in detail at every sampling location. Aquatic organisms included not only fish but also litter, plankton, periphyton, aquatic plants, aquatic insects, crustaceans, mollusks, and amphibians. From the calculation of the ¹³⁷Cs concentration factors, it is evident that equilibrium between the biota and the water samples was not attained immediately after the accident. Because the data indicated the CFs were relatively stable after 2013, we calculated the CFs of ¹³⁷Cs for the years 2013–2017.

2.2. Study area

The monitoring was conducted in five rivers (Uda River, Mano River, Niida River, Ota River, and Abukuma River) and three lakes (Lake Hayama, Lake Akimoto, and Lake Inawashiro) of Fukushima, Japan (Figs. 1 and 2). Table 1 shows the geographic coordinates (latitudes and longitudes) of the sampling locations. The Abukuma River in central Fukushima flows through areas with relatively low contamination levels. The Abukuma river includes the monitoring sites Abukuma A and B. Lakes Akimoto and Inawashiro are located in central Fukushima, and Lake Hayama is a dammed lake upstream of the Mano River. Fish, aquatic organisms, litter, and water samples were collected at 2–4 monitoring sites per river or lake.

2.3. Sample collection and preparation

The sampling was conducted four times a year (spring: May to July, summer: August to September, autumn: October to November, and winter: December) at each site. Water was sampled at each monitoring site. Each water sample was filtered through a plankton net ($72-75 \mu m$ mesh) to exclude organic and inorganic contaminants, the filtration process could not distinguish dissolved and particulate forms of ¹³⁷Cs in water. The filtered water sample was used to measure pH, biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), electric conductivity (EC), salinity, total organic carbon (TOC), suspended solid concentration (SS), turbidity and water

Fig. 2. Pictures of the sampling sites.

temperature. The level of ¹³⁷Cs activity in the water samples was determined by the ammonium phosphomolybdate method [3].

Freshwater fish and other aquatic organisms were sampled and ¹³⁷Cs activity concentrations measured as whole-body wet samples. All biota samples were rinsed with water, chopped, homogenized, and frozen from -25 to -30 °C in plastic containers (U8; diameter = 50 mm; height = 62 mm). Detailed descriptions of sample collection and preparation for germanium gamma-ray spectrometer analysis are given in Ishii et al. (2019) [1].

Table 1		
Latitude and	longitude of sampling	sites.

Site	Site code	Sampling point	Latitude (N)	Longitude (E)
Uda River	RU	C5	37.7644	140.8603
		C6	37.7765	140.8876
Mano River	RM	D1	37.7332	140.9254
		D2	37.7093	140.9565
		D3	37.7050	140.9622
		D4a	37.7309	140.9079
		D4b	37.7311	140.9096
		D5	37.7217	140.8899
Niida River	RN	E1	37.6614	140.9115
		E2a	37.6644	140.9453
		E2b	37.6641	140.9459
		E3	37.6447	141.0013
		E4	37.6463	140.9658
Ota River	RO	F1	37.5975	140.9250
		F3	37.6045	140.9637
		F4	37.6069	140.9720
		F5	37.6022	140.9874
Abukuma River	RA-A	A1	37.6206	140.5220
		A2	37.5657	140.3943
	RA-B	B2	37.8120	140.5058
		B3	37.8164	140.4719
Lake Hayama	LH	G1	37.7321	140.8127
		G2	37.7267	140.8223
		G3	37.7302	140.8307
Lake Akimoto	LA	H1	37.6575	140.1264
		H2	37.6616	140.1226
		H3	37.6653	140.1329
		H4	37.6551	140.1181
Lake Inawashiro	LI	I1	37.5047	140.1143
		12	37.4995	140.1409
		J1	37.4203	140.1008

