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Abstract: Cardiomyocytes possess the ability to respond to mechanical stimuli by adapting their
biological functions. This study investigated cellular and molecular events in cardiomyocyte-like
H9C2 cells during differentiation as well as the signalling and gene expression responses of the
differentiated cells under various mechanical stretching protocols in vitro. Immunofluorescence was
used to monitor MyHC expression and structural changes during cardiomyoblast differentiation.
Moreover, alterations in the expression of cardiac-specific markers, cell cycle regulatory factors,
MRFs, hypertrophic, apoptotic, atrophy and inflammatory factors, as well as the activation of major
intracellular signalling pathways were evaluated during differentiation and under mechanical stretch-
ing of the differentiated H9C2 cells. Compared to undifferentiated cells, advanced-differentiation
cardiomyoblasts exhibited increased expression of cardiac-specific markers, MyHC, MRFs, and IGF-1
isoforms. Moreover, differentiated cells that underwent a low strain/frequency mechanical loading
protocol of intermediate duration showed enhanced expression of MRFs and hypertrophic factors,
along with a decreased expression of apoptotic, atrophy, and inflammatory factors compared to both
high-strain/frequency loading protocols and to unloaded cells. These findings suggest that altering
the strain and frequency of mechanical loading applied on differentiated H9C2 cardiomyoblasts
can regulate their anabolic/survival program, with a low-strain/frequency stretching being, overall,
most effective at inducing beneficial responses.

Keywords: cardiomyocytes; cellular mechanotransduction; H9C2; mechanical stretch

1. Introduction

H9C2 cardiomyoblasts are a cell line used as an alternative to cardiomyocytes. They
are isolated from ventricular tissue and used in vitro as a mimetic model for cardiac muscle
due to their biochemical, morphological, and hormonal signalling properties [1,2]. Thus,
several studies have used H9C2 cells for investigating their differentiation features towards
a cardiac-like phenotype [3]. Cardiomyocytes, as mechanosensitive cells, possess the
ability to transduce mechanical stimuli to intracellular biochemical signals [4–6], while
mechanotransduction mediates the adaptation mechanisms of these cells to mechanical
loading [7].

Mechanosensitive extracellular and cellular elements have been shown to mediate the
transduction of mechanical signals into the cell nucleus [8]. Through these mechanosensors,
mechanical loading activates a complex network of signal transduction pathways that
induce protein synthesis and increase the production of growth factors in mechanosensitive
cells [9,10]. Moreover, mechanical stimuli modulate essential cellular processes, such as
differentiation, survival, and apoptosis [11–13]. Under abnormal loading conditions, these
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processes can become maladaptive, altering the physiological function of cardiac muscle
and leading to the development of pathological hypertrophy and heart failure [14–20].
Indeed, mechanical signals can affect cardiomyocyte differentiation in both physiological
and pathological conditions, driven by multiple mechanotransduction pathways that
coordinate the balance between protein synthesis and protein degradation, or muscle
growth and atrophy [3,21].

Four transcription factors, the myogenic regulatory factors (MRFs) MyoD, Myf5,
Myogenin, and MRF4, regulate myogenic differentiation [22], sharing the ability to con-
vert various differentiated cell types to myogenic [23,24] and playing a similar role in
cardiomyocyte-like cell myogenic differentiation [14,25,26]. Moreover, insulin-like growth
factor-1 (IGF-1) signalling has been shown to play an important role in skeletal and cardiac
cell growth through the activation of extracellular signal-regulated kinases (Erk 1/2) [25,26]
as well as in the loading-induced adaptive cardiac hypertrophy through the activation
of Akt [27,28], while potentially differential actions of IGF-1 isoforms in the myocardial
repair/remodelling process and in cardiac myoblasts growth have been proposed [26].

On the other hand, mechanical loading can have beneficial or detrimental effects on
differentiated cardiomyocytes, depending on its specific characteristics [29], by activating
pro-inflammatory factors, such as IL-1β, TNF-α, IL-6, and NF-kB, as well as muscle atrophy
and pro-apoptotic factors, such as myostatin, muscle-specific ubiquitin ligase Atrogin-1
(MaFbx), FoxO1, and p53, which have been negatively implicated in cell growth and
survival, inducing cardiac muscle wasting and promoting heart failure [29–36].

The cellular and molecular phenotype of cardiomyocyte-like cells during their dif-
ferentiation has not been fully characterized, while we have recently demonstrated that
altering the features of mechanical stretching applied on advanced differentiation car-
diomyoblasts induces different effects on their myogenic lineage [29]. More specifically,
our previous findings emphasized that, for eliciting beneficial responses in the loaded
cardiomyocytes, it is crucial to determine the optimal features of mechanical loading in
terms of its loading/recovery characteristics.

In this study, we expand on our previous data to investigate the effects of more
focused loading variations on signalling and expression responses, associated with the
myogenic differentiation of these cells, by specifically varying the elongation and frequency
of mechanical stretching. Thus, the aim of the present study was to further characterize
the cellular and molecular signatures of cardiac myocyte-like H9C2 cells during their
differentiation and to compare the hypertrophy/atrophy-, apoptosis-, and inflammation-
related responses of the terminally differentiated cells to various mechanical loading
protocols in vitro.

2. Materials and Methods
2.1. H9C2 Cell Culture

The H9C2 cell line of embryonic rat heart-derived ventricular cells was obtained from
the American Type Culture Collection (ATCC, Manassas, VA, USA) and cultured as pre-
viously described [26]. Briefly, cells were grown in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% foetal bovine serum (FBS) and 1% penicillin/streptomycin
at 37 ◦C in a humidified atmosphere of 5% CO2 in air, and the medium was changed every
other day. The H9C2 cardiomyoblasts were seeded onto six-well flexible-bottomed cul-
ture plates coated with Collagen I (Flex I Culture Plates Collagen I; Flexcell International,
Hillborough, NC, USA) and maintained in the growth medium until 70–80% confluence,
then switched to a differentiation medium (2% horse serum, 1% of penicillin/streptomycin
in DMEM). Cardiomyoblasts were allowed to differentiate into multinucleated myotubes
for a five-day period during which the medium was changed every other day before their
mechanical stretching, as described below.
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2.2. Cardiomyocyte Mechanical Loading

Terminally differentiated H9C2 (myotubes) were stretched using the Flexcell FX-5000
strain unit (Flexcell International) that produces an isotropic two-dimensional (biaxial)
strain of cells cultured on the flexible surface (silicone membrane) of the culture plates, as
previously described [29]. Cardiomyotubes were subjected to four stretching protocols,
in which the loading time was kept the same in each protocol, based on our previous
findings [29], while the elongation and frequency of stretching varied: (a) 2% elongation
(strain) at a frequency of 0.25 Hz; (b) 2% elongation at 1 Hz, (c) 12% elongation at 0.25 Hz,
and (d) 12% elongation at 1 Hz. The waveform of the tension applied on the cardiomyocytes
in the stretching cycle of each protocol mimicked the pressure fluctuations of a heartbeat
in vivo.

