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ABSTRACT: DNA-encoded chemical libraries (DELs) provide a high-throughput and cost-effective route for screening
billions of unique molecules for binding affinity for diverse protein targets. Identifying candidate compounds from these libraries
involves affinity selection, DNA sequencing, and measuring enrichment in a sample pool of DNA barcodes. Successful detection
of potent binders is affected by many factors, including selection parameters, chemical yields, library amplification, sequencing
depth, sequencing errors, library sizes, and the chosen enrichment metric. To date, there has not been a clear consensus about
how enrichment from DEL selections should be measured or reported. We propose a normalized z-score enrichment metric
using a binomial distribution model that satisfies important criteria that are relevant for analysis of DEL selection data. The
introduced metric is robust with respect to library diversity and sampling and allows for quantitative comparisons of enrichment
of n-synthons from parallel DEL selections. These features enable a comparative enrichment analysis strategy that can provide
valuable information about hit compounds in early stage drug discovery.
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■ INTRODUCTION

The DNA-encoded chemical library (DEL) platform combines
the strengths of combinatorial chemical synthesis and next-
generation DNA sequencing to provide a high-throughput and
cost-effective drug discovery strategy.1−4 Generally, a DEL is a
collection of small molecules in which each member is
covalently linked to a segment of synthetic DNA.5 Each DNA
sequence is used as a molecular “barcode” that encodes
information about the structure of its associated small
molecule. Via labeling with DNA barcodes, billions of druglike
molecules can be screened for binding affinity for a protein
target as a complex mixture, and candidate compounds can be
identified by interpreting the output of DNA sequencing. The
most commonly utilized method of DEL synthesis is the so-
called “DNA-recorded” strategy wherein short DNA oligomers
are sequentially ligated to a growing DNA polymer that is
connected via a molecular tether to a site of small molecule

synthesis.1 Each of the oligomer sequences represents a specific
chemical building block added or chemical transformation
performed on the small molecule. The completed DNA
barcode provides a recorded recipe for constructing a specific
library member because the DNA sequence is constructed in
parallel with the small molecule. By leveraging “split and pool”
combinatorial synthesis,6 one can develop a final pool of DEL
compounds that can easily reach into the millions or even
billions of unique molecules. In addition, library designs
incorporating different scaffolds, building blocks, and reactions
can produce diverse compound libraries with a wide variety of
molecular shapes, biophysical properties, and target binding
profiles.7 Moreover, with the inclusion of library-identifying

Received: August 8, 2018
Revised: November 29, 2018
Published: January 23, 2019

Research Article

pubs.acs.org/acscombsciCite This: ACS Comb. Sci. 2019, 21, 75−82

© 2019 American Chemical Society 75 DOI: 10.1021/acscombsci.8b00116
ACS Comb. Sci. 2019, 21, 75−82

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

pubs.acs.org/acscombsci
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acscombsci.8b00116
http://dx.doi.org/10.1021/acscombsci.8b00116
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


sequences in the DNA barcode, multiple libraries can be
combined into a multilibrary pool, which greatly increases the
chemical space sampled in a single DEL screen.
Hit discovery with DELs is facilitated by affinity selection

experiments that involve incubating a DEL pool with an
epitope-tagged protein target, separating unbound molecules,
and then eluting and collecting the protein-bound molecules.
Relative populations of library members are thus perturbed in a
postselection DEL sample due to the distribution of binding
affinities for the target protein. This “selection” process is often
repeated over several iterations, with the goal of producing a
postselection DEL pool that is enriched with high-affinity
binders. Such changes in the composition of a DEL induced by
selection experiments are monitored by DNA sequencing,
decoding into molecular representations, and subsequent
statistical and cheminformatic analysis. Library populations
can additionally be perturbed by changing the selection
conditions.8,9 For example, Wu et al. used cell-based DEL
selections to identify antagonists of the NK3 tachykinin
receptor by comparing the output of selections with and
without a known NK3 binder.10 Similarly, Soutter et al.
successfully used parallel DEL selections to identify com-
pounds with affinity for specific binding sites to the enoyl-acyl-
carrier protein reductase InhA from Mycobacterium tuber-
culosis.11 Cuozzo et al. used parallel selections of a DEL for
Bruton’s tyrosine kinase (BTK) with varying target concen-
trations and the presence or absence of ATP and dasatinib to
elucidate the relative binding affinities and binding mecha-
nisms of novel BTK inhibitors.12 Other selection parameters,
including the washing protocol and incubation time, can be
varied to probe binding characteristics like on and off rates.13