2.4. Gamma spectrometric analysis

The ¹³⁷Cs activity concentrations were measured using coaxial germanium detectors (Canberra GC2020 [Mirion Technologies, San Ramon, CA, USA], Canberra GC4020 [Mirion Technologies], ORTEC GMX 60-83 [Ametek Ortec, Oak Ridge, TN, USA], and GEM 40-76 [Ametek Ortec]) and well-type detectors [Mirion germanium (Canberra GCW2523 Technologies] and ORTEC GWL–90–15–XLB–AWT [Ametek Ortec]). The relative efficiency of these germanium detectors ranged from 23 to 60%. The instruments were calibrated using the standard volume radioactivity source for U8 containers (1 mm, 3 mm, 5 mm, 10 mm, 20 mm, 30 mm, and 50 mm) [Eckert & Ziegler, Berlin, Germany] and for Teflon tube containers (2 mm, 5 mm, 10 mm, 20 mm, and 40 mm) [Eckert & Ziegler]. Samples were measured considering <10% errors per net area counts. The counting time was extended up to 80,000 s. Gamma Station (Seiko EG&G Co. Ltd., Chuo-ku, Tokyo, Japan) and Gamma Explorer (Mirion Technologies) were used to analyze the γ -ray spectra for the 661.6382 keV of ¹³⁷Cs. ¹³⁷Cs activity concentration of samples was corrected for radioactive decay since the sample collection date.

2.5. Calculation of ¹³⁷Cs CF for fish species

For the calculation of ¹³⁷Cs CFs, the ¹³⁷Cs activity levels of the freshwater fish were divided by the water ¹³⁷Cs activity. The water ¹³⁷Cs activity, and other water chemistry values which were measured simultaneously at the same monitoring site as fish collection were referenced from the monitoring data. When the values of BOD were described as < 0.5 in the monitoring data, they were replaced by 0.25, and when the values of SS were described as < 1, they were replaced by 0.5. If the sample was collected from multiple sampling points, the water ¹³⁷Cs activity, and the water quality values of the

Table 2

¹³⁷Cs concentration factors (Lkg⁻¹) for freshwater fish. AM: arithmetic mean, ASD: arithmetic standard deviation, GM: geometric mean, GSD: geometric standard deviation. For *Carassius* sp., *Cottus* sp., Loach, and *Rhinogobius* sp., multiple species were merged to a group. The merged species name and the number of samples for each species are listed in the "merged species name" column.

