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Abstract

Background: Although numerous electroencephalogram (EEG) studies have described differences in functional
connectivity in Alzheimer's disease (AD) compared to healthy subjects, there is no general consensus on the
methodology of estimating functional connectivity in AD. Inconsistent results are reported due to multiple
methodological factors such as diagnostic criteria, small sample sizes and the use of functional connectivity
measures sensitive to volume conduction. We aimed to investigate the reproducibility of the disease-associated
effects described by commonly used functional connectivity measures with respect to the amyloid, tau and
neurodegeneration (A/T/N) criteria.

Methods: Eyes-closed task-free 21-channel EEG was used from patients with probable AD and subjective cognitive
decline (SCD), to form two cohorts. Artefact-free epochs were visually selected and several functional connectivity
measures (AEC(-c), coherence, imaginary coherence, PLV, PLI, wPLI) were estimated in five frequency bands.
Functional connectivity was compared between diagnoses using AN(C)OVA models correcting for sex, age and,
additionally, relative power of the frequency band. Another model predicted the Mini-Mental State Exam (MMSE)
score of AD patients by functional connectivity estimates. The analysis was repeated in a subpopulation fulfilling
the A/T/N criteria, after correction for influencing factors. The analyses were repeated in the second cohort.

Results: Two large cohorts were formed (SCD/AD; n = 197/214 and n = 202/196). Reproducible effects were found
for the AEC-c in the alpha and beta frequency bands (p =6.20 x 107/, Cohen’s d =—053; p =578 x 107, d = —
0.37) and PLI and wPLI in the theta band (p =3.81 x 10°% d =0.59; p =162 x 108 d =060, respectively). Only
effects of the AEC-c remained significant after statistical correction for the relative power of the selected bandwidth.
In addition, alpha band AEC-c correlated with disease severity represented by MMSE score.

Conclusion: The choice of functional connectivity measure and frequency band can have a large impact on the
outcome of EEG studies in AD. Our results indicate that in the alpha and beta frequency bands, the effects
measured by the AEC-c are reproducible and the most valid in terms of influencing factors, correlation with disease
severity and preferable properties such as correction for volume conduction. Phase-based measures with correction
for volume conduction, such as the PLI, showed reproducible effects in the theta frequency band.
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Introduction

Alzheimer’s disease (AD) is the most common cause of
dementia, and it is expected that 131.5 million people
will be living with dementia in 2050 [1]. Electroenceph-
alography (EEG) has been used to understand underlying
mechanisms and support the diagnosis of AD [2, 3], but
also to observe treatment effects [4]. EEG is a relatively
easy, cheap and widely available method and provides
functional data with a high temporal resolution which
makes it an interesting modality to investigate the
disease.

Quantitative resting-state EEG data analyses can
roughly be divided into three modalities: spectral de-
composition, functional connectivity and network-based
analyses. Each of these modalities has shown profound
changes in AD compared to healthy subjects [2, 5, 6].
Spectral changes in AD are characterized by a general
slowing of the dominant oscillatory brain rhythms. Typ-
ically, there is an increase in relative theta and delta
power and a decrease in relative alpha and beta power
[2, 7]. The analyses of spectral changes are very straight-
forward and require no more than, for example, a fast
Fourier transformation [8] of the oscillatory data. As a
result, there is a broad consensus concerning the typical
spectral changes in AD. Functional connectivity and net-
work analyses on the other hand require more complex
calculations and are subject to choices in the use of dif-
ferent properties of the EEG signal [9]. A broad and gen-
eral consensus about changes in functional connectivity
or brain networks is therefore more complicated.

Various studies have reported changes in functional
connectivity in AD. In general, AD is considered to be a
disconnecting syndrome [10, 11], showing a lower func-
tional connectivity in patients with dementia due to AD
compared to healthy controls [3]. This conclusion is,
however, not based on consistent methodology. Many
studies suffered from small study populations and poor
definition of study populations without using clinical
[12] or research criteria [13]. But most importantly, al-
though recommendations have been published [9, 14,
15], there is an absence of a consensus on the method-
ology of estimating functional connectivity. It is, there-
fore, not surprising that different and sometimes
conflicting results have been reported between measures
of functional connectivity in AD. Reproducibility issues
like these have recently gained more attention through-
out the different fields of science [16]. As scientists are
more eager to present new results or discoveries, there is
limited motivation to reproduce and publish previously
reported findings. Previous results could have been influ-
enced by low statistical power, ‘P-hacking’ or publication
bias, and it has been estimated that 85% of biomedical
research efforts are not reproducible [17]. This meth-
odological problem is often referred to as the
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‘reproducibility crisis’. A lack of reproducible results can
impair the use of these measures in future (clinical)
studies and even harm the credibility of the functional
connectivity research field.

Examples of inconsistencies in functional connectivity
literature, among others, can be found in the results re-
ported for coherence. It is reported to be decreased in
the alpha (8-13Hz) band in AD subjects by multiple
studies but some other studies have additionally re-
ported an increase in delta (0.5-4 Hz) band coherence
[18, 19] and an increase in theta (4—8 Hz) band coher-
ence [20]. In another comparison of AD and cognitively
normal patients, both the phase lag index (PLI) and im-
aginary coherence showed a decrease in functional con-
nectivity in the beta (13-30Hz) frequency band [21],
where other studies showed differences in the alpha
band PLI [22] and alpha [23] but also delta and theta
band [24] imaginary coherence.