Reports of novel analysis strategies for DEL selection data
have been scarce since early publications of successful DEL
screens.14,15 Traditionally, DEL selection analysis involves
visualization of a two- or three-dimensional scatter plot (“cubic
view”), in which each unique decoded ligand is positioned
according to its component building blocks on each of the plot
axes. Each point representing a unique library member is
colored or sized by the number of observed molecules, or
“counts”. Patterns such as lines and planes can be viewed in
this representation that imply enriched chemical substructures
within the library. Because these observed features are groups
of conserved building blocks from a combinatorial synthetic
library, these substructure groups are called n-synthons, where
n is the number of cycles in the conserved group of synthetic
cycles (Supporting Information section S1 further describes
nomenclature for DEL analysis). Observing the enrichment
of n-synthons can indicate the presence of structure−activity
relationships (SARs), hint at possible binding modes, or signify
truncated products from failed or incomplete chemical
reactions. The interpretation of these features often depends
on the specific DEL design and selection conditions. This
substructure-seeking strategy has become an important part of
DEL analysis and has been adopted by many other
practitioners.10,12,15−19

There has not yet been a consensus about how enrichment
for DEL members should be measured and evaluated. Early
work utilized visualization of count data in three-dimensional
scatter plots. Satz proposed plotting counts of library members
against varying target concentrations from multiple selections
to address the issue of variable synthetic yield in a DEL.20,21

Buller et al. have described using the negative binomial
distribution to model count data and determine p values for

enriched compounds.3,22,23 Others have proposed a count-to-
mean ratio to evaluate enrichment.24,25 Kuai et al. utilized a
count-to-mean count ratio metric and demonstrated that it had
advantages over a count-to-baseline measure26 because it
normalizes for sequencing depth.25 Kleiner et al. evaluated
enrichment as a ratio of the preselection population fraction to
the postselection population fraction.27 Most recently, Amigo
et al. report ranking different n-synthons by the number of
standard deviations from the average count, analogous to a
standard z-score metric.28

While developing our own DEL informatics and analysis
pipeline, we observed that naiv̈e measures of n-synthon
enrichment were dependent on sample size and library
diversity, which impeded direct quantitative comparisons of
enrichment of n-synthons in DELs. We therefore initiated a
search for more useful enrichment metrics, beginning by
enumerating desirable properties of an enrichment function.
We then developed a set of test scenarios to evaluate an
enrichment metric for meeting the enumerated criteria, which
included analysis of naiv̈e library screens, selections with strong
enrichment and wide structure−activity relationships (or more
accurately, “structure−enrichment relationships”), selections
with no significant enrichment, and comparing selections with
uneven sampling of decoded library members (Supporting
Information section S2). This exercise led us to consider the
normalized z-score to be the most successful metric in meeting
the desired criteria for an enrichment function. In the following
sections, we introduce this enrichment metric, describe some
of its properties, and demonstrate its use with a test system of a
triazine-based DEL and selections against human soluble
epoxide hydrolase (sEH).

■ RESULTS AND DISCUSSION
Considerations for an Enrichment Metric. We began

our investigation into DEL selection enrichment metrics by
enumerating desirable characteristics of an enrichment
function. First, a successful enrichment metric should be
insensitive to the amount of sampling of the library pool. For
most selection experiments, enrichment in target-containing
samples leads to more molecules being retained after the
selection compared to a non-target control (NTC) selection,
presumably due to the increased number of potential binding
sites and hydrophobic surfaces available. Subsequently, a target
selection pool is often sequenced more deeply than an NTC
pool, and therefore, comparing simple measures like molecule
counts can often be misleading. Without normalizing for
sampling, the pool that has been sampled more can often have
features that appear to be further enriched compared to those
of the smaller pool simply due to higher sampling.
An additional requirement is that the enrichment metric