Fish species	Merged species name	Functional feeding group	Habitat	Ecosystem type	N	AM	ASD	GM	GSD	Min.	Max.
Acheilognathus melanogaster		Omnivore	Benthopelagic	River	3	$9.8 imes 10^2$	$8.4 imes 10^2$	$7.6 imes 10^2$	2.4	3.5×10^2	1.9×10^3
Anguilla japonica (Japanese eel)		Piscivore	Demersal	River	29	2.7×10^2	$\textbf{2.6}\times \textbf{10}^{3}$	1.7×10^2	3.0	$\textbf{6.5}\times 10^{0}$	1.3×10^4
Candidia temminckii		Omnivore	Benthopelagic	River	47	6.2×10^2	4.1×10^2	$4.9 imes 10^2$	2.0	7.1×10^{0}	1.7×10^3
Carassius sp.	Carassius auratus	Omnivore	Benthopelagic	Lake	73	2.1×10^3	1.2×10^3	$1.7 imes 10^3$	2.1	2.3×10^2	6.6×10^3
	langsdorfii (67),			River	23	1.2×10^3	7.4×10^2	1.0×10^3	2.2	1.1×10^2	3.2×10^3
	Carassius cuvieri (2), Carassius sp. (27)										
Channa argus		Piscivore	Benthopelagic	Lake	1	3.1×10^3	_	_	_	_	-
Cottus sp.	Cottus pollux (21),	Omnivore	Demersal	Lake	2	1.0×10^3	3.9×10^2	9.8×10^2	1.5	7.4×10^2	1.3×10^3
	Cottus reinii (5)			River	24	1.0×10^3	1.1×10^{3}	6.5×10^2	2.9	6.8×10^1	3.8×10^3
Cyprinus carpio (Common		Omnivore	Benthopelagic	Lake	18	1.8×10^3	7.0×10^2	1.7×10^3	1.5	8.7×10^2	3.2×10^3
carp)				River	22	1.3×10^{3}	1.5×10^{3}	8.1×10^{2}	2.7	9.6×10^{1}	6.6×10^{3}
Gnathopogon elongatus		Omnivore	Benthopelagic	River	11	1.1×10^{3}	6.7×10^{2}	7.9×10^{2}	2.9	6.7×10^{1}	2.1×10^{3}
Gymnogobius urotaenia		Omnivore	Demersal	Lake	1	1.8×10^{3}	-	-	-	-	-
				River	5	8.8×10^{2}	5.3×10^{2}	6.8×10^{2}	2.5	1.6×10^{2}	1.3×10^{3}
Hemibarbus barbus		Omnivore	Benthopelagic	Lake	46	2.2×10^{3}	1.0×10^{3}	1.9×10^{3}	1.8	3.3×10^{2}	4.7×10^{3}
(Japanese barbel)				River	29	8.2×10^{2}	9.0×10^{2}	4.5×10^{2}	3.4	3.9×10^{1}	4.1×10^{3}
Hypomesus nipponensis		Planktivore	Pelagic	Lake	22	1.1×10^{3}	5.9×10^{2}	9.7×10^{2}	1.6	3.1×10^{2}	3.0×10^{3}
(Pond smelt)				River	1	3.1×10^{2}	-	-	-	-	-
Ictalurus punctatus (Channel catfish)		Piscivore	Demersal	River	13	5.6×10^{2}	3.9×10^{2}	4.1×10^{2}	2.4	6.9×10^{1}	1.1×10^{3}
Lepomis macrochirus		Omnivore	Benthopelagic	Lake	10	1.5×10^{3}	7.0×10^2	1.3×10^3	1.7	4.1×10^2	2.9×10^3
(Bluegill)				River	5	1.8×10^3	2.9×10^3	7.4×10^2	4.5	1.7×10^2	7.0×10^3
Loach	Misgurnus	Omnivore	Demersal	Lake	2	1.9×10^2	1.5×10^{2}	1.6×10^{2}	2.5	8.4×10^1	3.0×10^2
	anguillicaudatus (55), Cobitis biwae (19), Noemacheilus barbatulus (10), Nemacheilus toni (5), Lefua echigonia (3)			River	90	7.0×10^{2}	6.8 × 10 ²	4.6×10^{2}	2.5	4.9 × 10 ¹	3.7×10^3
Micropterus dolomieu		Piscivore	Benthopelagic	Lake	65	4.9×10^3	4.1×10^3	$3.8 imes 10^3$	2.0	$\textbf{4.2}\times \textbf{10}^{2}$	$2.5 imes 10^4$
(Smallmouth bass)				River	27	1.1×10^3	$1.2 imes 10^3$	$6.3 imes 10^2$	3.1	1.0×10^2	5.8×10^3
Micropterus salmoides		Piscivore	Benthopelagic	Lake	9	$4.3 imes 10^3$	$\textbf{3.4}\times \textbf{10}^{3}$	3.1×10^3	2.4	$1.0 imes 10^3$	$1.0 imes 10^4$
(Largemouth bass)				River	3	1.1×10^3	1.2×10^3	$7.0 imes 10^2$	4.0	$1.6 imes 10^2$	2.6×10^3

