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The rational search for allosteric modulators and the allosteric mechanisms of these modulators in the
presence of mutations is a relatively unexplored field. Here, we established novel in silico approaches
and applied them to SARS-CoV-2 main protease (Mpro) as a case study. First, we identified six potential
allosteric modulators. Then, we focused on understanding the allosteric effects of these modulators on
each of its protomers. We introduced a new combinatorial approach and dynamic residue network
(DRN) analysis algorithms to examine patterns of change and conservation of critical nodes, according
to five independent criteria of network centrality. We observed highly conserved network hubs for each
averaged DRN metric on the basis of their existence in both protomers in the absence and presence of all
ligands (persistent hubs). We also detected ligand specific signal changes. Using eigencentrality (EC) persis-
tent hubs and ligand introduced hubs we identified a residue communication path connecting the allos-
teric binding site to the catalytic site. Finally, we examined the effects of the mutations on the behavior of
the protein in the presence of selected potential allosteric modulators and investigated the ligand stabil-
ity. One crucial outcome was to show that EC centrality hubs form an allosteric communication path
between the allosteric ligand binding site to the active site going through the interface residues of
domains I and II; and this path was either weakened or lost in the presence of some of the mutations.
Overall, the results revealed crucial aspects that need to be considered in rational computational drug
discovery.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the advent of COVID-19, researchers, world-wide reacted
quickly to design multiple potential inhibitors to abrogate viral
protein activity using rational drug design approaches and wet
lab experiments. This concept primarily involves targeting critical
viral life-cycle proteins [1–4]. The SARS-CoV-2 main protease
(Mpro) protein plays a crucial role in the viral maturation cycle by
lysing itself (autocatalysis) and other viral polyproteins [5]. This
presents SARS-CoV-2 Mpro as a key drug target for designing
wide-spectrum [6–7] anti-COVID-19 inhibitors or allosteric modu-
lators that terminate the viral replication cycle [8]. Among the
multitude of studied COVID-19 related proteins, the active site of
SARS-CoV-2 Mpro has been extensively targeted by virtual screen-
ing of both natural and non-natural compounds [9–11]. In contrast,
the rational search for allosteric modulators of the protein is still
relatively unexplored [12–13]. Additionally, allosteric mechanisms
in the presence of mutations are rarely considered in drug screen-
ing. In our previous study, a potential dual allosteric pocket of
SARS-CoV-2 Mpro was identified through multiple in silico tools in
the presence of 50 early pandemic mutations [14]. These two pock-
ets are mirrored across the dimer interface and are individually
composed of residues from each protomer. Continuing our previ-
ous SARS-CoV-2 Mpro work [14], we now set up alternative innova-
tive therapeutic concepts to identify allosteric modulators in the
presence of early evolutionary mutations of the virus. These con-
cepts are explained under three subsequent sections:

PART I: Here, we identified potential allosteric modulators for
the dimeric SARS-CoV-2 Mpro protein, at a protonation state
corresponding to pH 7.0, by screening it against 625 South African
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natural compounds [15,16]. Parallel to this, we also docked the
natural compounds against the Mpro protein of one of the seven
human coronaviruses, HCoV-OC43. Previously, HCoV-OC43 was
suggested as a model to study SARS-HCoV without the need for
Biosafety Level 3 facilities [17]. This strain is, indeed, used as a lab-
oratory strain. Both strains are under the genus Betacoronavirus,
and HCoV-OC43 belongs to the subgenus Embecovirus, while
SARS-CoV-2 is Sarbecovirus [18]. Thus, using in silico techniques
we wanted to see if similar results would be obtained from the
Mpro protein in each strain. This analysis sheds light on potential
considerations to factor in when transferring findings of whole
virus particle experiments from HCoV-OC43 to SARS-CoV-2.

PART II: Next, our focus was to understand the allosteric effects
of the selected hit compounds (PART I) on each protomer of the ref-
erence Mpro protein (wild type, WT). In our previous study, we
encountered the problem of protein symmetry, where we observed
that protomer dynamics could be switched between identical
copies of a protomer in a homodimer. Symmetry correction had
been performed then by aligning single equilibrium conformations.
In this study, we investigated the phenomenon in greater detail
using a combinatorial approach to examine patterns of change
and conservation of critical nodes, according to five independent
criteria of network centrality (betweenness centrality (BC), closeness
centrality (CC), degree centrality (DC), eigencentrality (EC) and katz
centrality (KC)), with each being used as averages. While doing
so, we investigated the relationships and effectiveness of each met-
ric in characterizing allosteric behavior. We hypothesized that
allosteric change might be expressed through complex routes
involving intraprotomeric and interprotomeric combinations of
critical residues. By monitoring the centrality patterns of these
residues across the homodimer under the influence of intrinsic
(e.g. protein mutations and ligand binding) and extrinsic (simula-
tion parameters) factors during molecular dynamics (MD) simula-
tions, we aimed to extract further details from the homodimer
state of the protease. To our knowledge this phenomenon is not
commonly addressed in the case of homodimeric protein com-
plexes, even though some other examples of asymmetric behavior
of proteins have been reported, such as Hsp90 [19] and KatG [20].
While the same phenomenon exists at the homomultimeric level
[21], a less complex case involving allosterically bound dimeric
Mpro is investigated herein, with a combinatorial approach as indi-
cated in Table 1 which is only applicable to dimeric proteins.

Further, we, for the first time, introduced the concept of analyz-
ing globally central nodes (i.e. the 5% most central nodes measured
across all samples) for each of the five metrics of dynamic residue
networks (DRNs). The metrics comprised averaged versions of BC,
CC, DC, EC and KC. Even though some of these metrics were previ-
ously used for protein structure analysis [22–24], to our knowledge
this is the second study that gathers five metrics information
together in protein analysis and applies over molecular dynamics
(MD) simulations [25]. Additionally, the hub data was itself refor-
mulated as a set of network graphs, which were queried in order to
decipher the complex patterns of hub conservation and transition
(according to each DRN metric) from the apo state to one that is
allosterically occupied.

PART III: Here, we examined the effects of mutations on allos-
teric behavior of the protein in the presence of selected potential
allosteric modulators and investigated ligand stability. Structure-
based drug discovery approaches have been successfully used for
the design of many orthosteric drugs [26] (and to some extent
allosteric modulators [27]) for the treatment of communicable
and non-communicable diseases. A good example is that of HIV
protease inhibitors [28]. However, the impact of evolutionary
mutations of pathogens, including those linked to drug resistance,
is mostly undetermined in rational drug design. Depending on
their position and physicochemical properties, mutations can mod-
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ulate protein behavior by altering their stability and/or affinity to
other interacting biological molecules [29–32]. A more complex,
yet subtle phenomenon may be observed at the level of entropic
effects of mutations, whereby differences may be seen at the level
of the rate of visiting certain states, and not by the mere presence
or absence of a defined state (or set thereof) [33–35]. A classic case
is the distance effect of pathogenic mutations that maintain pro-
tein function while gaining resistance [30,36]; hence our purpose
is to understand the effect of evolutionary mutations in COVID-
19 rational drug design. We believe the information gleaned here
may help develop drugs that could potentially minimize the risks
of having premature drug inactivation; and may reduce potential
drug resistance effects to provide a longer-lasting treatment
option.

For that purpose, mutant protein-allosteric modulator com-
plexes were subjected to 20 ns all-atom MD simulations at a fixed
pH, and the results were then evaluated in the same manner as
introduced in the second part of the article. The potential effective-
ness of the allosteric modulators was identified in the presence of
some of the early pandemic mutations of the protein. Even though
no solid evidence of the effect of these mutations has been
reported, involving them in drug development might help further
our understanding of the enzyme’s mechanics and pre-empt the
most worrying feature of mutations: drug resistance.

Overall, the results of this study revealed crucial aspects that
need to be considered in structure-based drug discovery, such as
the way in which the allosteric modulators should be identified;
and how the stability of these modulators should be considered
in the presence of mutations. We further argue that the potential
consideration of asymmetric behavior in homodimeric proteins;
of novel DRN approaches and data analysis that are presented here
would be applicable and useful in any computational drug discov-
ery research.
2. Materials and methods

2.1. Preparation of the reference and mutant SARS-CoV-2 Mpro and
HCoV-OC43 Mpro structures

The three-dimensional (3D) structure of the SARS-CoV-2 Mpro

was retrieved from the Protein Data Bank (PDB) [37] (PDB ID:
5RFV [38]), and its dimeric unit was assembled as described in
our previous study [14]. In this study, we also utilized a set of 50
SARS-CoV-2 Mpro mutant proteins that were prepared in our previ-
ous study [14]. The list of mutations that were acquired from the
Global Initiative on Sharing All Influenza Data (GISAID) [39] as
described in our previous work is presented in Table S1 [53].