should be insensitive to library diversity or the magnitudes of
the expected populations of n-synthons. This requirement was
introduced for three reasons: (1) to enable measurement of
enrichment of compounds in very large libraries where the
diversity is typically severely undersampled, (2) to enable
comparisons between libraries of greatly different sizes, and (3)
to yield compatible enrichment measurements for different
types of n-synthons within libraries. The diversities of a
monosynthon (one conserved building block) and a trisynthon
(three conserved building blocks) are of different orders of
magnitude, which implies that their pre- and postselection
populations will also be of different orders of magnitude. An
ideal enrichment metric would address both extremes of
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populations in a similar manner so that they can be plotted
together in a single visualization.
It is also desirable for an enrichment function to have

quantifiable uncertainty from sampling. When there are fewer
total molecules decoded after a selection, the uncertainties in
the populations of various features should be higher and this
should be reflected in the uncertainties in their enrichment.
Quantifiable uncertainty also allows for the determination of
significant differences in enrichment between two samples.
This would allow analysts to be mindful of uncertainties when
choosing which features to assess with resynthesis and
validation assays.
Lastly, an enrichment metric should be easily interpretable.

The metric should be directly proportional to enrichment, as
defined as the ratio of the observed population to the expected
population in an unselected sample. The metric should enable
the analyst to distinguish between signal and noise and
additionally to detect significant differences in enrichment
when comparing multiple selections under different exper-
imental conditions.
Normalized z-Score Metric. On the basis of the observed

behaviors of candidate enrichment metrics in several example
scenarios (Supporting Information section S2), we found the
normalized z-score to be the most successful enrichment
metric. This enrichment function models selection data with
the binomial distribution, which provides the probability of
observing an event k times out of n independent samples given
the probability of occurrence p. This strategy therefore
approximates the DNA sequencing process as random
sampling with replacement of a DEL pool. The binomial
distribution is beneficial for analyzing combinatorial DEL data
because for low p it closely resembles the Poisson distribution
for count data and for high p it resembles the normal
distribution that is often a better fit for high count data. Thus,
the binomial distribution can model both high-diversity
features (e.g., trisynthons) and low-diversity features (e.g.,
monosynthons). It is important to note that using a z-score
type metric with the binomial distribution depends not only on
the expected and observed counts and populations (Ci and pi
for expected and Co and po for observed, respectively) but also
on the number of samples, n (eq 1). We therefore modified the
expression by normalizing by an additional factor of the square
root of the number of decoded samples (eq 2). The final
normalized z-score showed a low sensitivity to sampling by
normalizing by n , and it additionally showed a low sensitivity
to expected probabilities by normalizing by a factor dependent
on pi.

σ
=

−
=

−

−
=

−

−
z

C C C np

np p

n p p

p p(1 )

( )

(1 )
o i o i

i i

o i

i i (1)

=
−

−
=

−
−

i

k
jjjjjj

y

{
zzzzzzz

p p

p p

p

p

p

p(1 ) 1
1n

o i

i i

i

i

o

i (2)

We investigated the interpretation of the normalized z-score by
mathematical derivation and using simulated data. We found
that the normalized z-score is a linear function of fold
enrichment (defined as the ratio of observed to expected
population fraction) but with different slopes for different
values of the expected population. In eq 2, it is observed that
for any specific level of enrichment (po/pi), the normalized z-

score scales the enrichment by a factor of the square root of pi/
qi where qi = 1 − pi. Our experience from analyzing our own
DEL selection data has led us to view zn ≥ 1 for any n-synthon
as being an indicator of significant enrichment (differences in
DEL composition and selection protocols might require an
adjusted threshold). Thus, for a three-cycle library with 1000
synthons in each cycle, a zn value of 1 is roughly equivalent to a
30-fold enrichment for a monosynthon feature, a 1000-fold
enrichment for a disynthon, and a 30000-fold enrichment for a
trisynthon. By scaling enrichment by a factor that is dependent
on the expected population, we can plot the enrichment of
different types of n-synthons in the same range for visual
analysis.
As mentioned in the previous section, it is desirable for our