6

Oncorhynchus masou (Masu salmon)		Piscivore	Benthopelagic	Lake River	33 62	$\begin{array}{c} 2.7\times10^3\\ 1.0\times10^3 \end{array}$	$\begin{array}{c} 1.8 \times 10^3 \\ 1.8 \times 10^3 \end{array}$	$\begin{array}{c} 2.1\times10^3\\ 5.3\times10^2\end{array}$	2.4 2.9	$\begin{array}{c} 1.0\times10^2\\ 5.4\times10^1\end{array}$	$\begin{array}{c} 8.6\times10^3\\ 9.8\times10^3\end{array}$
Oncorhynchus mykiss (Rainbow trout)		Piscivore	Benthopelagic	Lake	3	3.4×10^3	3.5×10^3	2.1×10^3	3.8	5.2×10^2	7.4×10^3
Opsariichthys platypus (Pale		Omnivore	Benthopelagic	Lake	13	9.6×10^2	5.6×10^2	8.4×10^2	1.6	4.9×10^2	2.3×10^3
chub)				River	75	$8.8 imes 10^2$	$6.3 imes 10^2$	$6.4 imes 10^2$	2.4	5.3×10^{1}	2.8×10^{3}
Phoxinus lagowskii		Omnivore	Benthopelagic	Lake	6	5.1×10^2	2.9×10^2	$4.3 imes 10^2$	1.9	1.5×10^2	9.5×10^2
				River	35	5.3×10^{2}	$4.5 imes 10^2$	3.9×10^{2}	2.3	$8.0 imes 10^1$	2.4×10^3
Plecoglossus altivelis (Ayu)		Herbivore	Benthopelagic	River	59	1.1×10^3	1.0×10^3	7.4×10^2	3.0	3.0×10^1	5.8×10^3
Pseudobagrus tokiensis		Omnivore	Demersal	River	8	$5.0 imes 10^2$	3.8×10^2	$4.0 imes 10^2$	2.0	1.7×10^2	1.3×10^3
Pseudogobio esocinus		Omnivore	Benthopelagic	Lake	17	$7.4 imes 10^2$	$2.3 imes 10^2$	$7.0 imes 10^2$	1.4	3.5×10^2	1.1×10^3
				River	12	5.7×10^2	2.6×10^2	5.1×10^2	1.6	1.8×10^2	1.0×10^3
Pseudorasbora parva		Omnivore	Benthopelagic	River	1	$8.4 imes 10^2$	_	-	-	_	-
Rhinogobius sp.	Rhinogobius fluviatilis (18), Rhinogobius nagoyae (7), Rhinogobius kurodai (1), Rhinogobius sp. (36)	Omnivore	Benthopelagic	River	62	2.3 × 10 ³	1.3 × 10 ³	1.9 × 10 ²	2.1	1.1×10^2	5.7 × 10 ³
Salvelinus leucomaenis	. ,	Piscivore	Benthopelagic	Lake	46	$4.1 imes 10^3$	1.8×10^3	$3.7 imes 10^3$	1.6	$1.1 imes 10^3$	8.7×10^3
(Whitespotted char)				River	3	2.4×10^3	2.8×10^3	1.1×10^3	5.6	1.8×10^2	5.5×10^3
Sarcocheilichthys variegatus		Omnivore	Benthopelagic	River	4	6.1×10^{2}	3.6×10^2	4.4×10^2	3.1	8.2×10^1	8.6×10^2
Silurus asotus (Japanese		Piscivore	Demersal	Lake	17	6.4×10^3	5.5×10^3	3.9×10^3	3.2	$4.5 imes 10^2$	1.8×10^4
catfish)				River	23	3.0×10^3	4.9×10^3	1.7×10^3	2.6	2.7×10^2	$2.4 imes 10^4$
Tribolodon hakonensis		Omnivore	Benthopelagic	Lake	69	2.6×10^3	1.2×10^3	2.3×10^3	1.7	3.7×10^2	6.0×10^3
(Japanese dace)				River	123	1.1×10^3	8.2×10^2	8.2×10^2	2.6	$4.6 imes 10^1$	$3.9 imes 10^3$
Tridentiger brevispinis		Omnivore	Demersal	River	3	1.2×10^3	2.6×10^2	1.2×10^3	1.2	1.0×10^3	1.5×10^3

Table 3

 137 Cs concentration factors (Lkg $^{-1}$) for freshwater aquatic organisms. Samples which were identified to the species level are listed in the species name column. AM: arithmetic mean, ASD: arithmetic standard deviation, GM: geometric mean, GSD: geometric standard deviation.