5RFV was further used as a template to model the 3D structure
of the human coronavirus strain (HCoV-OC43) Mpro via MODELLER,
using the automodel function parameterized with a slow refine-
ment and a deviation of 2.5 Å [40]. This protein is a homolog of
the SARS-CoV-2 Mpro, and the strain is generally used in inhibition
assays in the laboratory. Prior to homology modelling, the HcoV-
OC43 protein sequence was retrieved from the replicase polypro-
tein 1a record available from UniProt (Entry ID: P0C6U7; position
3247–3549), and was aligned against the sequence and structure
of 5RFV using PROMALS3D [41]. The model with the lowest z-
DOPE score was selected from a parallel run of 50 models. The
PROPKA tool under the PDB2PQR algorithm [42] was then utilized
to assign protonation states of all the proteins at a pH of 7. The cal-
culations were done with the AMBER force field [43].

Based on the assembled and protonated SARS-CoV-2 Mpro

dimeric structure, all 50 mutations were inserted using BIOVA Dis-
covery Studio Visualizer [44]. This approach was utilized to mini-
mize structural variations across the proteins. All mutated



Table 1
Hub combination possibilities for any given residue between two dimers. A tick symbol (U) denotes the presence of a hub from a given protomer, while a cross (x) denotes
absence of that same hub from a chain. Apo - A: Apo protein, protomer A; Apo - B: Apo protein, protomer B; Complex A: Protomer A of protein–ligand complex; Complex B:
Protomer B of protein–ligand complex.

Apo - A Apo - B Complex A Complex B Score Interpretation

1 U x x x 1 Potential ligand effect inferred by asymmetry
2 x U x x 1 Potential ligand effect inferred by asymmetry
3 x x U x 1 Potential ligand effect inferred by asymmetry
4 x x x U 1 Potential ligand effect inferred by asymmetry
5 U U x x 2 Complete hub loss: ligand effect
6 x U U x 2 Inconclusive effect
7 x x U U 2 Hub gain on ligand presence
8 U x U x 2 Inconclusive effect
9 U x x U 2 Inconclusive effect
10 x U x U 2 Inconclusive effect
11 U U U x 3 Potential ligand effect inferred by asymmetry
12 x U U U 3 Potential ligand effect inferred by asymmetry
13 U x U U 3 Potential ligand effect inferred by asymmetry
14 U U x U 3 Potential ligand effect inferred by asymmetry
15 U U U U 4 No ligand effect from symmetry
16 x x x x 0 Not applicable
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structures were subsequently protonated using the same proce-
dure as for the reference structure.

2.2. High-throughput virtual screening of SANCDB compounds against
Mpro proteins

A total of 623 compounds were first obtained from the South
African natural compound database (SANCDB) [15–16]. Partial
charges were assigned to compounds and the protonated proteins
using the Gasteiger-Hückel protocol in AutoDockTools (ADT) [45].
The AutoDock/Vina plugin from PyMOL was used to place the
docking grid around the dimeric SARS-CoV-2 Mpro reference pro-
tein. A docking box size of 65 � 71 � 80 Å with a grid spacing of
1 Å was centered at coordinates (0.00, 0.65 and 0.00). An exhaus-
tiveness of 1000 was used, and the maximum number of docking
poses was increased to 20. Blind docking (BD) simulations were
performed in parallel, with 12 cores per job at the Center for High
Performance Computing (CHPC) using the QuickVina-W program
[46]. After having docked the SANCDB compounds, the ligand
PDBQT files were split into their separate poses before being con-
verted to the PDB format. Preliminary filtering was then applied
using an in-house C++ script to every file to retain ligand poses that
had a centroid distance of less than 10 Å to any of the allosteric
pockets irrespective of binding energy. The pre-filtered poses were
then manually curated in PyMOL (version 2.4) [47] to remove
those that did not localize to the allosteric pocket. For each of
the filtered ligands, the number of poses was tallied and ranked
in ascending order of binding energy [48,49]. The top six com-
pounds from the SARS-CoV-2 Mpro were then short-listed based
on the residue interactions of their respective lowest energy poses.
HCoV-OC43 Mpro underwent the same steps, to be used as a
comparator.

2.3. Molecular dynamics simulations protocol of Mpro and mutant
systems

100 ns all-atom molecular dynamics (MD) simulations were
conducted using GROMACS (version 2019) [50] for the SARS-
CoV-2 Mpro reference protein and the HCoV-OC43 strain homolog
protein both in the absence and presence of six hit compounds
bound at the previously identified allosteric site. In order to inves-
tigate the effect of mutations on ligand stability, 50 ligand-bound
SARS-CoV-2 Mpro mutants were similarly taken into 20 ns MD runs
for each of the six compounds. GROMACS-compatible structure
and ligand topology input files were derived using the AMBER03
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force field [43] and the ACPYPE tool [51] respectively. A total of
314 systems [(reference protein � 6) + (homolog protein � 6) +
Apo-reference protein + Apo-homolog protein + (50 mutant � 6
compounds)] were solvated using the TIP3P water model [52] in
a cubic box, with a minimum distance of 1 nm between the box
edge and the protein. All systems were subsequently neutralized
with 0.15 M NaCl. Solvated systems were first minimized for
5000 steps using the steepest descent algorithm until the relaxed
systems converged to a maximum force of 1000 kJ/mol/nm. Fol-
lowing minimization, systems were equilibrated assuming a con-
stant number of particles, volume and temperature (NVT) (300 K)
using the modified Berendsen thermostat algorithm [53], followed
by an NPT (constant number of particles, pressure and tempera-
ture) equilibration step parametrised at 1 bar pressure using the
Parrinello–Rahman barostat algorithm [54]. An integration time
step of 2 fs was used in all cases. All bonds were constrained under
the LINCS holonomic constraints algorithm [55], whereas the
Particle-mesh Ewald (PME) algorithm [56] was set to include the
contribution of long-range electrostatic interactions. The overall
MD protocol was carried out on the Center for High Performance
Computing (CHPC), Cape Town, South Africa using 384 cores for
a total of � 2,921,472 CPU hours. Structure coordinates were writ-
ten after every 10 ps, and periodic boundary conditions (PBC) were
removed prior to analysis.
2.4. Calculation of dynamic residue network metrics

To study the effect of ligand binding on the active site, as well as
on inter-and intra-domain residue dynamics over the course of MD
simulations, dynamic residue network analysis (DRN) was done
using MDM-TASK-web scripts [57]. DRN [58] was applied on the
last 10 ns trajectories of the apo and ligand-bound Mpro systems,
after post-processing the MD trajectories to remove previously
introduced water molecules, and sodium chloride ions. Residue
network analysis uses graph theory concepts and represents resi-
dues in a protein structure as nodes (Cb and Gly Ca atoms), with
inter-connected residues (Cb - Cb, Gly Ca - Cb and Gly Ca- Gly Ca-
atoms) are depicted as edges based on a specified cut-off distance
(6.7 Å) [58]. DRNs were analysed based on five metrics: averaged
betweenness centrality (BC), averaged closeness centrality (CC), aver-
aged degree centrality (DC), averaged eigencentrality (EC) and aver-
aged katz centrality (KC) via the cal_network.py script incorporated
in the web server, MDM-TASK-web [57]. Each of the metrics is a
time-averaged summary of the network metrics obtained during
MD simulations.
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The averaged BC metric is defined as how often a residue is tra-
versed along the shortest paths connecting every other residue
pairs [59]. This metric was calculated based on the equation:

BC
�

vð Þ ¼ 1
m

Xm

i¼1

Xn�1

u¼1

d si; tijv ið Þ
d si; tið Þ ð1Þ

where d(s,t|v) symbolises the number of shortest paths bridged
between a residue v and other nodes s and t. d(s,t) denotes the aver-
aged shortest paths existing between residues s and t where s and t
are part of the set V, which comprises the set of all nodes, while m
indicates the overall number of frames. n denotes the total number
of residues.

Averaged closeness centrality (CC) of a residue is calculated as
the reciprocal of the average number of the shortest paths linking
a residue v and all other residues in the network.

CC
�

vð Þ ¼ n� 1
m

Xm

i¼1

Xn�1

u¼1
d v; uð Þ ð2Þ

where d (v, u) is the total distance between residue v and all other
residues u.