enrichment function to have computable uncertainties due to
sampling. For this purpose, we utilize the Agresti−Coull
interval for the binomial distribution, which was chosen
because it tends to yield conservative estimates for observed
probabilities even at extreme values of p.29 Thus, observed
populations of n-synthons are evaluated as
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where zα is the 1 − α/2 quantile of the standard normal
distribution (e.g., a 95% confidence interval requires α = 0.05
and zα = 1.96), n is the total number of samples (decoded
ligands), and Co is the observed count for the feature. Upon
combination of the Agresti−Coull estimation interval with the
normalized z-score metric, the evaluated uncertainty in
enrichment decreases with an increased level of sampling,
due to the factor of n in eq 3. Additionally, the uncertainty
decreases with an increasing expected population due to the
scaling factor in eq 2. Thus, evaluated uncertainties in the
enrichment of low-count, high-diversity trisynthons are
generally larger than those of higher-count, lower-diversity
mono- or disynthons.

Triazine DEL and Selections against Soluble Epoxide
Hydrolase. As an illustrative example of our comparative
enrichment analysis strategy, we have generated a DEL
(hereafter termed “triazine DEL”) with a design closely
following the DEL-B library previously described by Clark et
al.15 The two library designs are similar in that they both link
amines to a triazine core scaffold via an amino acid linker, but
the specific building blocks included in each library were
independently chosen. The triazine DEL contains 171 amino
acids in cycle 1 that are appended to the triazine ring and 1017
amines in cycle 3 that form amide linkages with the cycle 1
amino acids. The complete library contains approximately 174
million unique molecules, and among these are close analogues
of compounds previously described by Thalji et al., who
measured their inhibitory activity for soluble epoxide hydrolase
(sEH; encoded by the gene EPHX2).30 Compounds of this
series are reproduced as disynthons in the triazine DEL, as
benzylic amines in cycle 3 are linked to the core triazine
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scaffold through isonipecotic acid in cycle 1. The inclusion of
these known sEH binding ligands in our library provided
positive controls for tuning selection experiments, sequencing
preparation, and analysis.
The triazine DEL was first sequenced in its naıv̈e or

unselected form as a quality control procedure. Two
independent library samples were taken, closing polymerase
chain reaction (PCR) primers including sequencing indexes
were ligated independently by different scientists in different
locations, and sequencing was conducted separately for the two

samples. Sample 1 resulted in approximately 9 million decoded
library members, and sample 2 resulted in approximately 6
million decoded library members. Using a binomial distribu-
tion model and an approximation of equal probabilities of
observation, we expected a random noise threshold of 4 counts
for any specific trisynthon library member in both decoded
data sets. Accordingly, in both data sets, the maximum
trisynthon count was 4, but this agreement with the expected
count distribution was reached only by accounting for errors in
the degenerate regions of the DNA barcodes used to count
unique molecules after PCR amplification (Supporting
Information section S3). The enrichment of library members
in the two naiv̈e samples is compared in Figure 1, where n-
synthons are colored according to their “dimension”, or value
of n. Generally, most n-synthons had normalized z-score values
near zero, which implies that the observed population was
close to the expected population. We observed some
monosynthons (blue) that were significantly under- or
overpopulated, but these were similarly populated in both
naiv̈e samples. Because trisynthons (yellow) were severely
undersampled in these sequencing data sets, their normalized
z-score values were generally greater than zero but also were
associated with much higher uncertainties. Additionally,
because the observation of specific trisynthons is largely due
to random selection noise, most trisynthons were observed in
only one of the two data sets.
The triazine DEL was then evaluated in a selection against

His-tagged sEH as well as an NTC sample that contained only
nickel-NTA magnetic capture beads. Both postselection
samples were PCR-amplified, sequenced with the Illumina
HiSeq instrument, and decoded into molecular representations
for analysis. Table 1 lists the reported IC50 values of selected
sEH inhibitors and the enrichment of their disynthon
analogues from the triazine DEL. Although correlation
between enrichment and binding affinity is known to be
weakened by variance in synthetic yields,21 in this case,
enrichment was robust enough to clearly distinguish between
the most potent and the weaker sEH binders of this series.
In Figure 2, the enrichment of all observed n-synthons in the