Some of the conflicting reports of change in functional
connectivity may be explained by issues in study design
such as differences in populations, sample size and (pre-
)processing. In addition, the choice of functional con-
nectivity measure could also have had an influence on
the results [25]. This could be due to differences in the
use of EEG properties (i.e. amplitude, phase, frequency),
the chosen bandwidth and regional changes. As shown
by research in other neurodegenerative diseases, differ-
ent functional connectivity measures can show different
regional increases or decreases in the same or different
bandwidths [26, 27]. Neurodegeneration also proves to
be a nonlinear process which can cause different states
in different stages of the disease [28, 29]. As a result, it
can be a valid procedure to look at different functional
connectivity measures in different frequency bands sim-
ultaneously. However, inconsistencies can also occur
due to a low reliability of the measure of functional con-
nectivity. Large differences in test-retest reliability be-
tween measures have been reported [30, 31]. Moreover,
even though a measure can be reliable, it also needs to
be a valid measure of functional connectivity. An im-
portant factor influencing the validity of functional con-
nectivity measures is the susceptibility to volume
conduction [32]. Volume conduction can inflate or de-
flate the presented results [33], and therefore, functional
connectivity measures without correction for this
phenomenon are not valid measures of connectivity.
This implies that the choice of functional connectivity
measure can have an influence on the reproducibility,
generalizability and validity of the results.

An influencing factor, briefly mentioned above, is that
the diagnostic process has evolved from a mostly clinical
evaluation to a biomarker-based process. Due to the
presence of many comorbidities and clinical mimics of
AD, results from studies that involved patients without
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biomarker support might have been negatively influ-
enced. Therefore, the AD research field has adopted a
new research framework [13] implementing amyloid, tau
and neurodegeneration (A/T/N) criteria to ensure the
results of current research are residues of the same bio-
logical process. In summary, it is important to evaluate
the observed effects of AD on functional connectivity in
light of the latest research framework, previously found
discrepancies between test results and test-retest reliabil-
ity issues of some functional connectivity measures.

This problem leads to the following question and aim
of this study: which functional connectivity measures ob-
serve reproducible and valid EEG changes in AD and in
which frequency bands do these changes occur? We
aimed to answer these questions by designing a study in
which we compared commonly used functional connect-
ivity measures with respect to reproducibility, undesir-
able influence of covariates and correlation with disease
severity. Data was gathered from a memory clinic to cre-
ate a large population size with available EEG recordings
to counter the statistical power limitations of earlier
studies. The A/T/N criteria [13] were used to ensure
AD-specific changes were observed. And in addition, a
large second cohort was created to assess reproducibility.
Other possible factors of influence, such as medication
or other neurological and psychiatric disorders, were in-
vestigated. To our knowledge, no previous studies with
EEG functional connectivity have been performed having
such a large population size and availability of A/T/N
classification.

To further evaluate the capacity of the functional con-
nectivity measures to distinguish between different levels
of disease severity, correlations with the Mini-Mental
State Exam (MMSE) were estimated. Furthermore, col-
linearity between relative power and functional connect-
ivity, to assess the potential influence, and the
collinearity between the different functional connectivity
measures were estimated. Although measures might be
mathematically different, we expected that the observed
variance could still be very similar between some of the
measures due to shared ground principles.

Methods

Clinical sample

A test and a validation cohort were formed using clinical
data from the clinical Amsterdam dementia cohort
(ADC) in the Alzheimer Center VUmc, Amsterdam
UMC, in the Netherlands [34]. All subjects visited the
clinic as part of their diagnostic process during the
period of 2002 to 2015 and were asked for informed
consent to store their clinical data. EEGs were made as
part of this process next to clinical assessment, neuro-
psychological test batteries, magnetic resonance imaging
(MRI) or computed tomography scan (CT scan) and,
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when possible, assessment of amyloid burden by cere-
brospinal fluid (CSF) or positron emission tomography
(PET). Based on this gathered information, the final
diagnosis was made by a multidisciplinary team of a
neurologist, psychiatrist, neuropsychologist and radiolo-
gist during a consensus meeting according to the most
recent clinical criteria. Data from the EEG recordings
was used for various research purposes over time, and
subjects were included based on the availability of
epochs from these studies. Subjects with the clinical
diagnosis of probable AD dementia [12] and subjective
cognitive decline (SCD) with available EEG recordings
were included.

Cohort characteristics

For this study, when biomarkers were available, subjects
were classified using the A/T/N framework [13] by using
CSF amyloid beta (AP) 1-42, p-tau and medial temporal
atrophy (MTA [35], scored from O to 4 which resembles
no to most severe atrophy) averaged over left and right.
Drift-corrected AB 1-42 values were used with a cut-off
of 813 pg/mL [36]. This correction was applied due to
the gradual increase of Innotest AP 1-42 CSF values
over two decades of testing in the ADC, which could
cause misclassification of amyloid status. When both
amyloid-PET and CSF were available, the amyloid-PET
was decisive. Cut-off for p-tau was set at 52 pg/mL, and
the neurodegeneration cut-off was set at MTA > 1 based
on visual assessment of T1-weighted acquisition MRI
images [37]. Furthermore, patients were categorized by
Fazekas score (0—1 and >2) based on visual assessment
of fluid-attenuated inversion recovery (FLAIR) images
on MRI [38].

The medical history of every patient was analysed and
categorized with special interest for 3 possible confound-
ing characteristics: vascular disease, central nervous sys-
tem (CNS) disease and psychiatric disease. Vascular
disease included only symptomatic vascular disease such
as myocardial infarction and stroke. CNS disease in-
cluded any major neurologic disease but also a medical
history with significant brain injury. Psychiatric disease
consisted of any major active or chronic psychiatric dis-
ease. Additionally, data of the use of any medication
with potential effects on the EEG (acetylcholinesterase
inhibitors, benzodiazepines, anti-epileptic drugs and an-
tidepressants) was collected.

To create a cross-sectional design with internal valid-
ation, clinically diagnosed AD and SCD subjects were
randomly allocated to two cohorts. Two subset popula-
tions of cohort 1 were additionally created based on the
A/T/N framework and potential interfering covariates.
Subpopulation 1: SCD subjects without amyloid (CSF or
PET) and tau (p-tau) pathology versus AD subjects with
amyloid and tau pathology. Subpopulation 2: SCD
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subjects without amyloid pathology, tau pathology, neu-
rodegeneration (MTA <1), small vessel disease (SVD)
(Fazekas < 2) or use of interfering medication versus AD
subjects with amyloid pathology, tau pathology, neuro-
degeneration (MTA > 1) and without SVD (Fazekas < 2)
or use of interfering medication.