Additionally, metric degree centrality (DC) defines the number of
neighboring nodes (the local connectivity) around a given node. It
is normalized by both the number of nodes in the network and the
number of MD frames. The equation for computing the averaged
DC is as follows:

DC
�

kð Þ ¼ 1
m n� 1ð Þ

Xm

i¼1

Xn

j¼1;j–i
Aijk ð3Þ

where n indicates the number of residues, m denotes the number of
frames; Aijk indicates adjacency at time frame i, being 1 if residues
with indices j and k are adjacent and 0 otherwise.

Eigencentrality (EC) measures the high centrality given to high
degree residue, or to a residue that is connected to other high
degree residues. The procedure for calculating EC is summarized
here, and further details are in literature [60]. The formula to com-
pute EC for a single residue i for the kth frame is as follows:

ECik ¼ �k�1
Xn

t¼1
Aijk � ECjk ð4Þ

The weighted multiplication operation between the adjacency
matrix A is repeated against the vector EC until convergence. Aij

is an adjacency, k is a frame, ECik is the jth component of the EC vec-
tor for the kth frame, and n is the number of nodes. The averaged EC
for the ith node is then computed from the matrix of EC likewise
using MDM-TASK-web as follows:

EC
�

ið Þ ¼ 1
m

Xm

k¼1
ECik ð5Þ

Lastly, Katz centrality (KC) measures the relative degree of influ-
ence of a residue i within connected residues in a network. The
procedure for calculating KC is summarized here, and further
details are in literature [60]. The KC of node i is

KC ið Þ ¼ a
Xn

j¼1
AijKCj þ b ð6Þ
KC
�

ið Þ ¼ 1
m

Xm

k¼1
KCik ð7Þ

where A represents the adjacency matrix and KC is the eigenvector
computed by NetworkX in MDM-TASK-web. a and b denote the
attenuation factor and weight assigned to each node. The same
metric is computed for each frame before averaging the value across
frames for each residue.
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2.5. Identification of top 5% global high network centrality residues

DRN metrics were computed for the reference and the mutant
SARS-CoV-2 Mpro samples using MDM-TASK-web for both the
apo and the six ligand-bound complexes. In order to estimate resi-
due hubs, all related samples that were to be compared were com-
bined in order to have a common scale. Therefore, for each
individual DRN metric, the data points of samples (apo, mutant
and ligand-bound) belonging to that metric were concatenated
into a single vector, which was sorted in descending order to focus
on nodes of highest overall centrality. The top 5% of these values
were extracted [304 residues � 2 chains � (1 apo reference + 6
bound reference) systems � 0.05 = 212 elements]. The value at this
index was used as a threshold for the selection of entries from the
original data set. Then, each of the original matrices was searched
for any component greater than or equal to that minimum number.
To accomplish that, a binary matrix was built that contained the
number ‘‘one” for any cell that satisfied the condition, and from
which the row sums were then computed, in order to select any
row with a non-zero row sum. This generated a set of row indices
that were used to subset the original matrix of centrality values. In
this manner, the globally high network centrality values were
obtained in the presence of their counterpart values in other sam-
ples, thus showing how the hubs perform sample-wide. This
approach was performed separately for each of the 5 metrics.
2.6. Application of a binary logic to investigate protomer hub
combinations from DRN analysis

For each DRN metric, a global network was built using as nodes
the detected globally central hubs for all of the reference protein
states (ApoA/B, SANC00302A/B, SANC00303A/B, SANC00467A/B,
SANC00468A/B, SANC00469A/B), which have as labels the protein
state and the protomer to which each hub residue belongs. These
labels were inserted as nodes, and undirected edges were created
from them by linking their respective hub nodes to them. As this
global network was too dense to analyze, a sub-network was
extracted for each individual complex and was merged to the
apo protomers. In this way, one could identify whether a hub
was shared, gained or lost from the apo state upon ligand binding.
This representation was applied and analyzed in a systematic man-
ner (according to Table 1) to investigate whether ligand binding
had any effect, as we posited that the effects of a ligand’s presence
in the allosteric site may manifest itself not only in the bound pro-
tomer, but also in the unbound one. In this way it was possible to
track patterns of hub conservation and divergence.
3. Results and discussion

3.1. Revisiting the structure of Mpro and mutants

The SARS-CoV-2 Mpro protein comprises 306 residues [2] and is
active in its dimeric state at a pH of 7.0 [6,61]. The dimeric func-
tional state regulates catalytic turnover using the subunit flip-
flop mechanism where the two monomers are used alternately in
acylation and deacylation steps [62,63]. Each monomer (desig-
nated protomer A and B) harbors three distinct domains (I-III)
[2,10] and contains a His-Cys catalytic dyad signature (HIS41 and
CYS145) located within a well-defined hydrophobic substrate-
binding site formed between domains I and II (Fig. 1). The catalytic
dyad residues are key for hydrolysis in which HIS41 functions as a
general base [6,64]. SARS-CoV-2 Mpro domains I (residue 10–99)
and II (100–183) consist of an antiparallel b-barrel structure [2]
that form the catalytic domains of the protein as the active site is
located between domain I and II. Domain III (198–303) is predom-



Fig. 1. A structural representation of the homo-dimeric nature of SARS-CoV-2 Mpro. The structural domains (I-III) are shown in red, royal blue and orange cartoons,
respectively. The N-finger region (residue 1–9) and the long loop connecting domain II to III (linker) are colored cyan and green, respectively. The substrate-binding pocket
and allosteric pocket on a monomer are illustrated in grey and pink wireframe and dotted lines, respectively. The distribution of SARS-CoV-2 Mpro mutations identified from
the GISAID database [72] is labeled on the structure. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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inantly compsed of antiparallel a-helices [61,65] and is connected
to the catalytic domains by a long loop region (184–197). This
domain is involved in the regulation of enzymatic activity of the
virus [66]. The interaction interface, which is crucial for dimeriza-
tion and enzymatic activity, is formed between domain II of pro-
tomer A and the N-finger region (1–9) of protomer B and vice
versa [64,67]. These two N-finger signatures interact with Glu166
to maintain the correct orientation of the substrate-binding site.
The N-finger feature is similar to that of previously reported Mpro

from other coronaviruses [8,61,68,69]. Each protomer has subsites
(S1 – S5) located in the active site cavity, which comprises the fol-
lowing residues: THR25 [70], LEU27, HIS41 [2,6,71], CYS44 [70],
THR45, SER46 [70], MET49 [2,6,70,71], ILE54 [2,70], PHE140
[2,6,70], LEU141 [2,70], SER144 [6,71], CYS145 [2,6,71], HIS163
[2,6,70,71], HIS164 [2,70], MET165 [2,70,71], LEU166 [2,6,70,71],
LEU167 [2,70], PRO168 [2,6,70,71], HIS172 [2,70,71], ASP187
[2,70], ARG188 [70], GLN189 [2,6,70,71], THR190 [2,70], ALA191
[2,70], GLN192 [2,70].

In our previous study, we identified dual allosteric pockets
located at the interface of protomer A and B (Fig. 1), that concur
with key residues for functional dimerization and enzymatic activ-
ities [53]. The residues of this allosteric pocket of SARS-CoV-2 Mpro

are ALA116, TYR118, SER123, GLY124, SER139, and LEU141 on
protomer A and residues LYS5, MET6, ALA7, PHE8, THR111,
GLN127, PHE291, ASP295, ARG298, GLN299, GLY302, and VAL303
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on protomer B; or vice versa. We also demonstrated that there is
a correlation in compaction between the substrate binding site
and the predicted allosteric sites, and that this correlation varied
in the presence of some of the studied 50 mutations which
spanned several secondary structures in Mpro domains as well as
the N-finger and linker regions (Fig. 1).