target selection is plotted against the corresponding enrich-
ment in the NTC selection. We observed many mono- and
disynthons that were significantly more enriched in the target
data set than the NTC, which is consistent with target-specific
binding. There were additionally some monosynthons that
were significantly more enriched in the NTC than in the target
data set, which implies binding affinity for the nickel-
containing beads. Disynthons that correspond to two of the
most potent compounds described by Thalji et al. are
highlighted in green. The highlighted disynthons were
observed in the target data set but not the NTC data set,
and the two most potent inhibitors were indeed more enriched
in the target data set than the weaker inhibitors. The remaining
points in green represent disynthons from the triazine DEL
with different amine and amino acid building block
components. Interestingly, our selection did not highlight
any specific trisynthon library member but did reveal several
disynthons in the form of combinations of cycle 1 amino acids
and cycle 3 amines that had significant target-specific
enrichment.
As mentioned in Considerations for an Enrichment Metric,

it is important for our enrichment function to have a low
sensitivity to differences in sampling between two data sets.
Without this property, enrichment from different data sets

Figure 1. Comparison of enrichment from two independently
prepared naıv̈e samples of the triazine DEL. Observed n-synthons
are colored by their value of n (their “dimension”), and enrichment is
measured as normalized z-scores with their 95% confidence intervals
shown as error bars (some error bars are smaller than the data point
radii). The y = x line corresponding to equal enrichment between the
two samples is plotted for reference.

Figure 2. Comparative enrichment plot for a selection against sEH.
Enrichment in the target data set is plotted along the horizontal axis
against the measured enrichment for a control sample, an NTC, on
the vertical axis. This DEL included compounds previously assayed
for sEH inhibition by Thalji et al.30 as disynthons from cycles 1 and 3.
Each point in the plot is a different n-synthon from the DEL, and the
points highlighted in green correspond to analogues of the two most
potent of the previously reported compounds. Both of these known
inhibitor structures were observed in the target data but not the NTC,
and the most potent inhibitors from the earlier publication were
significantly more enriched in the target data set than the weaker
inhibitors. The remaining points correspond to different combinations
of amino acids in cycle 1 and amines in cycles 2 and 3 of the triazine
DEL.
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could not be compared quantitatively. To investigate this
property for the normalized z-score metric, we generated a
subsampled data set from the sEH selection data by randomly
removing approximately 90% of the decoded ligands. The
initial data set contained 39177803 decoded library members,
and the 10% subsampled data set contained 3916867 library
members. We further generated a 1% subsampled data set by
randomly removing 99% of decoded library members leaving
only 392791 samples. Given that the estimated final molecule
count after the selection from qPCR analysis was 4.5 × 1010,
these levels of sampling correspond to sampling coverage of
0.087% for the full decoded data set and 0.0008% for the
smallest subsampled data set. As shown in Figure 3, the
evaluated enrichment for library members in the smaller
subsampled data sets largely agree with the evaluations in the
full data set. Deviations are more noticeable in the 1%
subsampled data set, where the trisynthons appear to be more
enriched in the smaller data set due to severe undersampling.
However, the estimated uncertainties are also much larger in
the smaller data set, implying that there is no significant
difference between the two samples when estimated
uncertainties are considered. These examples suggest that the
normalized z-score metric is robust when the sampling
coverage is low and when comparing two data sets with very

different amounts of sampling. In contrast, other metrics we
examined showed significant systematic errors when compar-
ing two data sets with uneven sampling (Supporting
Information section S2.2.4).

■ CONCLUSIONS

There is much information that can be gleaned from
comparing the output of parallel affinity selections of DNA-
encoded chemical libraries. By observing different perturba-
tions in the populations of library members due to differences
in selection parameters, one can theoretically gain information
such as binding sites, target selectivity, relative affinity, and
kinetics. To enable quantitative comparison of enrichment
between multiple experiments, enrichment must be measured
in a way that is accurate and insensitive to sampling. We have
developed an informatics and analysis pipeline that attempts to
directly compare parallel DEL selection experiments by
plotting measured enrichment of each n-synthon in a library
in each selection against each other in a two-dimensional
scatter plot. In this visualization, n-synthons that are enriched
in one, neither, or both selections are obvious to the analyst.
We required a novel enrichment metric that has a low
sensitivity to sampling and diversity, and we chose to utilize a
normalized z-score metric with the Agresti−Coull estimation

Table 1. Selected sEH Inhibitors Reported by Thalji et al.30 and Their Analogues in the Triazine DELa

aIC50 values are from the earlier report, and the evaluated enrichments for the DEL analogues are provided as normalized z-scores with their 95%
confidence intervals.