2.3. Cell Lysis and RNA Extraction

Cell extracts were obtained by cell lysis using NucleoZOL (Mecherey-Nagel, Dueren,
Germany). To further characterize the molecular phenotype of cardiomyocyte-like cells
during their differentiation, cells were harvested and lysed on days 0, 3, and 5 of their differ-
entiation. Stretched cardiomyotubes were harvested 12 h after the completion of the stretch-
ing protocol, while control (nonstretched) myotubes were also harvested 12 h after the end
of each protocol. Total RNA was isolated from the lysates according to the manufacturer’s
recommendations. The extracted RNA was dissolved in RNAase-free water (Invitrogen,
Waltham, MA, USA) and the concentration and purity were determined spectrophotomet-
rically (Thermo Nanodrop 2000,Thermo Scientific, Waltham, MA, USA) by absorption at
260 and 280 nm. Integrity of total RNA was confirmed by visual inspection of the elec-
trophoretic pattern of 18S and 28S ribosomal RNA in ethidium bromide-stained 1% agarose
gels under ultraviolet (UV) light. The total RNA samples were stored at −80 ◦C until
further analysis for the determination of the mRNA levels of the genes of interest by reverse
transcription and semi-quantitative real-time polymerase chain reaction (PCR) procedures.

2.4. Reverse Transcription and Real-Time PCR

Total RNA from each sample was used to produce single-stranded cDNA by reverse
transcription using reverse transcriptase ProtoScript II (NEB, Ipswich, MA, USA) and
the resultant cDNAs were utilized in real-time PCR, as described elsewhere [29,37]. The
primer set sequences used for the specific detection of IGF-1 isoforms (IGF-1Ea, IGF-1Eb),
myogenic regulatory factors (MyoD, Myogenin, MRF4), pro-apoptotic (FoxO1, FUCA, p53),
atrophy (Atrogin-1, Myostatin), and pro-inflammatory (IL-1β, TNF-α, IL-6, NF-kB), and
cell cycle regulation-related (Cyclin D1) factors, as well as cardiac-specific marker (Cardiac
troponin type T) are shown in Table 1. To prevent detection of genomic DNA, the primer
sets were designed to lie within different exons while, particularly, each set of primers
for the detection of the IGF-1 isoforms was specific to detect only one IGF-1 transcript
variant. To normalize the amount of total RNA present in each PCR reaction and the mRNA
expression (relative quantification-dCt) of the genes of interest, glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) was used as a housekeeping gene (internal standard). Each
sample was analysed in duplicate, and the resulting data were averaged. The specificity
of the primers for the corresponding transcript was also confirmed by the melting curve
analysis of samples, where there was only one melting curve for each sample, while
electrophoretic analysis of the real-time PCR products further verified the specificity of
the transcript of each gene of interest. Control for specificity included cDNA-free and
template-free reactions.
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Table 1. The sequences of the specific sets of primers used for RT-PCR analyses.