Part I:

3.2. Identification of allosteric modulators against dimeric SARS-CoV-2
Mpro protein

From our calculations, SARS-CoV-2 and HCoV-OC43 Mpro share
a sequence identity of 48.5%, and two structures have an RMSD
value of 0.46 Å. We identified six compounds in SARS-CoV-2 and
15 compounds in HCoV-OC43 by blind docking and preliminary fil-
tering of the 625 SANCDB compounds against the dimeric Mpro

proteins (Fig. 2A). The high degree of search exhaustiveness
increased the likelihood of finding certain binding poses more than
once, despite having less favorable binding energy scores. This
approach draws from the idea of the use of pose clustering in Auto-
Dock [73], as we have noticed that non-equilibrium binding energy
scores tend to be affected by the length of the ligand. The poses
corresponding to either copy of the allosteric site were tallied for
each compound to be compared across all hit compounds in both
coronavirus strains. As seen in Fig. 2A, the lowest energy hits for



Fig. 2. Ligand binding and characteristics of the predicted Mpro allosteric site in SARS-CoV-2 and HCoV-OC43. (A) Scatter plot of selected allosteric site ligands and their
respective binding energies in SARS-CoV-2 (orange) and HCoV-OC43 (blue). (B) Kernel density plots of the ligand RMSD values for the last 10 ns of the 100 ns MD simulations.
(C) Protein-ligand interactions for the six compounds in SARS-CoV-2. Residue contributions from protomer A and B are labelled in black and red respectively. (D) Sequence
alignment of Mpro from the two strains, showing residue conservation (highlighted in light brown) with additional functional annotations. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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the mirrored allosteric site occur in HCoV-OC43 but are not the
most abundant hit compounds. Of notable interest are compounds
SANC00209, SANC00210 and SANC00211, which are halogenated
monoaromatic terpenoids produced from the marine alga Plo-
camium corallorhiza, with anti-proliferative properties. The four
most abundant hits for the SARS-CoV-2 allosteric site (SANC00467,
SANC00468, SANC00469 and SANC00630) occurred in both coron-
avirus strains, despite showing less favorable energy scores. While
SANC00467, SANC00468 and SANC00469 all come from Drimia
robusta [74,75], SANC00630 is from Senecio oxyodontus [76]. All
are monophenolic compounds. The binding of this allosteric site
by various small compounds agrees with our previous hypothesis
suggesting the pocket’s accessibility to such compounds [14]. Their
aromaticity does not necessarily designate the exclusiveness of the
pocket to such compounds, but is a result of the properties of the
screening library obtained from SANCDB. Nevertheless, this indi-
cates that the pocket is accessible to small aromatic moieties,
which may be evaluated as scaffolds for designing small molecules
targeting this site. Compounds SANC00302 and SANC00303 did not
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fare as well as the other compounds, both in terms of energy scor-
ing and in the number of poses in SARS-CoV-2 Mpro; however, we
carried them forward for MD analysis to cross-check their stability.
The latter two compounds are halogenated indoles from Distaplia
skoogi that have shown moderate cytotoxicity against cancerous
cells [77]. Interestingly, from the literature, El-Baba et al., [12] also
identified a compound (x1187), via mass spectroscopy based assay,
binding to this region, slowing the rate of substrate processing of
the enzyme. This compound has very low MSC Tanimoto similarity
scores to our SANCDB compounds; ranging from 0.12 to 0.25 [78].

Ligand RMSD graphs of the last 10 ns of the 100 ns MD simula-
tions (Fig. 2B) showed that these six compounds behaved slightly
differently in the Mpro protein of SARS-CoV-2 compared to that of
HCoV-OC43. Overall, the RMSD distributions spanned a range of
under 1 Å, with the exception of SANC00408 in HCoV-OC43, which
produced a significantly wider range. Unimodal distributions indi-
cated the presence of single dominant ligand conformations for
each of the compounds, with mode shifts possibly linked to minor
variations resulting frommutations and/or the part stochasticity of
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the in silico modeling algorithms. In HCoV-OC43, both SANC00468
and SANC00630 displayed multimodal distributions, suggesting
their reduced stability, being clear in the case of SANC00468. Con-
versely, compounds SANC00467, SANC00468 and SANC00469
demonstrated the most stable conformations in the SARS-CoV-2
protein. Ligand RMSDs of the 100 ns simulations are presented in
Fig. S1. The different behavior of the compounds can be attributed
to the compound-protein residue interaction differences obtained
from the docking stage (Fig. 2C, Table S2), as well as the residue
differences between the two homologous proteins at the allosteric
sites (Fig. 2D). Residues ALA7, PHE8, GLN127, PHE291 and ARG298
of SARS-CoV-2 Mpro are respectively replaced by VAL7, ASN8,
HIS127, LEU291 and GLN298 in the Mpro in the HCoV-OC43 lab
strain (Fig. 2D). In SARS-CoV-2, residues ALA7 and PHE8 form part
of the N-finger - a region crucial for dimer stabilization [79].
GLN127, PHE291 and ARG298 have also been reported to play
important roles in the dimerization and the enzymatic activity of
SARS-CoV Mpro [80].

In SARS-CoV-2 Mpro, several ligand interactions (such as hydro-
gen bonds, hydrophobic and pi interactions) with allosteric site
residues were observed (Table S2). Compounds SANC00467,
SANC00468, SANC00469 and SANC00630 formed at least two
hydrogen bonding interactions with some polar residue side chains
(MET6, SER123, GLN299 and VAL303) that may affect ligand stabi-
lization and retention within the pocket. The replacement of valine
by a longer side chain in isoleucine at position 303 in HCoV-OC43,
suggests that the site in HCoV-OC43 may not behave in the same
way as that of SARS-CoV-2. At least seven hydrophobic interactions
were observed across all modulators, indicating the enrichment of
hydrophobic interactions at allosteric sites. The substitution of the
non-polar PHE8 by the polar ASN8; the uncharged SER121 by the
positively charged LYS121; and of the polar SER301 by the non-
polar ALA301 in HCoV-OC43 may be responsible for the altered
pocket topology and charges that together result in different
ligand-binding patterns.

Our results indicate that the use of this strain for experimenta-
tion on allosteric modulation in SARS-CoV-2 Mpro may have some
limitations.

Part II:

3.3. Identification of hub residues while considering symmetry in
homodimers

Depending on the level of resolution desired for the analysis of
homodimers, comparing MD-simulated pairs of a homodimeric
protein can introduce conceptual challenges. For instance, one can-
not easily know with certainty whether protomer A (or sections
thereof) in one dimer behaves the same as its homologous position
in protomer A in the second dimer. While a simpler protomer
assignment approach based on permuted structural alignments
was used in our earlier work [14] for single conformations, our
attempt here investigates this issue in more depth, firstly by isolat-
ing potential hubs, and secondly by producing a representation of
all the possible hub node combinations (Table 1) in order to obtain
a scheme by which hub node importance can be assessed. While a
hub is generally accepted as a high connectivity (degree) node, it
has also been used to mean high BC [81], but can also be under-
stood as any node that may cause non-negligible topological alter-
ations to a network when removed [82]. In this analysis the term is
used in its more general sense to mean any node that forms part of
the set of highest centrality nodes, here arbitrarily specified as the
top 5% centrality nodes measured across all related samples, inde-
pendently measured for each of the averaged centrality metrics.
This procedure differs from the identification of 1 to 2 standard
deviations from the mean or top 5% residues in individual samples
that we generally used in our previous studies [83–85], in that it
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considers the strongest actors from each protein sample and shows
how other non-hub residues behave at homologous positions. We
assume that investigating hub transitions in this manner is more
likely to detect the most significant shifts in residue importance
when exposed to a particular environment. We also used this
approach to be able to handle the large amount of centrality data
present in the current analysis.

Fig. 3 shows the heat maps of the five DRN metrics for the ref-
erence protease in the absence and presence of ligand binding;
with the designated ligand-bound allosteric pocket of the dimer
always being referenced as protomer A. Specifically, the ligand
was assigned to protomer A based on its proximity to a terminal
alpha helix in the same chain. In the case of SANC00467, where
the allosteric compound had bound protomer B, the protomer label
was swapped.

Preliminary examination of Fig. 3 showed that there are some
residues that preserve their hub statuses. We, here, introduce the
following terms: (1) Constitutive hub: If a hub is present in both
protomers of the reference protein and remains as a hub irrespec-
tive of the apo or a ligand-bound state, it will be called a constitu-
tive hub (see Table 1; score 4); (2) Persistent hub: If a hub remains
across all systems compared, then the hub will be called persistent;
in Part II, across all systems would be apo protomers and all ligand-
bound dimers of reference protein, and in Part III it would be both
protomers of the reference and mutant proteins with a specific
ligand. (3) Super-persistent hub: In Part III, we will use the concept
of a ‘‘Super-persistent hub”, meaning that the hub is persistent
across all the ligands considered in both reference and mutant pro-
teins. Most of the constitutive and persistent hubs are metric-
specific giving a different perspective to the network. As the five
averaged centrality metrics refer to different measures of impor-
tance within a network, these terms will be used with respect to
a given centrality metric and will not be shared between them.

3.4. Metric based investigation of persistent hubs

3.4.1. Betweenness centrality
According to Fig. 3, MET17, THR111, PHE112 and CYS128 hub

residues were found to be unaltered from the reference protein
apo state, or upon any selected ligand binding irrespective of pro-
tomer for the averaged BC. At individual ligand level, each of these
hubs is constitutive and indicates that there is no ligand effect due
to preserved symmetry (Table 1, score 4).

For the entire system (apo + 6 ligand systems), these hubs are
persistent hubs indicating that the allosteric modulators did not
change the information path for these key residues; and any loss
to these hubs may disrupt the communication.