Aquatic organisms	Species name	Ecosystem type	N	AM	ASD	GM	GSD	Min.	Max.
Litter		River	112	3.2×10^3 1.7 × 10^3	3.5×10^3 3.7×10^3	1.9×10^{3}	3.0 5.2	7.6×10^{1}	2.4×10^4
Perinhyton		River	116	7.7×10^{3}	5.7×10^{3}	5.3×10^3	2.2 2.4	1.3×10^{-10} 2.7 × 10 ²	2.0×10^{4}
Moss	Sphagnum sp (7)	River	9	3.3×10^{3}	3.1×10^{3} 3.0×10^{3}	2.3×10^{3}	2.6	4.9×10^{2}	1.0×10^4
Filamentous	Spirogyra sp.(14). Oedogonium	River	15	8.2×10^{2}	1.2×10^{3}	3.2×10^{2}	4.3	1.6×10^{1}	4.5×10^{3}
algae	sp. (2), Cladophora sp.(1)	Lake	2	1.2×10^3	$1.5 imes 10^3$	4.9×10^2	9.0	1.0×10^2	$2.3 imes 10^3$
Aquatic plant	Elodea nuttallii (7), Nuphar	River	18	1.5×10^3	2.7×10^3	5.8×10^2	4.0	9.2×10^1	9.2×10^3
	japonicum (17), Nymphoides	Lake	32	2.1×10^2	$2.4 imes 10^2$	$1.4 imes 10^2$	2.2	$2.6 imes 10^1$	$1.3 imes 10^3$
	peltata (8), Phragmites australis								
	(6), Potamogeton berchtoldii (4),								
	Potamogeton crispus (5),								
Spail	Potamogeton pusilius (3)	Divor	12	1 0 103	41.10^{3}	$6.6 + 10^{2}$	26	$2.1 + 10^{1}$	22.104
Slidii	Semisucospiru libertina (50)	Lako	45	1.0×10 1.0 × 10 ³	4.1×10 15×10^3	0.0×10 1.4 $\times 10^3$	5.0 2.5	2.1×10 2.9 × 10 ²	2.2×10 4.7×10^3
Shrimn	Paratya improvisa (44)	River	106	1.9×10^{-1} 1.2×10^{-3}	$1.3 \times 10^{-1.0}$ 7.5×10^{-2}	1.4×10^{-10}	2.5	7.0×10^{-10}	4.7×10^{-3}
Similip	Palaemon paucidens (24).	Lake	1	2.0×10^{3}	7.5 × 10	5.5 × 10	2.2	7.11 × 10	5.2 × 10
	Neocaridina sp.(14)	Lunc	•	210 / 10					
Crayfish	Procambarus clarkii (53),	River	53	1.3×10^3	1.1×10^3	9.7×10^2	2.4	9.7×10^{1}	5.0×10^3
-	Pacifastacus leniusculus (20)	Lake	20	1.9×10^3	6.9×10^2	1.8×10^3	1.4	9.3×10^2	3.5×10^3
Crab	Eriocheir japonica (55),	River	57	1.4×10^3	$1.1 imes 10^3$	$1.0 imes 10^3$	2.4	$6.6 imes 10^1$	$7.0 imes 10^3$
	Geothelphusa dehaani (2)				_				
Detritivore	Stenopsyche marmorata (95),	River	125	2.9×10^{3}	2.2×10^{3}	2.2×10^{3}	2.2	2.4×10^{2}	1.4×10^4
insect	Isonychia japonica (9), Ephemera								
	strigata (7), Drunella								
Carnivoro	Protoharmas grandis (AA)	Divor	176	7.9×10^{2}	9.1×10^{2}	5.5×10^{2}	22	6.0×10^{1}	65×10^{3}
insect	Parachauliodes continentalis	Lake	3	7.8×10^{-10} 5.7 × 10 ²	1.1×10^{2}	5.5×10^{3}	2.5 1 2	0.9×10^{-10}	0.3×10^{-10}
liiseet	(12) Macromia amphigena	Lake	J	J.7 × 10	1.1 × 10	J.0 × 10	1.2	4.0 × 10	7.0 × 10
	amphigena (19). Sieboldius								
	albardae (7), Anotogaster								
	sieboldii (6), Kamimuria tibialis								
	(6)								
Tadpole	Rana catesbeiana (9), Lithobates	River	49	5.7×10^3	4.0×10^3	4.3×10^3	2.3	5.0×10^3	$2.1 imes 10^4$
	catesbeianus (3)	Lake	3	7.2 × 103	4.6 × 103	5.6 × 103	2.6	1.8 × 103	1.0×104
Adult	Cynops pyrrhogaster (22), Rana	River	72	1.4 × 103	4.6 × 103	5.5 × 102	3.0	5.4 × 101	3.6 × 104
amphibian	rugosa (16), Rana ornativentris	Lake	12	8.9 × 102	5.9 × 102	7.2 × 102	2.0	1.9×102	2.2×103
	(4), Kana porosa porosa (4), Rana								
	Japonica (3)								