Target Gene 5′-3′ (Forward) Primer Sequence 5′-3′ (Reverse) Primer Sequence

GAPDH CAA CTC CCT CAA GAT TGT CAG CAA GGC ATG GAC TGT GGT CAT GA

MYOD TGC TCC TTT GAG ACA GCA GA AGT AGG GAA GTG TGC GTG CT

MYOGENIN AGG AGA GAA AGA TGG AGT CCA GAG TAA CAA AAG AAG TCA CCC CAA GAG

MRF4 AGG GCT CTC CTT TGT ATC CAG TGG AAG AAA GGC GCT GAA GA

cTnT GCG GAA GAG TGG GAA GAG ACA CCA CAG CTC CTT GGC CTT CT

CYCLIN D1 TCA AGT GTG ACC CGG ACT G ATG TCC ACA TCT CGC ACG TC

IGF-1Ea GTG GAC GCT CTT CAG TTC GT GCT TCC TTT TCT TGT GTG TCG ATA G

IGF-1Eb GTC CCC AGC ACA CAT CGC G TCT TTT GTG CAA AAT AAG GCG TA

p53 GAG AGA CCG CCG TAC AGA AG AGC AGT TTG GGC TTT CCT CC

FoxO1 AGT GGA TGG TGA AGA GCG TG GAA GGG ACA GAT TGT GGC GA

TNF-α CTC TTC TGC CTG CTG CAG TTG ATG GGC TAC AGG CTT GTC ACT C

NF-kB ATA GGC ACT GTC TTC TTT CAC CTC ATA GGC ACT GTC TTC TTT CAC CTC

IL-6 CCT TCC TAC CCC AAT TTC CAA T AAC GCA CTA GGT TTG CCG AGT A

IL-1β ATC CCA AGC AAT ACC CAA AG GTG CTG ATG TAC CAG TTG GG

ATROGIN-1 AAC AAG GAG GTA TAC AGT AAG G AAT TGT TCA TGA AGT TCT TTT G

MYOSTATIN CTG TAA CCT TCC CAG GAC CA GCA GTC AAG CCC AAA GTC TC

2.5. Protein Extraction and Immunoblotting Analysis

Total proteins were extracted from H9C2 cardiomyoblasts as previously described [26,38].
Protein content was determined using a BCA protein assay kit (Thermo Scientific). Samples
were stored in aliquots at –80 ◦C until Western blot analysis, as previously described [38].
Blots were incubated with the following primary antibodies for the immunodetection
of Phospho-Akt, Phospho-Erk 1/2, Pospho-p38, Cardiac actin, MyoD, Myogenin and
p53 proteins: rabbit monoclonal anti- Phospho-Akt (1:2000 dilution with 5% BSA in TBS-T)
(4060; Cell Signaling, Danvers, MA, USA), anti-Phospho-p44/42 MAPK (Erk1/2; 1:2000
dilution with 5% BSA in TBS-T) (4370; Cell Signaling), rabbit monoclonal anti-Phospho-
p38 (1:2000 dilution with 5% BSA in TBS-T) (#9211S; Cell Signaling), mouse monoclonal
anti-Cardiac actin (1:2000 dilution with 5% BSA in TBS-T) (NBP2-67114; NOVUS Biologi-
cals, Littleton, CO, USA), mouse monoclonal anti-MyoD (1:2000 dilution with 5% BSA in
TBS-T) (sc-377460 Santa Cruz Biotechnology, Dallas, TX, USA), mouse monoclonal anti-
Myogenin (1:2000 dilution with 5% BSA in TBS-T) (ab1835 Abcam, Cambridge, UK), and
mouse monoclonal anti-p53 (1:2000 dilution with 5% BSA in TBS-T) (sc-126 Santa Cruz
Biotechnology), respectively. A horseradish peroxidase-conjugated secondary anti-rabbit
IgG (goat anti-rabbit, 1:2000 dilution; Santa Cruz Biotechnology), or anti-mouse IgG (goat
anti-mouse, 1:2000 dilution; Santa Cruz Biotechnology) was used. The expected bands were
visualized by exposure of the membranes to X-ray film after incubation with an enhanced
chemiluminescent substrate for 3 min (ECL Supersignal west pico, Thermo Scientific).
Anti-GAPDH antibody (1:2000 dilution; Santa Cruz Biotechnology) was used as an internal
standard to correct for potential variations in the protein loading and to normalize the
protein measurements on the same immunoblot. Band intensity was then semi-quantified
using ImageJ software (NIH, Bethesda, MD, USA).

2.6. Immunofluorescence

H9C2 cardiomyocytes cultured on chamber slides were fixed, permeabilized, and
stained using an indirect immunofluorescence method as previously described [34]. Briefly,
cells were incubated with a primary mouse anti-Myosin Heavy Chain (MyHC) antibody
(1:100, R&D, Minneapolis, MN, USA) and a goat anti-mouse IgG conjugated to the flu-
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orescent Alexa 488 dye (1:2000, Abcam) secondary antibody, or Phaloidin conjugated
with CF 488A (1:2000, Biotium, Fremont CA, USA), and after staining also with DAPI (1
µg/mL; 4083; Cell Signaling), they were viewed under a microscope (Olympus BX40; Olym-
pus Corporation, Tokyo, Japan). In addition, ImageJ software [39] was used to perform
morphological analyses of cardiomyoblasts H9C2 during their differentiation.

2.7. Cell Cycle Analysis

Flow cytometry was used to characterize the cell cycle profile of the H9C2 cardiomy-
oblasts. Undifferentiated cells were fixed in 70% ethanol overnight at 4 ◦C. The cells were
then stained with DAPI (Cell Signaling) and cell cycle analysis was performed using a
flow cytometer (Partec CyFlow, Gorlitz, Germany), where each phase of the cell cycle was
calculated using the ModFit LT software Flow max 3.0 (Verity Software House, Topsham,
ME, USA).

2.8. Statistical Analysis

One-way analysis of variance (ANOVA) with Dunn’s multiple comparison post hoc
test or Student’s t-test was used for statistics, utilizing GraphPad Prism 5 (San Diego, CA,
USA). All experiments were performed in triplicate and data are presented as mean ± standard
error of the mean (SE). The level of statistical significance was set to p < 0.05.

3. Results
3.1. Differentiation Phenotype of Cardiomyocyte-like H9C2 Cells
3.1.1. Cell Cycle and Morphological Analyses

Analysis of the cell cycle phases distribution revealed a normal profile of cell cy-
cle progression for the undifferentiated H9C2 cardiomyoblasts (Figure 1A). Moreover,
morphology-based analysis during their differentiation showed a progressive differen-
tiation process of the mononucleated cells towards their fusion and the formation of
multinucleated cells (myotubes) (Figure 1I–K). Specifically, the H9C2 cardiomyocyte-like
cells exhibited an increasing number of myotubes based on the cytoskeleton protein actin
(phalloidin/DAPI staining), as well as the terminally differentiation marker MyHC staining
(Figure 1J,K) from day 0 to day 5 of differentiation. The myogenic differentiation potential
of these cells was further documented by the fusion index (FI) and the maturation index
(MI) values over time, which were significantly higher at day 5 compared to day 3 or day 0
of differentiation (Figure 1G,H).