Residues MET17 and CYS128 had been previously picked up
from multiple simulations, but were not examined in depth in
our previous work involving several Mpro mutants in the apo state
[14]. The current analysis of the networks derived from the MD
simulations further showed that all conserved averaged BC hubs
occurred as intrachain or interchain hinges within the dimer
(Fig. 4A), both in the absence and presence of different allosteri-
cally bound compounds. As averaged BC quantifies the extent by
which a node positions itsef along the shortest communication
path across all other node pairs over time, and because its hubs
were enriched at different types of protein interface, such nodes
were designated as hinges. Residue MET17 establishes intrapro-
tomer contacts within the domain I/II interface by interacting with
several residues of the beta hairpin. More specifically, it forms alkyl
interactions with LEU115, PRO122 and CYS117. Of notable interest
is the alpha helix that supports the N-finger. Being also part of the
high BC hubs, it is possible that LEU115 and MET17 form an impor-
tant bridge that relays interdomain information, potentially influ-
encing N-finger stability, and by extension impacting the activity



Fig. 3. Heat maps for the potential hubs according to the global top 5% for each of the five DRN metrics, for the reference protein in the apo and the six allosterically bound
states. Detected hubs are annotated with their centrality values, while their homologous residues in alternate samples are not, but are only shown for the sake of comparison.
For each metric, low to high centrality values are colored white, through yellow, orange and red to black. Measurements for the ligand-bound protomer (chain A) have been
systematically presented on the left side, while those of the unbound protomer are on the right – this does not apply to the apo state. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Cartoon representation of SARS-CoV-2 Mpro dimeric structure with the distribution of the persistent hubs as per five metrics of DRNs. (A) Averaged BC, (B) Averaged CC,
(C) Averaged DC, (D) Averaged EC, (E) Averaged KC. Protomers A and B are shown as cartoon in teal and grey respectively. Protomer A persistent hubs are depicted in red
spheres and protomer B ones are in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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of the alternate protomer. THR111 (from domain II) also plays a
role in maintaining intraprotomeric interdomain stability by form-
ing periodic H-bonds with ASP295 (from domain III), and at the
same time mediating information flow. THR111 is also firmly
bound to the other hub residue CYS128 via multiple hydrogen
bonds and carbon H-bonding. CYS128 is firmly seated on a beta-
strand, forming non-bonded interactions with TYR126, VAL114
and PHE112.

3.4.2. Closeness centrality
CC is calculated as the inverse of the average of the shortest

path length from the node to every other node; hence identifies
the central nodes which are closer to most of the nodes. Previously
we showed that residues with low averaged shortest paths are cor-
related with the low mobility (increased rigidity) of the protein
[59]. Thus, high CC values are most likely to occur within the pro-
tein core. Previously, CCmetric calculations over single static struc-
tures were used to identify active site residues with the support of
other approaches, e.g. conservation, solvent accessibility [86,87] to
distinguish them from residues located in the core. Here, our per-
sistent averaged CC hubs are MET6, ALA7, SER113, VAL114,
LEU115, GLY124, VAL125, TYR126, GLN127 and CYS128 (Fig. 3).
Visual inspection of the residue mappings showed that they are
all located at the vicinity of the dimeric center of mass found
within the very stable domain II (Fig. 4B), as reported in our earlier
work [14]. In the same work, ALA7 (part of the N-finger) was
reported to be very rigid, and probably is the reason for the similar
behavior in its immediate neighbor residue 6 within the same
chain. SER113, VAL114, LEU115 and TYR126 are juxtaposed within
the same beta sheet, supported by networks of H-bonding interac-
tions, and are next to ALA7, which forms intraprotomeric alkyl
interactions with VAL125 and interprotomeric H-bonds with
VAL125 from the alternate protomer. More generally, these resi-
dues are mainly in direct contact with the center of the opposing
protomer, and the reason for their high averaged closeness may
be related to the way in which the protomers were reported to
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slide over each other, remaining at the same pivot point, centered
at domain II (with the N-finger ALA7 also sandwiched in-between).
Residue 7 appears crucial for maintaining the bulk of the averaged
CC hubs.

3.4.3. Degree centrality
DC defines the number of neighboring nodes around a given

node, hence provides information on the local connectivity, but
not on how central it is in the entire network. Persistent averaged
DC hubs in Mpro are comprised of residues VAL36, VAL91,
GLY146, PHE150 and ALA206 (Fig. 3). 3D visualization of this met-
ric showed that averaged DC tends to be concentrated at the con-
fluence of secondary structural elements, irrespective of inter- or
intraprotomeric locations (Fig. 4C). VAL36 occurs within a beta
sheet and establishes several types of non-bonded interactions
with multiple residues within domain I, namely LYS88, LEU89,
VAL68 and VAL18. Residue 91 occurs on another strand of the same
beta sheet, next to VAL36, and establishes several types of non-
bonded interactions with residues ASP34, LEU75, ARG76 and
VAL77. Residue GLY146 is another persistent DC hub of potential
significance, found next to the catalytic residue CYS145. It was
found that GLY146 established durable intraprotomeric contacts
with 10 residues, namely LEU27, ASN28, GLY29, CYS38, PRO39,
CYS145, SER147, VAL148, MET162 and HIS163. This involved both
intradomain (domain I) and interdomain interactions, and
occurred in each protomer and both in the presence and absence
of allosteric binding. The high averaged DC of GLY146 may be
related to the fact that this area has to be kept relatively stable
for the proper positioning of the catalytic residues CYS145 and
HIS41, from domains II and I respectively. Given the presence of
such a residue at the interface of domains I and II, this suggests
that it may have a high BC as well, which is generally observed
in both protomers A and B (Fig. 3). PHE150 similarly interacted
with several residues in each protomer across all samples, and
we observed high contact frequencies for 10 residues, namely
VAL13, PHE112, SER113, VAL148, GLY149, ASN151, VAL157,
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SER158, PHE159 and CYS160, once more involving residues from
domains I and II. ALA206 was similarly surrounded by 10 durable
intraprotomeric contacts within domain III, being composed of
residues VAL202, ASN203, LEU205, TRP207, TYR209, ALA210,
PHE291, THR292, PRO293 and VAL296, in all cases. More generally,
the shared high DC hubs seem to occur in each domain of the pro-
tein, probably due to their independent roles in maintaining the
organization and integrity of the individual domains.

3.4.4. Eigencentrality
EC measures both the number of connections of a given node

and its relevance in terms of information flow. It is based on a
recursive allocation of centrality on the basis of nodes that draw
importance from that of their successive connections, given that
initial centrality is based on DC. Based on this calculation, one
would expect high EC values to also have high DC values, or be in
spatial proximity to high connectivity residues. However, we found
that many of the high DC residues did not show up among the EC
hubs, suggesting that EC is mostly gained via proximities to high
DC residues, and do not necessarily have high connectivities
themselves.

Persistent hubs of averaged EC for the Mpro reference protein
comprised residues ALA7, LEU115 and VAL125 (Fig. 3). LEU115 is
the only residue that maintained its importance according to aver-
aged DC and EC measurements. Weighted residue contact analysis
of this residue showed that LEU115 maintained high contact fre-
quencies (>0.60) with residues CYS117, PRO122, VAL125 and
SER147, irrespective of ligand binding. SER10 and VAL13 also
showed high frequencies, except in the presence of SANC00302
where notable contact asymmetry was experienced; a similar pat-
tern was observed for residues VAL148 and GLY149 in the presence
of SANC00467. 3D visualization of the EC residues shows that it is
concentrated around the interface of protomers A and B (Fig. 4D).
The main message here is that high DC residues are sharing cen-
trality to their immediate neighbors, and that the vicinity of the
dimer interface seems to be the most residue-crowded area within
the dimer. One should also bear in mind that centrality may also be
coming from further degrees of separation. Other residues picked
up as hubs in DCmay be surrounded by fewer residues of high cen-
trality, thus giving them less importance.

3.4.5. Katz centrality
KC measures the relative degree of influence of a residue i

within connected residues in a network. Irrespective of chain and
ligand binding, nodes VAL36, VAL125 and GLY146 remained as
hub nodes according to the averaged KC metric (Fig. 3).

Visualization of the averaged KC metric (Fig. 4E) showed that it
is an intermediate between averaged EC and averaged DC, with the
former being more conservative than the latter when assigning rel-
ative node importance. Persistent averaged KC hub 125 was also
central according to averaged EC; and VAL36, GLY146 were also
persistent hubs according to averaged DC. The default attenuation
coefficient (alpha = 0.1) appears to minimize the effect of more dis-
tant nodes in the network, such that it assigns centrality patterns
intermediate to DC and EC.