Figure 3. Enrichment of n-synthons evaluated with the normalized z-score metric from the fully sampled data set compared to randomly
subsampled data sets. Panel A plots the full data set against the same data with 90% of samples randomly removed, while panel B plots the full data
set against the same data set with 99% of samples randomly removed. This in silico experiment simulates the effects of large differences in sampling
between two decoded DEL selection samples.
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interval to fulfill this need. This metric has a low sensitivity to
sampling and diversity and provides a conservative error bar
for uncertainties in enrichment.

■ EXPERIMENTAL PROCEDURES
Synthesis of the Triazine DEL. The encoded split-and-

pool DEL concept and the triazine DEL structure and design
were adapted from a previous report.15 The triazine DEL was
constructed through three cycles of chemical transformations,
DNA oligomer (“codon”) ligations, and subsequent pooling.
Cycle 1 consisted of codon ligation, attachment of cyanuric
chloride, and nucleophilic substitution of amines and amino
acids. Cycle 2 consisted of nucleophilic substitution of amines,
cycle 2 codon ligation, and pooling. Cycle 3 consisted of cycle
3 codon ligation, acylation of amines, and pooling. After
completion of the main build, the library was further ligated
with a DNA tag to encode the library structure. Aliquots of the
triazine DEL were modified with DNA oligomers containing a
selection experiment identification region, a degenerate region
to act as a unique molecule identifier (UMI) amplification
control region, a diversity region, and a primer region for use in
selection experiments. Detailed experimental procedures for
the triazine DEL synthesis are provided in Supporting
Information section S4.
Selection with Soluble Epoxide Hydrolase. Selection of

sEH binding molecules was performed following an affinity
capture-based method described previously.19 His6-tagged
sEH (item no. 10011669, Cayman Chemical) at a final
concentration of 1 μM was incubated with DEL at a
concentration where each compound had one million copies
in a model cytosolic buffer containing HEPES (20 mM, pH
7.5), potassium acetate (134 mM), sodium acetate (8 mM),
sodium chloride (4 mM), magnesium acetate (0.8 mM),
imidazole (10 mM), TCEP (1 mM), CHAPS (1 mM), and
sheared salmon sperm DNA (1 mg/mL, Invitrogen) in a final
volume of 200 μL. A non-target control selection was set up in
parallel in which no protein was added to the library. The
incubation lasted 45 min at room temperature with continuous
shaking. The target and associated library molecules were then
captured by the addition of 200 μL of prewashed HisPur Ni-
NTA magnetic beads (Thermo Scientific) followed by a 10 s
vortex. Beads were washed three times with cytosolic buffer
without sheared salmon sperm DNA. Then the associated
library molecules were eluted by heating the beads at 80 °C for
10 min. The resulting eluent in which sEH binding molecules
were enriched was further added with fresh sEH protein to
initiate another round of selection following the same protocol.
After four rounds of selection, the encoded oligonucleotides
from the last eluent were amplified using Platinum Taq DNA
Polymerase High Fidelity (Invitrogen) with denaturation at 95
°C, annealing at 58 °C, and extension at 72 °C using primers
that incorporate complementary sequences to the library
headpiece or tailpiece along with the Illumina READ 1 or
READ 2 sequences required for clustering and subsequent
sequencing on an Illumina HiSeq instrument.
Analysis of DEL Selection Data. Selection output was

processed using in-house data pipelines and code. Briefly, raw
DNA sequences from Illumina sequencing were processed by
parsing the read sequences according to the known library
encoding structure and querying for perfect matches of
encoding sequences. Decoded library members were then
aggregated and counted using a degenerate encoding region as
a unique molecular identifier and a graph-based counting

algorithm similar to that of Smith et al.31 (Supporting
Information section S3). Counts were aggregated across all
possible n-synthon types, and enrichment was evaluated for
every observed n-synthon in the library. For each enrichment
evaluation, expected populations were approximated with the
assumption of equal populations across n-synthons of the same
class (i.e., uniform synthetic yield).
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