3.1.2. Gene Expression Changes during Differentiation

In accordance with the morphological alterations of the H9C2 cardiomyoblasts during
their differentiation program, these cells exhibited a significant downregulation of Cyclin
D1 expression over time, as expected, along with a gradual and significant increase in
the cardiac-specific markers actin (Figure 1N) and troponin type T (Figure 1C), towards a
cardiac-like phenotype. Moreover, changes in MRF expression were monitored during the
differentiation of the H9C2 cardiomyoblasts, revealing a later peak of the late myogenic
marker MRF4 (on day 5; Figure 1F) compared with the MyoD1 and Myogenin mRNA
expression (on day 3; Figure 1D,E), while the protein levels of these two differentiation
factors exhibited a time shift and peaked on day 5 of the myogenic differentiation, as
expected (Figure 1L,M). In addition, differential expression of the IGF-1 isoforms, namely
IGF-1Ea and IGF-1Eb, was shown for the first time during the H9C2 cardiomyoblasts’
differentiation, with a significant downregulation of IGF-1Eb at the advanced stage of
differentiation (day 5) and a persistent upregulation of IGF-IEa up to day 5 of differentiation
(Figure 2A,B).
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Figure 1. (A) Cell cycle progression of undifferentiated H9C2 cardiomyoblasts. Percentages of cells 
in each phase represent a normal cell cycle phenotype of H9C2 cardiomyoblasts. (B,C,N) Expres-
sion of cell cycle regulator Cyclin D1 and cardiac-specific markers during H9C2cardiomyoblast 
differentiation. Quantitative transcriptional analysis of Cyclin D1 revealed its downregulation 
during the differentiation process of cardiomyoblasts (B), along with the upregulation of the car-
diac-specific markers troponin (C) and actin (N) (representative Western blot and immunoblotting 
quantification of cardiac actin). (D–F) Myogenic regulatory factors’ expression during cardiomyo-
blast differentiation. Quantitative analysis of the mRNA expression of muscle-specific transcription 
factors MyoD1, Myogenin, and MRF4 revealed a differential expression pattern, e.g., of early 
(MyoD1) vs. late (MRF4) myogenic factors in cardiomyoblasts during their differentiation. (L,M) 
Representative Western blots and immunoblotting quantification of MyoD (L) and Myogenin (M) 
protein expression are given. The mRNA expression values of each gene of interest have been 
normalized to the corresponding GAPDH mRNA and are expressed as fold changes. The expres-
sion of the proteins was also normalized to each corresponding GAPDH on the same immunoblot. 
The same blot has been used for GAPDH in (L–N). (I–K) Morphology-based analysis of H9C2 car-
diomyoblasts during differentiation. Brightfield microscopy shows cardiomyoblast alterations over 
time during their differentiation process (I). Morphology alterations were further analysed using 
fluorescent DAPI, Phalloidin (J), and MyHC (K) immunostaining, documenting that these cells 
possess a myogenic differentiation potential. (G,H) Fusion and maturation index. Fusion index and 
(G) maturation index (H) values were calculated in cardiomyotubes immunostained with MyHC. 
Myotubes were considered differentiated cells that contained more than three nuclei. The fusion 
index was defined as the percentage of nuclei present in myotubes over the total number of nuclei 
present in the observed field, while the maturation index was defined as the percentage of nuclei 
present in myotubes that contained more than 10 nuclei over the total number of nuclei present in 
the observed field. Data were selected from 20 different and randomly chosen microscopic fields. 
Significantly different compared to day 0, • p < 0.05; •• p < 0.01; ••• p < 0.001. Significantly different 
compared to day 3, ▪ p < 0.05; ▪▪ p < 0.01. Mean + SE of three independent experiments performed in 
triplicate. 
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Figure 1. (A) Cell cycle progression of undifferentiated H9C2 cardiomyoblasts. Percentages of cells
in each phase represent a normal cell cycle phenotype of H9C2 cardiomyoblasts. (B,C,N) Expression
of cell cycle regulator Cyclin D1 and cardiac-specific markers during H9C2cardiomyoblast differen-
tiation. Quantitative transcriptional analysis of Cyclin D1 revealed its downregulation during the
differentiation process of cardiomyoblasts (B), along with the upregulation of the cardiac-specific
markers troponin (C) and actin (N) (representative Western blot and immunoblotting quantification
of cardiac actin). (D–F) Myogenic regulatory factors’ expression during cardiomyoblast differentia-
tion. Quantitative analysis of the mRNA expression of muscle-specific transcription factors MyoD1,
Myogenin, and MRF4 revealed a differential expression pattern, e.g., of early (MyoD1) vs. late
(MRF4) myogenic factors in cardiomyoblasts during their differentiation. (L,M) Representative
Western blots and immunoblotting quantification of MyoD (L) and Myogenin (M) protein expres-
sion are given. The mRNA expression values of each gene of interest have been normalized to the
corresponding GAPDH mRNA and are expressed as fold changes. The expression of the proteins
was also normalized to each corresponding GAPDH on the same immunoblot. The same blot has
been used for GAPDH in (L–N). (I–K) Morphology-based analysis of H9C2 cardiomyoblasts during
differentiation. Brightfield microscopy shows cardiomyoblast alterations over time during their
differentiation process (I). Morphology alterations were further analysed using fluorescent DAPI,
Phalloidin (J), and MyHC (K) immunostaining, documenting that these cells possess a myogenic
differentiation potential. (G,H) Fusion and maturation index. Fusion index and (G) maturation
index (H) values were calculated in cardiomyotubes immunostained with MyHC. Myotubes were
considered differentiated cells that contained more than three nuclei. The fusion index was defined as
the percentage of nuclei present in myotubes over the total number of nuclei present in the observed
field, while the maturation index was defined as the percentage of nuclei present in myotubes that
contained more than 10 nuclei over the total number of nuclei present in the observed field. Data were
selected from 20 different and randomly chosen microscopic fields. Significantly different compared
to day 0, • p < 0.05; •• p < 0.01; ••• p < 0.001. Significantly different compared to day 3, n p < 0.05;
nn p < 0.01. Mean + SE of three independent experiments performed in triplicate.



Cells 2022, 11, 473 7 of 18

Cells 2022, 11, x FOR PEER REVIEW 7 of 18 
 

 

crease in the cardiac-specific markers actin (Figure 1N) and troponin type T (Figure 1C), 
towards a cardiac-like phenotype. Moreover, changes in MRF expression were moni-
tored during the differentiation of the H9C2 cardiomyoblasts, revealing a later peak of 
the late myogenic marker MRF4 (on day 5; Figure 1F) compared with the MyoD1 and 
Myogenin mRNA expression (on day 3; Figure 1D,E), while the protein levels of these 
two differentiation factors exhibited a time shift and peaked on day 5 of the myogenic 
differentiation, as expected (Figure 1L,M). In addition, differential expression of the 
IGF-1 isoforms, namely IGF-1Ea and IGF-1Eb, was shown for the first time during the 
H9C2 cardiomyoblasts’ differentiation, with a significant downregulation of IGF-1Eb at 
the advanced stage of differentiation (day 5) and a persistent upregulation of IGF-IEa up 
to day 5 of differentiation (Figure 2A,B). 

 
Figure 2. (Α,B) IGF-1 isoforms’ expression during cardiomyoblasts differentiation. Quantitative 
analysis of IGF-1Ea and IGF-1Eb mRNA expression in cardiomyoblasts during their differentiation. 
(C–E) Alterations in the activation of the signalling proteins Akt, Erk1/2, and p38. Representative 
Western blots and immunoblotting quantification of p-Akt, p-Erk1/2, and p-p38phosphorylation in 
cardiomyoblasts during their differentiation process. The values of the phosphorylated proteins 
were normalized to each corresponding GAPDH on the same immunoblot. Significantly different 
compared to day 0, • p < 0.05; •• p < 0.01; ••• p < 0.001. Significantly different compared to day 3, ▪▪▪ p < 
0.001. Mean + SE of three independent experiments performed in triplicate. 