In order to give an estimate of the hub similarities between
those of KC and those from DC and EC, the Jaccard similarity coef-
ficient (J) of hubs from protomer permutations was calculated,
using as a rough estimate from the union of hubs across all states
(ligand-bound and unbound) of the reference Mpro, for each of the
protomers. The similarities were evaluated likewise: [J(KCA, KC’A),
J(KCA, KC’B), J(KCB, KC’B) and J(KCB, KC’A)], where the subscript
denotes protomer label and KC’ denotes the complement of KC,
in this case DC or EC. The hub similarities J(KC, DC) had a range
of [0.375, 0.53] and those from J(KC, EC) had a range of [0.53,
0.76]. The observed ranges suggest that KC is more similar to EC
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than to DC. For comparison, J(KC, BC) and J(KC, CC) had ranges of
[0.2, 0.3] and [0.16, 0.23], respectively denoting they tended not
to share many hubs.

The reasons for the high centrality values for residues SER10,
LEU115 and VAL125 are as explained in averaged EC, with the main
difference being that the effect of distal nodes was reduced due to
the dampening coefficient. In this manner, averaged KC appears to
improve the resolving power of averaged EC.

Overall, the heat map representation of the identified hubs
according to the global top 5% for each of the five DRN metrics
(Fig. 3) allowed us to identify persistent hubs according to each of
the centrality measurements, suggesting that they are exposing
different key aspects of mechanical signal transduction within
the protease regardless of apo and allosteric ligand bound forms
of both monomers (Fig. 4A-E). Collectively, these persistent hubs
are spreading out from the allosteric site along the protein inter-
face as well as along the antiparallel beta strands (Fig. 5). Even
though previously it is not reported, we believe that the antiparal-
lel beta strands, and especially the first two nearest to the dimer
interface, are functionally highly important.

We also identified a number of changes to hub existence in the
presence of potential allosteric modulators and these changes were
investigated in the next section.

3.5. Establishing subnetworks for further investigation of hub changes
upon allosteric binding within the reference homodimer

We also observed another layer of information within the
homodimer, which exists due to the symmetry of the protomers,
despite the adjustment made to present the ligand-bound pro-
tomer as the one left-hand side (protomer A) in Fig. 3. We hypoth-
esize that it is possible for a homodimer to switch states, because
of their sequence identity. This is likely true for the apo state, but
may also apply to the asymmetrically occupied allosteric sites,
depending on how effective the allosteric pocket occupation is.
This approach may also reveal if allosteric activity is manifested
as a change of hub symmetry in the protein dynamics - for instance
one or more hubs consistently appearing in one or even both of the
protomers, when the allosteric site is occupied by a ligand. For this
reason, the same data set (Fig. 3) is further analyzed using another
concept that we demonstrate in this section.

For each allosterically bound ligand, a network was built using
the detected centrality hubs as nodes, and the chains to which they
belong. A subnetwork was then prepared by combining the edges
from the apo protomers A and B, and those from the ligand-
exposed dimer, while also tracking the protomer labels, given the
ligands had settled at one chain of the blindly docked dimer
(Figs. 6–10). As indicated before the ligand was assigned to pro-
tomer A. In the case of SANC00467 where the compound bound
to chain B, the chain label was swapped. The systematic hub repre-
sentation was done to further investigate whether ligand binding
had an effect, keeping a record of the chain labels, as we hypothe-
sized that a ligand’s presence in the allosteric site may manifest its
effects not only in the bound protomer, but also in the unbound
protomer, within the same dimer.

The hub data set was analyzed based on the logic described in
Table 1. To simplify the terminology used to describe the presence
of hubs within any combination of protomers, the term ‘‘score” is
used to specify the number of protomers where the hub is present.
In other words, if a hub is present in both protomers of the apo pro-
tein, the hub (irrespective of the DRN metric) will have a score of 2.
Similarly, if a hub is present in each protomer of the apo dimer, and
in each protomer of the ligand-bound dimer, this hub will have a
score of 4 (constitutive hub). Further, higher confidence was
assumed on the basis of complete loss or complete gain of any
hub in each constitutive protomer from either the apo protein or



Fig. 5. Cartoon representation of SARS-CoV-2 Mpro protomer A with the collective presentation of persistent hubs in spheres colored according to their domains. Catalytic
residues are HIS41 and CYS145 are also depicted as spheres.
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the ligand-exposed enzyme. Lower confidence was assumed when
a single hub was gained (i.e. score 0 to 1, or 1 to 2) or lost (i.e. score
1 to 0, or 2 to 1) within a single protomer, out of all four protomers
(i.e. the set of protomers: apo chains A/B and complex chains A/B),
to account for the part stochasticity of MD simulations. Higher con-
fidence was given to these weaker signals when they were con-
served across several ligand-bound states. Cases where
asymmetric hub distributions occurred (i.e. a hub was found in
only one protomer from each of the apo and the ligand-bound
dimers) were ambiguous, given the fact that the apo dimer already
expressed both hub states.

Here we will mainly focus on cases where we observed score of
2 and score of 1 gains or losses from each ligand-bound dimer with
respect to the apo protein, in order to extract high likelihood
ligand-induced changes.
3.5.1. Betweenness centrality
While PHE140 was a constitutive hub in the presence of

SANC00630, SANC00468 completely lost node 140 upon ligand
binding (score of 2 loss). SANC00630 gained hub 13 (score of 2 gain)
with respect to apo structure (Fig. 6). The loss of BC from this
‘‘chameleon” switch residue (PHE140) suggests contact loss in its
vicinity. VAL13, on the other hand, is found close to the N-finger
– in a region where we previously reported lengthening and short-
ening of the alpha helix and suggested its possible involvement in
dimer stability [14].

While there are many score 1 hub gains and losses with each
ligand-bound dimer (with respect to the dimeric apo protein), we
report the ones which have the highest conservation among all
these lower confidence cases, independent of the bound ligand.
Hub residue GLY11 systematically changed from a score of 0 in
the apo dimer to a score of 1 in the dimeric complexes, suggesting
an increased use or stabilization around this residue upon ligand
binding. Coincidentally, hub residue SER10 systematically tran-
sited from a score of 1 in the apo state to a score of 0 upon ligand
binding. The fact that these two residues are next to each other,
and in fact interact with their interprotomeric counterpart sug-
gests a possible rerouting of information flow in their vicinity upon
introduction of a ligand. Score 2 to 1 (i.e. from the apo to the ligand-
bound dimer) changes appeared not as consistent, but showed
some agreement on hub nodes being lost from one of the ‘‘chame-
leon switches” in subsite S1, similar to what was seen more
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strongly in the presence of SANC00468, where both nodes were
lost. This was observed for residues SER139 and/or PHE140 when
exposed to SANC00302, SANC00303, SANC00467 and SANC00469.
Score 1 to 0 changes were not observed when shifting the reference
protein from an apo to a ligand-bound state, for any of the central-
ity metrics.
3.5.2. Closeness centrality
SER10 was a constitutive hub to five ligand-bound states, except

SANC00302. Score 2 gains of high CC hubs were observed for resi-
due 4 and 5 in the presence of SANC00302, SANC00303 and
SANC00468 – residue 4 also experienced a score 1 gain in the pres-
ence of SANC00630, while residue 5 experienced a similar gain in
the presence of SANC00469 (Fig. 7). THR111 was also gained as a
score of 2 hub, only in the presence of SANC00468. GLY138, which
is part of the S1 subsite, manifested itself as a hub in only one
monomer of the apo protein, transitioning to a score of 0 upon
ligand binding in five out of the six bound states. Upon visual
inspection, we find that this residue is next to residue ARG4 on
the alternate protomer, even though they do not appear to interact
via non-bonded interactions. By measuring the change in their C-
alpha interprotomer distances [i.e. the distance between residue
pair (4A, 138B) minus that between residues (4B, 138A)] in each
of the apo and the ligand-bound Mpro showed us that one of the
residue pairs from the apo form had a visibly larger variance in
equilibrium distance compared to those all the ligand-bound pro-
teins, as it had an interprotomer distance interquartile range (IQR)
of 0.12 nm, compared to a maximum IQR of 0.07 nm across all six
the ligand-bound states. The maximum upper quartile additionally
informs us of the higher extent of dimeric asymmetry for the resi-
due pair for the apo protein (0.22 nm), compared to that observed
in the ligand-bound proteins, which displayed a maximum value of
0.13 nm overall. While counterintuitive, it would seem that asym-
metry favors a higher centrality at one of the GLY138-ARG4 (the N-
finger from one protomer and domain II from the other) interfaces
at the expense of the other in the apo state, while ligand occupa-
tion of only one of the detected allosteric sites, has a general stabi-
lizing effect, which dilutes the centrality more evenly.
3.5.3. Degree centrality
LEU115 was a constitutive hub to five ligand-bound states,