EEG recordings

Twenty minutes of eyes-closed task-free EEG recordings
was made in a standardized protocol using the 21 elec-
trode positions of the 10-20 system. Patients sat with
eyes closed in a slightly reclined chair in a sound-
attenuated room. EEG technicians were alert on keeping
the participants awake and to minimize artefacts. Acous-
tic stimuli were used when slow horizontal eye move-
ments or slowing of the posterior alpha rhythm
appeared. The sample frequency was set to 500 Hz; elec-
trode impedance was kept below 5 kQ with low pass fil-
ter <70 Hz, high pass filter > 0.5 Hz, and no notch filter;
and the average reference was used. Trained researchers
visually inspected the recordings looking for artefacts
and the state of alertness. Four to five artefact-free
epochs of 8.192 s were visually selected for each patient.
The process of the visual selection process was previ-
ously described by Gouw and colleagues [39]. In short,
the visual inspection of epochs was performed by a
trained EEG researcher, based on the presence of a mini-
mum of artefacts (e.g. excessive muscle activity, eye
blinks) and drowsiness. If no sufficient quality was
reached, the epochs were replaced by other epochs or
the EEG was excluded from analyses when insufficient
epochs could be included for analyses.

EEG analyses

The freely available ‘Brainwave’ software [40] was
used to estimate functional connectivity. Mean global
coherence (Coh), imaginary coherence (iCoh), phase
locking value (PLV), amplitude envelope correlation
(AEC), AEC with leakage correction (AEC-c), phase
lag index (PLI) and weighted PLI (wPLI) were esti-
mated in five frequency bands: broadband (0.5-30
Hz), delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13
Hz) and beta (13-30 Hz). Functional connectivity per
electrode was estimated by averaging the values for
each possible electrode pair per electrode (for ex-
ample, the value of electrode Fpl is the average of
each potential electrode pair with electrode Fpl).
The results of all electrodes were averaged to create
global values. Fast Fourier transformation was used
to estimate mean global relative delta, theta, alpha
and beta power. The results of the different epochs
were averaged for each subject.
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Functional connectivity measures

Functional connectivity measures were chosen based on
their usage in AD EEG literature [2, 5, 41, 42] and test-
retest reliability information [31]. The mathematical pro-
cedures to estimate these measures are described in the
following paragraph in which we distinguish between
measures with or without correction for volume conduc-
tion. Measures without correction are prone to signal
leakage from channel to channel with the potential to
deflate or inflate the connectivity estimate [33].

Measures without correction for volume conduction
Functional connectivity assesses functional communica-
tion between brain areas by estimating the level of
synchronization of the EEG signals. To analyse statistical
interdependencies, the wave-like EEG signal can be
decomposed into different properties such as the fre-
quency, amplitude or phase of the signal. The analytical
signal z(£) can be described as shown in Eq. 1 where x(£)
describes the real component of the time series, x(f) the
corresponding Hilbert transform, A(¢) the instantaneous
amplitude and ¢(¢) the instantaneous phase.

2(t) = x(t) + ix(t) = A(t)e?® (1)

The instantaneous amplitude (or amplitude envelope)
and phase can be obtained from z(f) by using, respect-
ively, Egs. 2 and 3.

()" + ()] (2)

x(t
o(t) = arctan;% (3)
How to obtain the Hilbert transform x (f) of x(f) is
shown in Eq. 4, where PV refers to the Cauchy principal
value.

H(t) = lpv/w @) 4, (@)

T x =T

Coherence (Coh) [32, 43] is a functional connectivity
measure which analyses synchronization in the fre-
quency domain. Coherence is the absolute value of Co-
herency ¢ which can be calculated (after applying the
Hilbert transformation) according to Eq. 1 in Table 1. In
this equation, A represents the instantaneous amplitude
of signal 1 or 2 and A¢ the instantaneous phase differ-
ence between the two signals.

The stability of the phase difference between two time
series can be estimated by using Eq. 2 in Table 1 and in
literature by it has been termed as the phase locking
value (PLV) [44] or the phase coherence [45]. Where the
phase coherence uses the Hilbert transform prior to Eq.
2 in Table 1, the PLV uses a wavelet-based analysis.
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Table 1 The equations of the used functional connectivity
measures. For each functional connectivity measure, it is
indicated whether they observe associations between signals
based on amplitude (A), phase (P) or both (A/P)

Measure

Equation

Ao = Cike®)
)

1. Coherency

) -
2. Phase locking value/phase p R = |(elni0)] = \ﬁZ] £1000)|
k=0

coherence
3. Amplitude envelope A _
: . A = IO + JOP
4. Imaginary coherence N m{c) = Giksinte)
p {c} VA A)
5. Phase lag index P PLI=sign[sin(Ap(t)])]|

i i = |z E{[3(2)] sign(3(Z
6. Weighted phase lag index P wpPLI= ‘E%JEZH‘ _ El (E>I;/9;(D( D}

h@)

Literature has, however, shown that both approaches
produce similar results [46].

The amplitude envelope correlation (AEC) [47] is an
amplitude-based measure which estimates the Pearson
correlation between the envelopes of the amplitudes of
time series (Eq. 3 in Table 1). The amplitude envelopes
are calculated by using the Hilbert transform of the time
series.

Measures with correction for volume conduction

Several methods have been developed to correct for vol-
ume conduction. The corrected amplitude envelope cor-
relation (AEC-c) [48] uses pair-wise orthogonalization
prior to the AEC calculations described in the ‘Measures
without correction for volume conduction’ section. The
averaged result of a pair-wise orthogonalization in both
directions, X to Y and Y to X, was used.