3.1.3. Changes in Signalling Pathways Activation during Differentiation 
Along with the targeted gene expression responses during cardiomyocyte-like H9C2 

cell differentiation, we also characterized the alterations in activation of major signalling 
pathways that regulate muscle cell growth, proliferation and differentiation [28]. Inter-
estingly, we found a similar activation pattern of gradual increase in the phosphorylation 
of the important signalling mediators Akt and p38 over time, along with a gradual de-
crease in Erk1/2 activation (Figure 2C–E), with these alterations reaching significance (p < 
0.05–0.01) at the advanced stage of cardiomyoblast differentiation (day 5). 

  

Figure 2. (A,B) IGF-1 isoforms’ expression during cardiomyoblasts differentiation. Quantitative
analysis of IGF-1Ea and IGF-1Eb mRNA expression in cardiomyoblasts during their differentiation.
(C–E) Alterations in the activation of the signalling proteins Akt, Erk1/2, and p38. Representative
Western blots and immunoblotting quantification of p-Akt, p-Erk1/2, and p-p38phosphorylation
in cardiomyoblasts during their differentiation process. The values of the phosphorylated proteins
were normalized to each corresponding GAPDH on the same immunoblot. Significantly different
compared to day 0, • p < 0.05; •• p < 0.01; ••• p < 0.001. Significantly different compared to day 3,
nnn p < 0.001. Mean + SE of three independent experiments performed in triplicate.

3.1.3. Changes in Signalling Pathways Activation during Differentiation

Along with the targeted gene expression responses during cardiomyocyte-like H9C2
cell differentiation, we also characterized the alterations in activation of major signalling
pathways that regulate muscle cell growth, proliferation and differentiation [28]. Interest-
ingly, we found a similar activation pattern of gradual increase in the phosphorylation of
the important signalling mediators Akt and p38 over time, along with a gradual decrease in
Erk1/2 activation (Figure 2C–E), with these alterations reaching significance (p < 0.05–0.01)
at the advanced stage of cardiomyoblast differentiation (day 5).

3.2. Responses of Differentiated Cardiomyocyte-like H9C2 Cells to Various Mechanical Loading Protocols
3.2.1. Myogenic Regulatory Factors

The expression levels of both early (MyoD) and late (Myogenin, MRF4) differentiation
factors were examined in differentiated cardiomyoblasts to investigate the potential effects
of mechanical loading on their myogenic lineage. It was revealed that, at the transcriptional
level 12 h after the completion of the loading protocols, the stretching of cardiomyotubes
induced the downregulation of those MRFs compared to the control (no stretch), regard-
less of the mechanical loading features (Figure 3A–C). At the protein level, mechanical
loading led to increased expression of both MyoD and Myogenin compared to the control
condition, potentially implying that the time point of 12 h after the completion of stretching
does not correspond to the same “window” of transcriptional and translational responses
(Figure 3D,E).
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Figure 3. (A–C) Effects of cyclic mechanical loading on the expression of myogenic regulatory
factors (MRFs). Quantitative analysis of transcriptional responses of (A) MyoD1, (B) Myogenin, and
(C) MRF4 in differentiated cardiomyocytes subjected to different mechanical stretching protocols
compared to the control (Ctr; nonstretched myotubes). (D,E) The mRNA values of MRFs in stretched
myotubes have been normalized to the corresponding GAPDH mRNA and are expressed as fold
changes compared to the control. Representative Western blots and immunoblotting quantification
of MyoD (D) and Myogenin (E) subjected to the various mechanical loading conditions compared
to the control; the proteins of interest were normalized to each corresponding GAPDH on the same
immunoblot. The same blots have been used for GAPDH in Figutes 3D,E, 5C, and 7A,B, except from
the blot of GAPDH in panel A for the 2%/1 Hz stretching protocol. Significantly different compared
to the control, * p < 0.05; ** p < 0.01; *** p < 0.001. Significantly different compared to the 2%/0.25 Hz
stretching protocol, # p < 0.05. Mean + SE of three independent experiments performed in triplicate.

3.2.2. Muscle Hypertrophy/Atrophy Factors

The effects of different stretching protocols on the expression of muscle hypertrophy
and atrophy factors were also examined in differentiated cardiomyocytes. A similar expres-
sion profile was revealed for both IGF-1 isoforms regarding their responses to the different
mechanical loading protocols. Interestingly, we found that the stretching frequency ap-
pears to regulate the expression pattern of IGF-1 isoforms, while the elongation affects the
magnitude of their expression. Specifically, a low frequency (0.25 Hz) resulted in more
pronounced increases in the expression of both IGF-1 isoforms compared to the control
and high frequency (1 Hz), regardless of the elongation of stretching, while the higher the
elongation applied (12%), the higher the expression of IGF-1 isoforms in each frequency
tested. Interestingly, mechanical loading of high frequency (1 Hz)/low elongation (2%) ap-
pears to downregulate the expression of both IGF-1 isoforms (Figure 4A,B) and, conversely,
to upregulate the cardiac and skeletal muscle atrophy factors Atrogin-1 and Myostatin
(Figure 4C,D). Moreover, stretching of differentiated cardiomyoblasts seemed, overall, to
upregulate Atrogin-1 and Myostatin compared to the control condition, except for the low-
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frequency (0.25 Hz)/low-elongation (2%) protocol, while high-elongation stretching was
found to be a determinant of the upregulation of both atrophy factors at a low frequency
(Figure 4C,D).
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Figure 4. (A,B) Effects of mechanical stretching on the expression of the IGF-1 isoforms. Quantitative
analysis of (A) IGF-1Ea and (B) IGF-1Eb mRNA levels in differentiated cardiomyocytes subjected
to different mechanical stretching protocols compared to the control (Ctr; nonstretched myotubes).
The transcriptional responses of IGF-1 isoforms in stretched cardiomyocytes have been normalized
to the corresponding GAPDH values and are expressed as fold changes compared to the control.
(C,D) Effects of mechanical stretch on the expression of muscle atrophy factors. Quantitative analysis
of (C) Myostatin and (D) Atrogin 1 mRNA expression in differentiated cardiomyocytes subjected to
the various mechanical loading conditions compared to the control (nonstretched myotubes); The
mRNA values of the genes of interest in stretched myotubes have been normalized to the corre-
sponding GAPDH mRNA and are expressed as fold changes compared to the control. Significantly
different compared to the control, * p < 0.05; ** p < 0.01. Significantly different compared to the
2%/0.25 Hz stretching protocol, # p < 0.05; ## p < 0.01; ### p < 0.001. Significantly different compared
to the 12%/ 0.25 Hz stretching protocol, $$ p < 0.01. Mean + SE of three independent experiments
performed in triplicate.