sampling points were averaged. The CF values are summarized in Table 2, including 30 fish species (N = 1246). The dataset which associated CF values with ¹³⁷Cs activity concentration of water and water chemistries are attached as a supplementary file to this article (Appendix A). The dataset variables are as follows: site_code: monitoring site code (see Table 1), site: monitoring site, ecosystem: the type of ecosystem (river or lake), samplingpoint: sampling point (see Table 1), date: date of sampling, season: season of sampling (spring, summer, autumn, winter), order: order of sample, family: family of sample, species: species of sample, habitat: habitat of fish (pelagic, benthopelagic, or demersal fish; based on fishbase.org information), N: number of merged fish individuals for Gamma spectrometric analysis, weight: weight of merged fish sample (kg), meansize: mean size of fish calculated by dividing the weight by N (g), remove_IO: removal of internal organs (1: remove, 0: not removed, na: unknown), Cs137: ¹³⁷Cs activity concentration of fish (Bq kg⁻¹), Cs137.w: ¹³⁷Cs activity concentration of fish (Bq kg⁻¹), pH: pH of water, BOD: biochemical oxygen demand of water (mgL⁻¹), COD: chemical oxygen demand of water (mgL⁻¹), DO: dissolved oxygen of water (mgL⁻¹), EC: electric conductivity of water (mS/m), salinity: salinity of water (psu),

TOC: total organic carbon of water (mgL⁻¹), SS: suspended solid concentration of water (mgL⁻¹), turbidity: turbidity of water, and temperature: temperature of water (°C).

2.6. Calculation of ¹³⁷Cs concentration factor for other aquatic organisms

Litter, plankton, periphyton, aquatic plants, aquatic insects, crustaceans, mollusks, and amphibians were obtained from the same monitoring sites as the fish. The ¹³⁷Cs concentration factor was calculated in the same way as for freshwater fish. The aquatic organisms, their dominant species, and their CF values are summarized in Table 3. The dataset which associated CF values with ¹³⁷Cs activity concentration of water and water chemistries are attached as a supplementary file to this article (Appendix B). The dataset variables are as follows: site_code: monitoring site code (see Table 1), site: monitoring site, ecosystem: the type of ecosystem (river or lake), samplingpoint: sampling point (see Table 1), date: date of sampling, season; season of sampling (spring, summer, autumn, winter), category1; category of aquatic organisms (litter, primary producer, mollusk, crustacean, aquatic insect, amphibian), category2: detailed category of aquatic organisms (litter, plankton, periphyton, aquatic plant, snail, shrimp, crab, crayfish, detritivore insect, carnivore insect, adult amphibian, tadpole), order: order of sample, species: species of sample, N: number of merged individuals for Gamma spectrometric analysis, weight: weight of merged sample, Cs137: ¹³⁷Cs activity concentration of sample (Bq kg⁻¹), Cs137.w: ¹³⁷Cs activity concentration of water (Bq kg⁻¹), CF: ¹³⁷Cs concentration factor (L kg⁻¹), pH: pH of water. BOD: biochemical oxygen demand of water (mgL^{-1}), COD: chemical oxygen demand of water (mgL^{-1}) , DO: dissolved oxygen of water (mgL^{-1}) , EC: electric conductivity of water (mS/m), salinity: salinity of water (psu), TOC: total organic carbon of water (mgL⁻¹), SS: suspended solid concentration of water (mgL⁻¹), turbidity: turbidity of water, and temp: temperature of water (°C).

Acknowledgements

This work was financially supported by the research program on Disaster Environment, an internal budget of National Institute for Environmental Studies. The internal budget was originally issued by the Ministry of Environment, Japan (http://www.nies.go.jp/shinsai/index-e.html). The authors thank those who contributed to the Radioactive Material Monitoring Surveys of the Water Environment. We also thank Mr. M. Ono (KANSO CO. LTD.) for providing detailed information regarding sample processing and monitoring measurements.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A and B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.105043.

References

- Y. Ishii, S.S. Matsuzaki, S. Hayashi, Different factors determine ¹³⁷Cs concentration factors of freshwater fish and aquatic organisms in lake and river ecosystems, J. Environ. Radioact. (2019), https://doi.org/10.1016/j.jenvrad.2019.106102.
- [2] Ministry of Environment, Radioactive material monitoring Surveys of the water environment. http://www.env.go.jp/en/ water/rmms/surveys.html.
- [3] K. Hirose, M. Aoyama, Y. Igarashi, K. Komura, Improvement of 137Cs analysis in small volume seawater samples using the Ogoya underground facility, J. Radioanal. Nucl. Chem. 276 (2008) 795–798, https://doi.org/10.1007/s10967-008-0634-6.