The imaginary coherence (iCoh) [49] can be estimated
with the imaginary part of coherency according to Eq. 4
in Table 1. Where the imaginary coherence is also based
on the amplitude of the signal, the phase lag index (PLI)
[21] is a solely phase-based measure with correction for
volume conduction. It estimates the asymmetry of the
distribution of phase differences A¢(f) between time
series. Yielding low values for median phase differences
of 0 mod m. It can be estimated according to Eq. 5 in
Table 1. Due to the discontinuity of the index, the PLI
may be hindered by small perturbations, around a phase
difference of 0 mod m, which cause phase lags to turn
into leads and vice versa. The weighted phase lag index
(WPLI) [50] corrects for this phenomenon by using the
magnitude of the imaginary component of the cross-
spectrum as a weight for the phase lags (Eq. 6 in Table
1) where J(Z) is the imaginary component (sinA¢) of
signal Z. Unfortunately, this measure depends upon both
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the consistency and the magnitude of the phase
difference.

Statistical analysis

All statistical analyses were performed using SPSS statis-
tics software (version 24.0.0.1). Available demographic
and medical characteristics were described, and differ-
ences between SCD and AD subjects in both cohorts
were assessed by independent ¢ test, chi-square test,
Fisher’s exact test or Mann-Whitney U test where ap-
propriate. Normality of distribution of the variables was
checked by histograms and Q-Q plots.

Distribution of the functional connectivity measures
was also checked by histograms and Q-Q plots, and
when appropriate, variables were log transformed. Dif-
ferences in functional connectivity measures between
AD and SCD subjects were determined by two models
of analysis of (co)variance (AN(C)OVA). Model 1 ap-
plied correction for the covariates age and sex. Model 2
corrected for age, sex and the relative power of the
bandwidth in which the functional connectivity was
measured. ANOVA on ranks [51] was performed for
variables that could not be successfully log transformed.
After each of the ANOVA models, the effect size was es-
timated by Cohen’s d [52]. In addition, various demo-
graphic and medical characteristics were separately
added as a covariate to model 1 to check for any inter-
fering effects. To observe regional reproducibility, we
have averaged the individual channels into 4 regions:
frontal (channels Fpl, Fp2, F3, F4, F7, F8, Fz), temporal
(channel T3, T4, T5, T6), central (channel C3, C4, Cz)
and parieto-occipital (P3, P4, Pz, O1, O2). ANCOVA
model 1 (with correction for age and sex) was repeated
for these regional values over each bandwidth in cohort
1 (including the 2 subpopulations) and cohort 2.

False discovery rate (FDR) [53] correction was applied
to p-values of the demographic and medical characteristic
comparisons between the SCD and AD groups. FDR cor-
rection was furthermore applied to the p-values of the
ANOVA models correcting for the multiple testing in dif-
ferent bandwidths of each functional connectivity meas-
ure. Due to the expected presence of high collinearity
between the tested functional connectivity measures (see
the ‘Collinearity between functional connectivity mea-
sures’ section), the number of hypotheses tested in the
FDR correction was set to 5 (the number of tested band-
widths). This choice was also made due to the use of a val-
idation cohort which will in turn also reduce the number
of false positive results. p-values shown were FDR cor-
rected, and a threshold of p < 0.05 was maintained.

Correlations between global values of the different
functional connectivity markers were explored, and the
level of collinearity was assessed. In addition, correla-
tions between functional connectivity and relative power
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were investigated. The correlations were investigated
with Pearson and Spearman correlations where
appropriate.

Results

Demographic and medical cohort characteristics

Two cohorts were created to assess cross-sectional dif-
ferences in functional connectivity. Cohort 1 consisted
of 197 SCD and 214 AD subjects, whereas cohort 2 con-
sisted of 202 SCD and 196 AD subjects. Available char-
acteristics of both cohorts are shown in Table 2. Most
notable was the significant difference in age between
SCD and AD subjects in both cohorts. SCD subjects
were younger in both cohorts (mean difference (Amean)
of 5 and 9 years in cohorts 1 and 2, respectively). No sig-
nificant differences were found in medical history be-
tween SCD and AD subjects. Significant differences in
MMSE, CSF, PET and MRI results were in concordance
with the SCD and AD diagnoses. Across cohorts, SCD
subjects had a slightly higher MMSE in cohort 2 (Ame-
dian=1). AD subjects had a slightly higher MMSE
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(Amedian = 1) and MTA (Amedian = 0.5) and lower total
tau (Amean = 4) in cohort 2.

Subpopulations were formed based on the availability
of CSF and amyloid-PET biomarkers. In subpopulation
1, all AD subjects with positive amyloid and tau bio-
markers (n =135; A+T+) and SCD subjects without evi-
dence for AD, thus with negative amyloid and tau
biomarkers (n =97; A-T-), were selected. Even more
strict criteria were used additionally for subpopulation 2,
excluding patients with potential interfering co-
medication or SVD and selection based on MTA score
as a marker of neurodegeneration (A+T+N+ for AD; A
-T-N- for SCD). This resulted into 71 SCD and 41 AD
subjects from cohort 1.