3.2.3. Pro-Apoptotic Factors

Along with the loading-induced regulation of muscle hypertrophy/atrophy genes,
the responses of apoptosis-related factors to mechanical loading were investigated in H9C2
cardiomyotubes. It was shown that FoxO1 exhibited an mRNA expression pattern similar
to that of the atrophy factors Atrogin-1 and Myostatin, in response to the various stretching
protocols. In particular, the high-frequency (1 Hz)/low-elongation (2%) protocol resulted
in the significant upregulation of FoxO1 compared to the control while, as also observed
in the atrophy genes, high-elongation stretching was found to be the determinant for the
upregulation of FoxO1 at a low-frequency loading (Figure 5A; see also the responses of
NF-kB below). In contrast with the FoxO1 responses, the low-frequency (0.25 Hz)/low-
elongation (2%) protocol resulted in the transcriptional upregulation of p53 compared
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to the control condition (Figure 5B), while at the protein level the various stretching
protocols were found to downregulate the expression of p53 12 h after the completion of
stretching (Figure 5C) (see also the transcriptional vs. translational responses of MyoD and
Myogenin above).
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Figure 5. (A,B) Effects of mechanical loading on the expression of pro-apoptotic factors. Quantitative
analysis of (A) FoxO1 and (B) p53 mRNA expression in differentiated cardiomyocytes subjected to
various mechanical stretching protocols compared to the control (Ctr; nonstretched myotubes); the
transcriptional responses of pro-apoptotic factors in stretched myotubes have been normalized to the
corresponding GAPDH mRNA values and are expressed as fold changes compared to the control.
(C) Representative Western blots and immunoblotting quantification of p53 subjected to the different
stretching protocols compared to the control (nonstretched myotubes). The p53 protein levels were
normalized to each corresponding GAPDH on the same immunoblot. The same blots have been used
for GAPDH in Figutes 3D,E, 5C, and 7A,B except from the blot of GAPDH in panel A for the 2%/1 Hz
stretching protocol, Significantly different compared to the control, * p < 0.05; ** p < 0.01. Significantly
different compared to the 2%/0.25 Hz stretching protocol, # p < 0.05; ## p < 0.01. Mean + SE of three
independent experiments performed in triplicate.

3.2.4. Inflammation-Related Factors

In parallel with the effects of mechanical loading on the expression of myogenic,
hypertrophy/atrophy, and apoptosis-related factors, we examined the effects of mechanical
loading variations on the expression of inflammation-related factors in the differentiated
cardiomyoblasts. The low-frequency (0.25 Hz)/low-elongation (2%) stretching protocol was
found to significantly downregulate the expression of NF-kB and IL-6 and not upregulate
the expression of TNF-α (Figure 6A,B,D). Moreover, low-frequency stretching appeared to
decrease the expression of IL-6 independently of the magnitude of elongation (Figure 6B).



Cells 2022, 11, 473 11 of 18

In addition, it was shown that mechanical stretching induces the upregulation of IL-1β
regardless of the stretching characteristics (Figure 6C).
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Figure 6. (A–D) Effects of mechanical loading on the expression of pro-inflammatory factors. Quan-
titative analysis of (A) NF-kB, (B) IL-6, (C) IL-1β, and (D) TNF-α transcriptional responses of
differentiated cardiomyocytes subjected to various mechanical stretching protocols compared to
the control (Ctr; nonstretched myotubes). The mRNA values of inflammation-related factors in
stretched myotubes have been normalized to the corresponding GAPDH mRNA and are expressed
as fold changes compared to the control. Significantly different compared to the control, * p < 0.05;
** p < 0.01; *** p < 0.001. Significantly different compared to 2%/0.25 Hz stretching protocol, # p < 0.05;
### p < 0.001. Significantly different compared to the 12%/0.25 Hz stretching protocol, @@@ p < 0.001.
Mean + SE of three independent experiments performed in triplicate.

3.2.5. Changes in the Activation of Key Intracellular Signalling Mediators

The effects of different loading protocols on the activation of important signalling
proteins, associated with cell growth and survival pathways, were also investigated in the
H9C2 cardiomyotubes. We found that all stretching protocols used resulted in higher levels
of Erk 1/2 phosphorylation compared to the control condition (Figure 7A). In addition,
mechanical stretching induced, overall, a higher activation of the Akt pathway compared to
the control, while the lower-frequency (0.25 Hz) stretching protocols, particularly, appeared
to cause higher phosphorylation levels of Akt compared to high-frequency mechanical
loading (Figure 7B).
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Figure 7. (A,B) Effects of cyclic mechanical stretching on the activation of the signalling proteins Akt
and Erk1/2. Representative Western blots and immunoblotting quantification of (A) p-Erk1/2 and
(B) p-Akt phosphorylation in cardiomyoblasts subjected to different mechanical loading protocols
compared to the control (Ctr; nonstretched myotubes). The values of the phosphorylated proteins
were normalized to each corresponding GAPDH on the same immunoblot. The same blots have
been used for GAPDH in Figure 3D,E, in Figure 5C, and in Figure 7A,B except for the blot of
GAPDH in (A) for the 2%/1 Hz stretching protocol. Significantly different compared to the control
* p < 0.05; ** p < 0.01; *** p < 0.001. Significantly different compared to the 2%/0.25 Hz stretching
protocol, # p < 0.05. Significantly different compared to the 2%/1 Hz stretching protocol, $$ p < 0.01.
Significantly different compared to the 12%/1 Hz stretching protocol, && p < 0.01. Mean + SE of three
independent experiments performed in triplicate.