except for SANC00302 (Fig. 8). Scaffold-related conservation pat-



Fig. 6. Averaged betweenness centrality hubs represented as a networks for both the apo state and the six allosterically-bound complexes. Each of the sub-figures represents
the subnetwork obtained for each of the allosterically bound ligands, namely (A) SANC00302, (B) SANC00303, (C) SANC00467, (D) SANC00468, (E) SANC00469 and (F)
SANC00630, when merged with the apo protein, in each case. Red, orange, blue and green nodes (and edges) depict the protomers (apo chains A and B, and complex chains A
and B, respectively) to which a hub belongs. Each node is also scaled by its score – i.e. the number of edges it holds. Hubs that are present in all 4 protomers are in purple. Score
2 loss and gains from the reference are colored yellow and cyan, respectively. Score 1 losses and gains are colored brown. Inconclusive hubs are in grey. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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terns were not apparent using this metric, however some differ-
ences did occur. Residue LEU115, which occurs in proximity to
the persistent hub PHE150, was highly crowded and formed several
durable contacts with its neighbors, namely VAL114, ALA116,
CYS117, PRO122 and VAL125. LEU115 had a high frequency con-
tact with PRO9 in only one chain in the presence of SANC00469
and a low frequency contact with VAL13 in only one chain in the
presence of SANC00302.

A score 2 hub gain was experienced by VAL18 when exposed to
SANC00303, SANC00467, SANC00468, SANC00469 and
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SANC00630. The same residue incurred a score 1 gain in the pres-
ence of SANC00302. Upon contact visualization, we found the sys-
tematic significant increase in contact frequency between VAL18
and GLN69 in each protomer upon ligand binding. While their C-
alpha distances were relatively similar throughout the apo and
ligand-bound Mpro (averaging 0.59 nm), the C-beta distances were
significantly larger in the apo (average of 0.69 and 0.70 nm in the
apo protomers) compared to those of the ligand-bound states (av-
erages ranging from 0.63 to 0.65 nm), which suggests a rotational
decrease of the C-beta distance upon ligand binding. A score 2 gain



Fig. 7. Averaged closeness centrality hubs represented as a networks for both the apo state and the six allosterically-bound complexes for the reference dimer. Each of the sub-
figures represents the subnetwork obtained for each of the allosterically bound ligands, namely (A) SANC00302, (B) SANC00303, (C) SANC00467, (D) SANC00468, (E)
SANC00469 and (F) SANC00630, when merged with the apo protein, in each case. Red, orange, blue and green nodes (and edges) depict the protomers (apo chains A and B, and
complex chains A and B, respectively) to which a hub belongs. Each node is also sized by its score – i.e. the number of edges it holds. Hubs that are present in all 4 protomers
are in purple. Score 2 loss and gains from the reference are colored yellow and cyan, respectively. Score 1 losses and gains are colored brown. Inconclusive hubs are in grey.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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was also experienced by residue GLY29 when exposed to
SANC00468 and SANC00630. 3D visualization shows that GLY29
is H-bonded to VAL18, and together with GLN69 they form a geo-
desic path travelling directly across antiparallel beta strands. The
proximity and arrangement of these three residues may suggest
they may act in a concerted manner.

Score 2 losses were observed for VAL86 when exposed to
SANC00467 and SANC00468; and for residues LEU253 and
VAL296 in the presence of SANC00302, indicating that the connec-
tivity around these areas was reduced. Conserved score 1 to 0
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changes were observed for residue TYR126 in the presence of
ligand binding, suggesting a possible increase in local compaction
in that area in the presence of any of the ligands.

3.5.4. Eigencentrality
PRO9 and SER10 were constitutive hubs to five ligand-bound

states, except for SANC00302 (Fig. 9). GLY146 experienced a score
2 gain in the presence of SANC00302 and SANC00630. The same
was observed for CYS38 in the presence of SANC00302. While score
1 gains from 1 to 2 were not completely conserved, hub score



Fig. 8. Averaged degree centrality hubs represented as a networks for both the apo state and the six allosterically-bound complexes. Each of the sub-figures represents the
subnetwork obtained for each of the allosterically bound ligands, namely (A) SANC00302, (B) SANC00303, (C) SANC00467, (D) SANC00468, (E) SANC00469 and (F)
SANC00630, when merged with the apo protein, in each case. Red, orange, blue and green nodes (and edges) depict the protomers (apo chains A and B, and complex chains A
and B, respectively) to which a hub belongs. Each node is also sized by its score – i.e. the number of edges it holds. Hubs that are present in all 4 protomers are in purple. Score
2 loss and gains from the reference are colored yellow and cyan, respectively. Score 1 losses and gains are colored brown. Inconclusive hubs are in grey. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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changes from 0 to 1 were conserved, comprising residues MET17,
ASN28 and GLY29 in the presence of ligand binding, suggesting
an increase in centrality in the vicinity of these residues. Visual
inspection shows that MET17 is proximal to ASN28, which is next
to GLY29 on a beta strand. The high averaged EC for MET17 is likely
due to its high degree centrality combined to that of VAL18. It is
possible that ligand binding further stabilizes its residue neighbor-
hood, compared to the absence of occupation of the allosteric
pocket. Hub residues ASN28 and GLY29 appear to draw centrality
from the higher degree centrality residues VAL36 and VAL18.
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Together these domains I residues line the interface of domain II,
indicating a possible stabilization around this area in the presence
of an occupied allosteric pocket.

A very interesting communication path emerges when combin-
ing the persistent averaged EC hubs (ALA7, LEU115 and VAL125)
and ones collectively gained by ligand binding (MET17, ASN28
and GLY29) (Fig. 10). We thus describe the path MET7-VAL125-L
EU115-MET17-GLY29-ASN28-HIS145, which originates from the
N-finger to converge towards the catalytic HIS145, which is itself
proximal to second catalytic residue CYS41. From these observa-



Fig. 9. Averaged eigencentrality hubs represented as a networks for both the apo state and the six allosterically-bound complexes. Each of the sub-figures represents the
subnetwork obtained for each of the allosterically bound ligands, namely (A) SANC00302, (B) SANC00303, (C) SANC00467, (D) SANC00468, (E) SANC00469 and (F)
SANC00630, when merged with the apo protein, in each case. Red, orange, blue and green nodes (and edges) depict the protomers (apo chains A and B, and complex chains A
and B, respectively) to which a hub belongs. Each node is also sized by its score – i.e. the number of edges it holds. Hubs that are present in all 4 protomers are in purple. Score
2 loss and gains from the reference are colored yellow and cyan, respectively. Score 1 losses and gains are colored brown. Inconclusive hubs are in grey. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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tions, it is possible that the intradomain MET17-LEU115 contact
may be a crucial information path for the SARS-CoV-2 Mpro, as it
plays a pivotal role in relaying information from the allosteric
pocket. This complements our previous observation of the bridging
function of SER17 in the apo Mpro using averaged BC. Extending on
the finding of a common path shared by ligand binding, we also
describe an alternate path SER9-PRO10-LEU115-MET17-GLY29-A
SN28-HIS145 being specifically used in the apo state and the
ligand-bound states, with the exception of SANC00302. It is possi-
ble that this difference stems from the lack of stability of this com-
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pound in the pocket. The complete communication paths are
further analyzed in Part III.

A score 2 loss was observed by GLY149 in the presence of
SANC00630. The same residue experienced a score 2 to 1 change
in the presence of the other compounds. This residue is found at
the bifurcation of two beta hairpins that do not completely line
up all the way into a beta sheet, close to a main contributor of
degree centrality, residue LEU115. The generic decrease in aver-
aged EC in at least one protomer points to a possible loss of contact
in this hub’s vicinity that occurs upon ligand exposure. Residue 9



Fig. 10. The path traced by averaged EC hubs, starting from the allosteric ligand towards the catalytic residue. The protease is depicted by a cartoon representation onto
which the averaged EC hub residues are overlaid as sphere representations, together with the non-hub catalytic residues HIS41 and CYS145 (circled in orange). EC persistent
hub residues are circled in black; the alternate path is circled in blue; and the one triggered by the binding of all ligands is circled in green. One of the compounds is also shown
in stick figure representation, as an example. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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was also lost as a score 2 hub, only in the presence of SANC00302.
Score 1 to 0 changes were inconsistent.
3.5.5. Katz centrality
SER10 and LEU115 were constitutive hubs to five ligand-bound

states, except for SANC00302 (Fig. 11). SER10 was also a constitu-
tive hub and LEU115 was a persistent hub in EC. KC hubs residues
VAL36, GLY146 and LEU115 were also central according to aver-
aged DC.