Functional connectivity

Differences in global functional connectivity between
SCD and AD subjects in cohort 1 were estimated by
ANOVA model 1. A summary of the observed effect
sizes is shown in Fig. 1. A more detailed description, in-
cluding mean value, standard deviation and p-value, of
the significant effects shown in Fig. 1 can be found in

Table 2 Characteristics of subjective cognitive decline (SCD) and dementia due to Alzheimer's disease (AD) subjects in both cohorts.
The count (n), mean or median with percentage (%), standard deviation (SD) or interquartile range (IQR) are shown for each variable.
MMSE Mini-Mental State Exam, CNS central nervous system, MTA Medial Temporal Atrophy score, AB 1-42 amyloid beta 1-42, t-tau

total tau, p-tau phosphorylated tau

Cohort 1 Cohort 2
Characteristic SCD AD SCD AD
n=197 n=214 n =202 n =19

Female (n, %) 76 (39%) 104 (49%) 89 (44%) 94 (48%)
Age (mean, SD) 62+8 67 + 8° 60+ 10 69+ 10°
MMSE (median, IQR) 28 (27-29) 21 (17-247° 29 (28-30)° 22 (18-25)°°
Vascular disease (n, %) 34 (17%) 40 (19%) 35 (17%) 32 (16%)
CNS disease (n, %) 20 (10%) 14 (7%) 22 (11%) 19 (10%)
Psychiatric disease (n, %) 6 (3%) 8 (4%) 5 (2%) 1 (1%)
Antidepressants (n, %) 20 (10%) 26 (12%) 16 (8%) 19 (10%)
Benzodiazepines (n, %) 11 (6%) 12 (6%) 18 (9%) 15 (8%)
Anti-epileptic drugs (n, %) 4 (2%) 3 (1%) 4 (2%) 3 (2%)
Acetylcholinesterase inhibitors (n, %) 0 (0%) 16 (7%)° 1 (0%) 18 (9%)”
MRI n=176 n =199 n=175 n =156

MTA (median, IQR) 0 (0-0.5) 1(05-2)° 0 (0-0.5) 15 (1-2.5)*P

Fazekas (median, IQR) 1(0-1) 1 (0-1) 0 (0-1) 1(0.5-1)
Cerebrospinal fluid n=183 n=169 n=120 n =141

AR 1-42 (mean, SD) 1031 + 268 663 + 136° 1090 + 197 694 +162°

t-tau (mean, SD) 302214 7314137 267 +119 610+3212F

p-tau (mean, SD) 50+ 23 89 +35° 4716 85+ 38°
Amyloid-PET n=32 n=34 n=11 n=17

Positive PET (n, %) 12 (38%) 34 (100%)° 3 (27%) 14 (82%)°

2Significant differences between SCD and AD subjects within cohorts (p < 0.05)

bSignificant differences in the same diagnostic group across cohorts (e.g. SCD versus SCD and AD versus AD) (p < 0.05)
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supplementary Table 1. Figure 1 only shows the global
effects that were both significant in cohort 1, subpopula-
tion 2 and validation cohort 2.

Clear differences between functional connectivity mea-
sures can be observed in Fig. 1. Firstly, the AEC-c, AEC,
coherence and PLV showed lower functional connectiv-
ity in the alpha (d =-0.5; d =-0.9; d =-0.7; d = - 0.5,
respectively) and beta (d =-0.4; d =-0.4; d =-0.3; no
effect of the PLV, respectively) frequency bands in AD
subjects. Secondly, the imaginary coherence, PLI and
wPLI observed higher functional connectivity in the
theta frequency band in AD subjects (d =0.5; d =0.6;
d = 0.6, respectively). Thirdly, the delta frequency band
and broadband functional connectivity did not show ro-
bust group differences. The largest difference between
the AD and SCD subjects was observed in the uncor-
rected AEC in the alpha band (Cohen’s d 0.90, p =
8.5 x 107'%, model 1). This effect remained the largest
when the population was selected based on amyloid and
phosphorylated tau (subpopulation 1, d =-0.83, p =
1.8 x 107°) or the complete A/T/N criteria, exclusion of
SVD and potential interfering medication (subpopula-
tion 2, d = -1.03, p =4.6 x 1077). In cohort 2, this differ-
ence was validated to be the largest of the tested
measures (d = - 0.68, p =6.2 x 10°).

The significant effects observed in cohort 1, cohort
2 and both subpopulations are shown in Fig. 2. Al-
though minor differences in observed effects and
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effect sizes are present, most effects observed in the
entire cohort 1 are generally similar to the effects in
the subpopulations and the validation cohort. Not-
able differences across cohorts were a reproducible
effect on the delta band AEC-c in cohorts 1 and 2
and subpopulation 1 (A/T) but not 2 (A/T/N) (see
topographic distributions below) and a reproducible
effect of the alpha band PLI and wPLI in cohorts 1
and 2 but not in subpopulations 1 and 2.

In order to look at the topographic distribution of
the observed effects, the AEC-c and PLI were specif-
ically selected because these measures correct for vol-
ume conduction and showed reproducible global
effects. The topographic distributions of AEC-c and
PLI in cohort 1 are shown in supplementary Figure 1.
The reproducibility of the regional effects on the
AEC-c and PLI is shown in supplementary Figure 2A
and 2B. For all regions, a reproducible increase in
theta band PLI and a decrease in alpha band AEC-c
were found. The effect of the PLI was the strongest
in the temporal channels (d =0.66, p =9.2 x 1071,
and the effect of the AEC-c was the strongest in the
temporal (d =-0.56, p =3.2 x 107°) and parieto-
occipital (d =-0.56, p =29 x 107 channels. Fur-
thermore, the AEC-c showed reproducible effects in
the delta band AEC-c of the central channels and
beta band AEC-c of the frontal, temporal and parieto-
occipital channels.

AEC-c
iCoh
PLI

Broadband
Delta
Theta
Alpha

Beta

Leakage correction

susceptible to signal leakage are shaded in grey

whPLI

H “ ﬂ - 0

Fig. 1 Summary of observed differences in ANOVA model 1, shown as effect size (Cohen’s d), between AD and SCD subjects for each of the functional
connectivity measures and bandwidths. The significant effect sizes of the comparisons made in the entire cohort 1 (n =411) are shown. Effects that could not
be reproduced in the subset populations or cohort 2 were left out. Red blocks represent a higher and blue blocks a lower level of functional connectivity in AD
subjects compared to SCD subjects. The size of the blocks and the number shown in the blocks represent the size of the effect. Results of functional measures