4. Discussion

This study investigated cellular and molecular events during the differentiation of
cardiomyocyte-like H9C2 cells, and compared the effects of various mechanical stretching
protocols on signalling and gene expression responses associated with the myogenic lineage
and survival program of the differentiated cells. Based on our previous work [29,37], we
hypothesized that the molecular responses elicited by these cells following mechanical load-
ing would vary depending on the loading characteristics of the protocols used, revealing
the specific detrimental or beneficial effects on the differentiated cardiomyocytes. The main
findings of this study were that H9C2 cells possess a myogenic differentiation potential
towards a cardiac-like gene expression phenotype, eventually forming multinucleated car-
diomyotubes, while altering the strain and frequency of mechanical loading applied on the
cardiomyotubes can regulate their anabolic/survival program. Specifically, a main finding
of particular interest was that a low-strain/frequency stretching was, overall, the most
effective at inducing protein synthesis and myogenic lineage along with the suppression of
apoptosis, inflammation, and atrophy in these mechanosensitive cells.

Myogenic differentiation is a highly orchestrated process driven by multiple signal
transduction and mechanotransduction pathways, which coordinate the balance between
muscle growth and atrophy [24,36,39–41]. Cell cycle arrest and morphological alterations
appear to accompany the differentiation process of the cardiomyocyte-like H9C2 cells [3].
Following on from previous reports [2,3], the present study further characterized the ability
of these cells to exhibit a cardiac myogenic differentiation, as demonstrated by the time
course expression of myogenic transcription factors (MRFs) and cardiac-specific markers,
as well as by the morphological analyses of these cells during the differentiation process
(Figure 1). More specifically, undifferentiated H9C2 cells are mononucleated, exhibiting a
normal cell cycle progression; however, their differentiation progressively leads to their
fusion into multinucleated cardiomyotubes. This potential was documented by the gradual



Cells 2022, 11, 473 13 of 18

increase in their fusion and maturation indexes, and the increased expression of the myo-
genic and cardiac differentiation markers MyHC, actin, and troponin. These alterations
were accompanied by the downregulation of the cell cycle regulatory protein Cyclin D1 and
the reduced activation of ERK1/2 pathway, attesting to the suppression of proliferation rate
of these cells during differentiation (Figure 1B,G–K). In addition, we found that the progres-
sion of H9C2 cardiomyoblast differentiation was also accompanied by a gradual increase
in p38 activation over time, which has been shown to inhibit the activation of ERK1/2 and
to induce cell cycle arrest in adult mammalian cardiomyocytes [42]. Furthermore, and in
accordance with previous studies, our study documented the increased phosphorylation of
Akt in the differentiating H9C2 cells, which is an important mediator of protein synthesis,
a critical process for the completion of myogenic differentiation [40,41] (Figure 2C–E).

Indeed, myogenic differentiation is associated with the induction of anabolic processes
and increased protein synthesis [43], while MRFs and growth factors function as activators
and/or mediators of muscle cell differentiation [22]. In particular, interactions between
MRFs and growth factors, such as IGF-1, have been previously described in skeletal muscle
cells [24,44,45] and this study demonstrated a coordinated differential expression of the
early (MyoD) versus late (MRF4) myogenic regulators over time in the differentiating
H9C2 cardiomyocyte-like cells, while IGF-1 isoforms also exhibited a different regulation
during the differentiation process of the cardiomyoblasts. It has been documented that
IGF-1 is a key factor involved in myogenesis and is a major regulator of cardiomyocytes
development and growth [25,26]; however, to the best of our knowledge, this is the first
study examining the distinct expression profiles of IGF-1 isoforms in H9C2 cardiomyoblasts
during their differentiation. Specifically, our data showed a persistent upregulation of the
IGF-IEa isoform throughout the differentiation process, along with the downregulation
of the IGF-1Eb at the advanced stage of differentiation, further supporting the notion of a
differential regulation and role of IGF-1 isoforms in muscle biology [28,38,44,46–48] and in
myocardial remodelling [26,45], but also in other biological systems [49–54].

This study further investigated the myogenic and anabolic potential of differentiated
H9C2 cells following mechanical loading, since their ability to convert external mechanical
stimuli into biochemical signals is critical for the maintenance of their homeostasis and
for the adaptation of cardiac muscle to mechanical loading [4,5,55]. Our previous work
has shown that different effects on the myogenic lineage of advanced differentiation car-
diomyoblasts are elicited by varying the characteristics (i.e., strain, frequency, duration) of
mechanical stretching applied on them, indicating specific features of loading for regulating
the anabolic/survival program in these cells [29]. Specifically, it was found that, regarding
the duration of mechanical loading, an intermediate-duration (12 h) stretching protocol was,
overall, the most effective at inducing beneficial responses in the stretched cardiomyoblasts.
Thus, in the present study we utilized this “optimum” duration of loading to further ex-
plore the effects of strain/frequency variations on myogenic, hypertrophic, anti-apoptotic,
and anti-inflammatory responses, and on the activation of major intracellular signalling
cascades in cardiomyotubes.

Myogenic differentiation of myoblasts is regulated by MRFs, and while studies
have shown that mechanical stimuli affect the expression of these myogenic determi-
nants [56], the responses of MRFs to mechanical loading in cardiomyocytes remain largely
unknown [29]. In the new series of loading protocols used in this study, we further revealed
that at the “optimum” duration the high-frequency (1 Hz) mechanical loading applied
on the differentiated cardiomyocytes may induce lower expression of the myogenic de-
terminants MyoD, Myogenin, and MRF4 compared to low-frequency (0.25 Hz) stretching
protocols, regardless of their strain features (Figure 3). Moreover, our findings suggest that
these MRFs, at least at this late stage of myogenic differentiation, are responsive to mechan-
ical loading and more sensitive, particularly to low-frequency stretching. Interestingly, this
study showed that MRF4 appears to be responsive only to low strain loading, potentially
indicating a differential responsiveness of this late myogenic factor to mechanical stimuli
due to its distinct role(s) in that stage of the myogenic differentiation program [37].
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Mechanical loading of skeletal and cardiac muscle cells can induce the upregulation of
many growth factors associated with protein synthesis and cell growth, eventually leading
to muscle hypertrophy [27,30,44,57,58]. In particular, the upregulation of IGF-1 has been
implicated in the adaptive cardiac hypertrophy induced by mechanical loading, while
potentially differential actions of IGF-1 isoforms in the myocardial repair/remodelling
process have been proposed [26,59]. Our findings showed that both isoforms were up-
regulated by low-frequency stretching protocols, while strain appeared to regulate the
magnitude of overexpression, with more pronounced increases being exhibited after the
high-strain/low-frequency protocol and vice versa.