AEC
Coh
PLY

0.8

0.6

r04

ro02

Leakage prone
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Fig. 2 The difference in functional connectivity between SCD and AD subjects per bandwidth is shown for each cohort and subpopulation. Significant
effect sizes are shown in Cohen’s d estimated by GLM model 1. Cohort 1: all SCD and AD subjects in cohort 1. Cohort 2: all SCD and AD subjects in
cohort 2. Cohort 1 A/T: amyloid-negative/tau-negative SCD versus amyloid-positive/tau-positive AD subjects from cohort 1 (subpopulation 1). Cohort 1
A/T/N: amyloid-negative/tau-negative/MTA < 1 SCD versus amyloid-positive/tau-positive/MTA 2 1 AD subjects from cohort 1, excluding any patients
with Fazekas > 1 and any potential interfering medication (subpopulation 2)

Influence of medication and medical history

The influence of potential covariates (medication: acetyl-
cholinesterase inhibitors, benzodiazepines, anti-epileptic
drugs, antidepressants; medical history: CNS disease, psy-
chiatric disease, presence of SVD) was investigated by
adding the variables to model 1. The only significantly ob-
served (small) effects were a decrease in beta band PLI,
wPLI and PLV (d = - 0.22, p =0.027; d = - 0.22, p = 0.028;
d =-0.24, p =0.020) and an increase in delta band wPLI
(d =-022, p =0.031) associated with antidepressants.
Furthermore, a decrease in beta band PLV (d = - 0.24, p =
0.020) was associated with the presence of SVD. Adding
these covariates to model 1 did not change the observed
effects between AD and SCD subjects.

Effect of relative power

To evaluate the relation of relative power with different
functional connectivity measures, Pearson and Spearman
correlations were estimated between these variables. The
correlations were calculated between the functional con-
nectivity in each frequency band and the relative power
in that frequency band (e.g. correlation between alpha
band AEC-c and relative alpha power). The results can
be found in Fig. 3.

Various functional connectivity measures showed very
high correlations with the relative power in the corre-
sponding bandwidth. These effects were most pro-
nounced in the theta and alpha bands. The two highest
correlations were between the alpha band coherence and
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Fig. 3 Correlation of different functional connectivity measures with the relative power in the corresponding frequency band. The functional
connectivity measures are shown on the x-axis and the band power on the y-axis. Only significant correlations are shown, indicated by the
correlation coefficient (r) which is also indicated by the colour gradient from r=—1 (dark red) to r =+ 1 (dark blue)
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PLV with the relative alpha power (r =0.73, p
4.4 x 1077 r =0.75, p =4.0 x 107"?, respectively). In
contrast to the other functional connectivity measures
and apart from a small effect (r =0.16, p =0.001) in the
delta frequency band, the AEC-c was not correlated to
the relative power.

To observe how much of the variance of the effects
between AD and SCD subjects observed in ANOVA
model 1 could be explained by changes in relative
power, the analyses were repeated with additional
correction for relative band power (model 2). In line
with the analysis of model 1, shown in Fig. 1, the re-
sults of model 2 are shown in Fig. 4. Again, only the
effects of cohort 1, which were significant in cohort
1, subpopulation 2 and validation cohort 2, are
shown. More detailed results of Fig. 4 can be found
in supplementary Table 2.

In comparison with ANOVA model 1, the effects ob-
served by the AEC-c remained stable in model 2 (model
1: alpha band d = - 0.53, p = 1.24 x 1077; beta band d =
-0.37, p =2.31 x 107% model 2: alpha band d = - 0.57,
p =19 x 107% beta band d = - 0.42, p =3.3 x 107°). The
AEC effect also remained stable in the beta band but de-
creased in the alpha band compared to model 1. The ob-
served effects of the coherence (alpha and beta bands)
and PLV (alpha band) in model 1 disappeared in model
2. The theta band effects of the imaginary coherence,
PLI and weighted PLI disappeared as well. In contrast,
where no theta band effect was found with the

coherence and PLV in model 1, these measures showed
a reduced theta band functional connectivity in AD sub-
jects, with the largest effect for the PLV (d =-0.62, p =
1.0 x 107%), in model 2.

Disease severity and functional connectivity

In Fig. 1, the functional connectivity measures were
shown that show consistent differences between SCD
and AD. However, a functional connectivity measure
which is indicative for disease severity would be even
more valid and clinically relevant. Therefore, Pearson
correlation coefficients were calculated between the valid
connectivity measures in Fig. 1 and disease severity rep-
resented by the MMSE score (Table 3). Of the 12 ob-
served functional connectivity measures from model 1,
only 4 showed correlations with disease severity in the
AD subjects, with the largest, but modest, effects of the
AEC-c (r =0.14, p =0.0054) in the alpha band and the
AEC (r =0.13, p =0.0073) in the beta band.

Collinearity between functional connectivity measures

Some of the effects observed by functional connectivity
markers in ANOVA model 1 were very similar in size.
To observe whether they measured similar differences
between subjects, Pearson correlations between all func-
tional connectivity measures were estimated. In addition,
due to the high correlations with relative power ob-
served in the ‘Effect of relative power’ section, the ana-
lyses were repeated with statistical correction for relative
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AEC-c
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Fig. 4 Summary of observed differences in ANOVA model 2, shown as effect size (Cohen’s d), between AD and SCD subjects for each of the
functional connectivity measures and bandwidth. The significant effect sizes of the comparisons made in the entire cohort 1 (n =411) are shown.
Effects that could not be reproduced in the subset populations or cohort 2 were left out. Red blocks represent a higher and blue blocks a lower
level of functional connectivity in AD subjects compared to SCD subjects. The size of the blocks and the number shown in the blocks represent
the size of the effect. Results of functional measures susceptible to signal leakage are shaded in grey
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Table 3 Pearson correlation coefficients (r) between functional
connectivity (FC) and disease severity represented by MMSE.
Correlations were estimated for the entire population (cohorts 1
and 2) and the AD subjects only. Bold r values indicate a
significant (p < 0.05) correlation

FC All subjects (n = 809) AD only (n =410)
C;fjjsre r p-value r p-value
MMSE
Theta (4-8 Hz)
iCoh -0.13 141 x 107* -006 023
PLI -0.13 279 %107 -006 023
WPLI -0.13 171 x 107 -006 0.21
Alpha (8-13 Hz)
AEC-c 0.21 32x 1077 0.14 0.0054
AEC 035 6.1 x 1072 0.14 0.0065
Coh 0.27 64 x107"° 004 040
pPLV 0.23 73 x 107" 008 0.13
Beta (13-30 Hz)
AEC-c 0.21 18x107° 008 0.12
AEC 0.26 10x 107" 0.13 0.0073
Coh 0.22 31x107° 0.12 0015

power. Results of the theta, alpha and beta bandwidths
can be found in supplementary Figure 3A-C. These fig-
ures show similar clusters of correlating functional con-
nectivity markers in the different bandwidths. High
correlations between the imaginary coherence, PLI, wPLI
and PLV are evident. In contrast, the AEC-c showed
only strong correlations with its uncorrected version.

Discussion

Main outcomes

By using large well-characterized cohorts and the most
recent NIA-AA research framework for Alzheimer’s dis-
ease [13], we aimed to find the most reproducible and
robust changes of EEG functional connectivity in Alzhei-
mer’s disease. The most reproducible and robust ob-
served effects were decreases in the alpha and beta band
AEC-c functional connectivity in the AD subjects. Fur-
thermore, sensitivity of different functional connectivity
measures appeared to be highly bandwidth specific, as
most volume conduction-corrected phase-based mea-
sures showed reproducible increased functional connect-
ivity in the theta band, whereas amplitude-based or
more general connectivity measures showed decreased
functional connectivity in the alpha and beta bands.

The conclusion that the decreases in alpha and beta
band AEC-c were the most reproducible and robust
functional connectivity estimates in AD is based upon
the following observations. First, the AEC-c retained
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reproducible results in the test and validation cohorts
and these effects were amplified when the analyses were
repeated in a subpopulation of patients fulfilling the A/
T/N criteria. This implies that these effects are (Alzhei-
mer’s) disease specific. Secondly, the observed effects
were robust. The effects of the alpha and beta band
AEC-c were not influenced by relative band power, sev-
eral demographic variables, (co)morbidities or interfering
medication. Thirdly, the AEC-c was not only a disease-
specific marker of AD but also correlated with disease
severity. In AD subjects, lower alpha band AEC-c values
modestly correlated with lower MMSE scores. Lastly, the
AEC-c has been shown to be a reliable functional con-
nectivity measure in previous test-retest reliability
research [31]. Colclough and colleagues have tested all
the functional connectivity measures used in our study
on group-level repeatability and within-subject and
between-subject consistency. Overall, the AEC-c showed
the most consistent results compared to other measures
corrected for volume conduction.

We propose the effects in the frequency bands and
functional connectivity measures as shown in Fig. 1 as
most reproducible. These effects remained present in
large cohorts (i.e. high statistical power) but also after
selection for AD-specific biomarkers in a smaller sub-
population. It is however most preferable to use func-
tional connectivity measures that are insensitive to
volume conduction or change in relative power. When
looking at the summarized effects of all functional con-
nectivity measures between SCD and AD, two major
trends between different measures can be observed. Vol-
ume conduction-corrected phase-based measures (PLI,
wPLI and iCoh) showed an increase in theta band func-
tional connectivity, whereas amplitude or more mixed
connectivity-based measures (AEC(-c), coherence, PLV)
showed decreases in the alpha and beta bands. There-
fore, future studies could consider using both a phase-
based measure in the theta band and an amplitude-
based measure in the alpha or beta band for their study
or trial design. More research is needed to investigate
the underlying processes of these distinctly different ef-
fects in phase and amplitude connectivity in AD. Phase-
and amplitude-based functional connectivity measures
could potentially capture different aspects of different
patho- or neurophysiological processes. A review by
Engel and colleagues proposed that amplitude- (or enve-
lope) based connectivity has a close relation with the
structural network and is relatively robust against state
changes [54]. Phased-based connectivity appeared to be
less related to the structural network and showed a
stronger state dependence. On the other hand, recent lit-
erature has also shown that modulation of phase-
amplitude coupling in long-range circuits may be highly
relevant in cognitive functioning [55], indicating that
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amplitude and phase connectivity could be two interact-
ing modalities. Changes in phase-based connectivity
could affect amplitude-based connectivity (in the same
or other regions) and vice versa.

Main outcomes compared to literature

We have compared our results with previous findings in
literature. The decrease in alpha and beta band AEC-c is
supported by previous MEG and EEG studies [42, 56].
Our regional analyses showed a widespread decrease of
alpha and beta band AEC-c, with the exception of the
beta band AEC-c in the central channels. In comparison,
an EEG study by Nuifez and colleagues [56] compared
the alpha and beta AEC-c in healthy controls with AD
subjects and found a similar widespread decrease in
alpha and beta band AEC-c. MEG has a higher spatial
resolution than EEG, offering a potential explanation
why in a MEG study between elderly controls and AD
subjects, Koelewijn and colleagues found the most out-
spoken decreases in beta band AEC-c specifically in the
bilateral (middle-) superior temporal and parietal cortex
[42] instead of a general widespread decrease. The sensi-
tivity of the AEC-c in the alpha and beta bandwidths
might not be surprising because they are in line with an
earlier methodological study by Hipp and colleagues [48]
which has shown the AEC-c to be the most sensitive to
changes in these bandwidths.

A decrease in alpha band coherence in AD is widely
known in the present literature [2, 41] and was repro-
duced in our study. A decrease or increase in delta and
theta band coherence was reported by some articles
[18-20] but could not be reproduced in either of our co-
horts and subpopulations. Various other studies could
also not reproduce these results [2, 41]. Potential expla-
nations include small sample sizes, poor inclusion cri-
teria and suboptimal control populations.