We further explored the transcriptional responses of skeletal and cardiac muscle atro-
phy genes Atrogin-1 and Myostatin to the various mechanical stimuli applied on cardiomy-
oblasts, since both are negatively involved in myogenesis, acting through the ubiquitin–
proteasome pathway [31,55,60,61] and actively inhibiting protein synthesis [57,58,62]. In-
terestingly, we found that, compatibly with the anabolic upregulation of IGF-1 isoforms by
low-strain/frequency loading shown in this study, the same protocol was also the only one
that did not upregulate those atrophy genes, suggesting that such mechanical loading fea-
tures may effectively regulate the anabolic program in the differentiated cardiomyoblasts.

Various pro-apoptotic factors may be involved in myogenic differentiation, like FoxO,
which seems to be a fate decider within the myogenic program [63] while also inhibiting
Akt and Erk1/2 activation, inducing cardiac muscle wasting, and promoting heart fail-
ure [33]. Our previous work has shown that FoxO1 is responsive to mechanical loading [29]
and the present study further revealed that its expression pattern was similar to that of
muscle atrophy factors. In particular, the low-strain/frequency protocol was again the
only one that did not induce FoxO1 upregulation, while, as also observed for the atrophy
genes, increasing the elongation of stretching at the same low frequency resulted in the
upregulation of FoxO1 (Figures 4 and 5). However, different expression responses to the
various loading protocols were found for p53, a pro-apoptotic factor that has been proposed
to suppress muscle differentiation at the Myogenin step [64]. Indeed, p53 exhibited a re-
verse expression pattern, both at the transcriptional and translational level, compared with
Myogenin responses to the various loading protocols tested (Figures 3 and 5). Our findings
suggested that the potential regulatory interactions between p53 and Myogenin within the
myogenic differentiation of cardiomyoblasts may be mechanical loading dependent.

Moreover, p53 and its downstream effectors have been proposed to promote an in-
flammatory cytokine-mediated inhibition of myogenic differentiation [64]. Thus, although
many studies have suggested beneficial effects of mechanical stimuli on cardiomyocytes
structure and function, nevertheless excessive mechanical loading have been reported to
induce cardiac cell apoptosis and the upregulation of muscle atrophy and pro-inflammatory
factors [65,66]. Therefore, to further associate mechanical stimuli with the pathophysiology
of cardiomyopathies, this study investigated the effects of mechanical loading variations
on the expression of inflammation-related factors in the differentiated cardiomyoblasts.
Our data showed that, again, the low-strain/frequency stretching protocol resulted in de-
creased expression of the inflammation-related factors NF-kB and IL-6, while increasing the
strain and/or the frequency of stretching was found to increase the expression responses
of IL-1β, TNF-α, NF-kB, and IL-6. These findings implied a loading-induced increase
of the inflammatory potential in cardiomyotubes, depending on the specific features of
mechanical loading. Overall, the findings above indicate a multiple beneficial effect of low-
strain/frequency, intermediate-duration (12 h) stretching, as it simultaneously upregulates
the myogenic/anabolic program and downregulates atrophy, apoptotic, and inflammatory
factors in advanced-differentiation cardiomyocytes.

Lastly, two primary mechanosensitive intracellular pathways appear to require com-
prehensive identification of their interactions and outcomes within the context of cardiac
and myogenic differentiation and their pathophysiological transfer to cardiomyopathy un-
der mechanical stimuli [27,30,31,44]. Specifically, the activation of the phosphatidylinositol
3-kinase (PI3K)/Akt pathway has been implicated in myocardial cells’ survival and their
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protection against reperfusion-induced injury and apoptosis, while the Ras/Raf/Erk1/2
signalling pathway has been shown to be essential for myocardial hypertrophy [25]. Our
previous work has shown a loading-specific activation of these two pathways in differen-
tiated cardiomyocytes in vitro, with the intermediate-duration (12 h) stretching protocol
being effective at inducing upregulation of both Erk1/2 and Akt pathways [29]. In the
present study, we used this “optimum” intermediate duration of loading to further investi-
gate the effects of frequency and strain variations on the activation of these major signalling
pathways. Our new data further revealed that low-frequency loading of cardiomyoblasts
may be, overall, more effective at the activation of the signalling mediators Erk1/2 and Akt
compared to the high-frequency protocols, regardless of the strain features (Figure 7). These
findings suggest that the loading-induced activation of these pathways is not mutually
exclusive and may depend on the characteristics of mechanical loading.

5. Conclusions

The in vivo models of loading-induced cardiac adaptations are quite complex and,
thus, in vitro models of mechanical loading applied on myocardial cells are crucial for
understanding the cellular and molecular mechanisms that mediate loading-induced adap-
tations. This study further characterized the differentiation process of H9C2 cells towards a
cardiac-like phenotype and utilized advanced-differentiation cardiomyocytes in an in vitro
model of cell stretching to investigate intracellular molecular events induced by mechani-
cal stimuli. By varying specific characteristics of mechanical loading, we have advanced
on previous findings and emphasized the optimal characteristics of mechanical load-
ing in terms of its strain and frequency features for eliciting predominantly beneficial
adaptations in the loaded cardiomyotubes. These findings may be a useful resource in
translational research for the development of more targeted experimental approaches to
mimic adaptive remodelling processes that are possibly driven by mechanotransduction,
such as the exercise-induced physiological cardiac hypertrophy or the maladaptive remod-
elling of the myocardium. Indeed, pathological hypertrophy-, apoptosis-, atrophy-, and
inflammation-related responses to mechanical stimuli investigated in this study charac-
terize serious cardiac disorders, such as myocardial infarction, hypertension-induced left
ventricular hypertrophy, dilated cardiomyopathy, and heart failure. Elucidation of such
novel mechanisms might provide novel therapeutic targets and help us develop future
pharmacotherapies to treat mechanical loading-associated cardiomyopathies.
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