A global and widespread increase in theta band phase-
based measures with correction for volume conduction
(PLL, wPLI, iCoh) is in line with some previous studies
[24, 57]; however, we could not reproduce a decrease in
the alpha band [5, 23]. We did observe some alpha band
effects with the phase-based measures in the entire co-
hort but these effects disappeared when the NIA-AA re-
search criteria [13] are applied and potential interfering
factors are eliminated. The effects could therefore poten-
tially be caused by common co-pathology such as vascu-
lar disease [58] or commonly missed diagnoses such as
Lewy body dementia (DLB) [59]. This could influence
the results as shown by a recent study by van der Zande
and colleagues [60] where profound lower alpha band
PLI values for DLB subjects compared to AD subjects
were found. Another explanation could be the low test-
retest reliability of the phase-based functional connectiv-
ity measures [31].



Briels et al. Alzheimer's Research & Therapy (2020) 12:68

Effect of relative power

Many of the tested functional connectivity measures had
a high correlation with relative power in the correspond-
ing frequency band. Only the AEC-c seems to be inde-
pendent of relative power in most of the frequency
bands. This was also represented in ANOVA model 2,
where the effects observed by the AEC-c were not af-
fected by a statistical correction to relative power. The
high correlation of the AEC, coherence, PLV and, to
lesser extent, the imaginary coherence with relative
power is possibly due to the susceptibility of these mea-
sures to volume conduction effects [32, 61] and poten-
tially due to changes in signal to noise ratio (SNR). An
increase in relative power (and subsequently signal to
noise ratio) is known to be correlated with an increase
in volume conduction [32, 62]. Another consideration is
that previous research has shown that there is a physio-
logical relation between oscillatory activity and func-
tional connectivity. Tewarie and colleagues have, for
example, shown a relation between the amplitude of a
signal and the dynamic functional connectivity measured
by phase-difference derivative (PDD) [63]. This study
showed that the PDD and the amplitude positively cor-
relate in resting state MEG, sensorimotor task MEG and
data based on a neuronal model. Nonetheless, it remains
unclear what the exact relations are between oscillatory
activity and the different functional connectivity mea-
sures applied in our study. The correlation of functional
connectivity measures without correction for volume
conduction with relative power was the strongest in the
alpha frequency band, which implies that interpretation
of results within this functional connectivity band should
be made with caution. One of the caveats of applying
statistical correction for relative power in cross-sectional
studies is, however, potential overcorrection due to
group effects. Due to the difference in relative power
and functional connectivity between SCD and AD sub-
jects, it is likely that these measures show similar rela-
tionships. Statistical correction for the strong effect of
an increased global theta power in AD, for example, may
diminish the observed effect of volume conduction-
corrected measures such as the PLI and wPLI in the
theta band. Contrastingly, the absence of a correlation of
relative power with the AEC-c does imply the presence
of a robust effect.

Collinearity between functional connectivity measures

High correlations between the different functional con-
nectivity measures have been found. This might not be
surprising because, in principle, many were designed to
explain similar phenomena. In our test setting, for ex-
ample, high correlations were found between the im-
aginary coherence, PLI and wPLI. With r values around
0.9 and higher, there is very high collinearity between
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these measures. Although the theoretical backgrounds
and methods of calculation differ [21, 49, 50], these mea-
sures yielded almost identical results when comparing
AD versus SCD. The AEC-c only showed fairly high cor-
relations with its uncorrected counterpart (AEC).

Disease severity and functional connectivity

On average, the significant correlations between the level
of functional connectivity and the MMSE score were
weak. There are several potential explanations for this
observation. The MMSE is a general test of cognition
but emphasizes on memory function whilst AD patients
also suffer from deficits in, for example, language or ex-
ecutive functioning. Other neuropsychological tests
might have observed other effects. Furthermore, correla-
tions were made between global levels of connectivity
where regional connectivity could have stronger correla-
tions with dysfunction in certain cognitive domains [23].

Strengths, limitations and future directions

The major strengths of our study were the large well-
characterized sample size, a study design with internal
validation, the use of the most recent NIA-AA AD re-
search framework [13] with the availability of multiple
biomarkers, rigorous correction for potential con-
founders and relative power, and the fact that multiple
commonly used functional connectivity measures were
tested. Previous studies do not only differ in the use of
certain functional connectivity measures but also in
epoch selection (no selection, visual selection or auto-
matic selection), artefact rejection and other pre-
processing steps. As there is no consensus on which
method to use, we preferred to only do a protocolized
visual selection by trained and experienced technicians
based on our previous experience. To our knowledge, no
other pre-processing methods have been proven to be
superior in 21-channel EEG analyses. Potential limita-
tions include the absence of an external validation co-
hort. Additionally, we have not investigated all available
functional connectivity measures but made a selection
based on commonly used measures and the previously
reported intra-subject reliability of these measures [31].
It should also be considered that the reproducibility of
functional connectivity in eyes-open EEG or task EEG
data was not investigated. Moreover, additional research
is needed to investigate the discriminative value of these
reproducible measures between disease stages or the as-
sociation with more specific tasks of different cognitive
domains.

Future research, such as clinical trials or connectivity
and network studies, could yield false positive or nega-
tive results by using unreliable functional connectivity
measures or by using these measures in an invalid band-
width. The results of this study provide information on
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which changes in functional connectivity are reprodu-
cible for Alzheimer’s disease and to what extend they
correlate with disease severity. This enables future stud-
ies to narrow-down and predefine functional connectiv-
ity measures as outcome measures.

Conclusion

In this large cross-sectional cohort study of well-
characterized patients with AD and SCD, the AEC-c in
the alpha and beta bands showed the most reproducible
changes in functional connectivity, independent of vari-
ous influencing factors, and strongest correlation with
disease severity. Phase-based measures, with correction
for volume conduction, observed strong effects in the
theta band. These results might offer our research field
some directions in solving the ‘reproducibility crisis’.
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