Hub node 29 gained a score of 2 in the presence of SANC00302,
SANC00303, SANC00468 and SANC00630, with respect to the apo
protein, and the same residue incurred a score 0 to 1 gain in the
presence of SANC00467 and SANC00469, indicating that this resi-
due gains in KC in at least one protomer upon ligand exposure.
Score 2 gains are also observed for residues 28 (in the presence
of SANC00302 and SANC00468), 39 (in the presence of
SANC00467), 17 (in the presence of SANC00468) and 20 (in the
presence of SANC00630). Score 2 losses comprised residue 7 in
the presence of SANC00467 and SANC00468; and residue 10 in
the presence of SANC00302. The similarities in hub response pat-
terns in the presence of SANC00467 and SANC00468 may suggest
that these changes may be related to their common scaffold, or
to a similar conformational sampling.

Collectively, the analysis of hub transitions induced by allosteric
binding in the homodimer via subnetworks showed that the DRN
metrics shared similarities, but also emphasized their importance
in different ways. By focusing on sample-wide centrality at the
expense of protein-specific importance, and possibly narrowing
the information content, we extracted key features in the modula-
tion of the mirrored allosteric pocket of Mpro. Changes in averaged
BC hub patterns hinted at a possible rerouting of information flow
from residue 10 to 11, induced by ligand stabilization. CC hub tran-
sitions lead to the observation of a ligand-induced stabilization,
verified by the decreased interprotomer asymmetry of the dis-
tances between residues 4 and 138, compared to the apo protein.
DC hubs detected a consistent decrease in compaction around
TYR126, in the presence of any ligand; and further analysis showed
an associated intraprotomeric side-chain rotation involving resi-
dues VAL18 and GLN89, upon ligand binding. The aggregation of
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persistent and gained averaged EC hubs revealed a common path
connecting the allosteric occupation by ligands, to the active site,
involving the interaction between MET17 and LEU115 (Fig. 10). It
is possible that due to its proximity to one of the EC hubs
(VAL125) that TYR126 may have a role in the path traced via aver-
aged EC. Averaged KC mainly showed similarities with averaged EC
and DC.

PART III:
3.6. The stability of allosteric modulators in the presence of
evolutionary mutations

Coronaviruses, including SARS-COV-2, depend on RNA-
dependent RNA polymerase (RdRp) for RNA synthesis [8,88]. Due
to the error-prone nature of RdRp, they can accumulate high rates
of mutations, some of which may alter their virulence and anti-
genicity. As there is no FDA-approved drug for COVID-19 at the
time of writing, we do not know which of these mutations could
affect drug efficacy, or cause drug resistance. Hence it is important
to understand the potential effects of a range of mutations in hit
identification studies. To date, only a few studies have considered
the impact of SARS-COV-2 Mpro variations in apo protein [4,14,89].
However, to our knowledge, there is no systematic research incor-
porating hit identification with the analysis of structural and func-
tional effects of variations. Here, we further analyzed the behavior
of six potential allosteric modulators that we identified in the ref-
erence protein in the presence of early evolutionary mutations. In
order to quickly examine the stability of ligands in a total of 300
mutant systems (6 ligands � 50 mutant proteins), the ligand poses
via ligand RMSDs were calculated, from which ligand kernel plots
were produced from the last 10 ns of both 20 ns simulations of the
mutant-ligand complexes, and 100 ns MD simulations of reference
protein–ligand complexes (Fig. 12, Fig. S1). Overall, all ligands were
well anchored in the allosteric pocket of mutant proteins, as seen
from the ligand RMSD median values below 2.0 Å. Regarding the
variations in ligand motion, a more stable conformation (unimodal
distribution) was observed across compounds SANC00468,
SANC00467 and SANC00469 when bound to mutant proteins, fol-
lowed by SANC00630, as compared to the conformational stability



Fig. 11. Averaged Katz centrality hubs represented as a networks for both the apo state and the six allosterically-bound complexes. Each of the sub-figures represents the
subnetwork obtained for each of the allosterically bound ligands, namely (A) SANC00302, (B) SANC00303, (C) SANC00467, (D) SANC00468, (E) SANC00469 and (F)
SANC00630, when merged with the apo protein, in each case. Red, orange, blue and green nodes (and edges) depict the protomers (apo chains A and B, and complex chains A
and B, respectively) to which a hub belongs. Each node is also sized by its score – i.e. the number of edges it holds. Hubs that are present in all 4 protomers are in purple. Score
2 loss and gains from the reference are colored yellow and cyan, respectively. Score 1 losses and gains are colored brown. Inconclusive hubs are in grey. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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of SANC00302 and SANC00303 (Fig. 12). This observation was in
agreement with docking results where the first four compounds
exhibited high stability through various hydrogen bond interac-
tions with key allosteric site residues (Fig. 2C, Table S2). A closer
view of each ligand revealed the subtle movement of the bromide
group from SANC00302 and SANC00303, and the hydroxyl group of
SANC00630 in some mutant proteins as seen from the bimodal dis-
tributions (Fig. 12).

Fig. 12 was further evaluated to calculate a consensus score
across six ligands within each mutant system. For that, a table
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(Table S3) was prepared in which the y-axis contains individual
mutant proteins and the x-axis for the six ligands. For each ligand,
kernel plots were checked and the ligands with a unimodal distri-
bution in each mutant protein system received a tick (U) in the
table; the selected ones are also indicated in Fig. 12 with black oval
shape along the x-axis. Surprisingly, out of 50 mutant proteins,
only three of them (A173V, N274D and R279C) received a consen-
sus score of six (Table S3), meaning all ligands in these mutant pro-
teins stayed stable over the MD simulation. Over all the systems,
the best performing ligands were SANC00468 and SANC00469,



Fig. 12. Kernel density distribution plot of ligand RMSD values in ligand-bound wildtype (WT) and mutant systems extracted from the last 10 ns simulation. Each panel A to F
is for the ligand indicated in the figure legend.
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which gave highly stable motions for 43 and 41 mutant samples,
respectively (Table S3).

The concept of allosteric effects of mutations and their role in
the modulation of protein activity was previously discussed in lit-
erature [29,90]. Our results, here, demonstrated the importance of
incorporating mutation information in hit identification, as muta-
tions might have distal-allosteric effects (allosteric mutations) to
the ligand-binding site. As a next step, we further calculated the
five DRN metrics (BC, CC, DC, EC, KC) for these 50 mutant systems
complexed with each allosteric modulator and compared them to
the reference system, as detailed in the next section.
3.7. Persistent and super persistent hubs of the averaged DRN metrics
in the presence of mutations

In Part II, we identified the persistent hubs for each averaged
DRN metric on the basis of their existence in both protomers in
the absence and presence of all ligands. This gave us MET17,
THR111, PHE112 and CYS128 for averaged BC; MET6, ALA7,
SER113, VAL114, LEU115, GLY124, VAL125, TYR126, GLN127 and
CYS128 for averaged CC; VAL36, VAL91, GLY146, PHE150 and
ALA206 for averaged DC; ALA7, LEU115 and VAL125 for averaged
EC; and VAL36, VAL125 and GLY146 for averaged KC (Table 2; ref-
erence rows).

Here, to analyze the residue-residue communications, in the
presence of potential allosteric modulators in mutant protein sys-
tems, we calculated the global top 5% averaged BC, CC, DC, EC, KC
metrics for 51 protein systems (50 mutant protein systems and ref-
erence protein) (Figs. S2-S6); and extracted the persistent hubs on
the basis of their conservation in both reference protein and
mutants bound to a specific ligand (Table 2). If a persistent hub is
retained across all the ligand-bound systems (in both protomers),
then we called it a super-persistent hub.
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In the case of averaged BC (Table 2, Fig. S2), we did not observe
any super-persistent hub; however, MET17 was retained as the
main persistent hub in all protein–ligand systems except in the
presence of SANC00630 in which the protomer B of the mutant
M49I protein lost the hub node. Hub 111 was retained as persistent
hub in the presence of SANC00468, SANC00469 and SANC00630;
and hub CYS128 was persistent in the presence of SANC00302
and SANC00467. PHE112 remained as a persistent hub in all 51 pro-
tein systems complexed with SANC00630.

Super-persistent hubs of averaged CC for 51 protein systems of
all allosteric modulators were observed for residues MET6, ALA7,
SER113, LEU115, VAL125, TYR126 and GLN127 (Fig. S3). In the
presence of SANC00302, mutant protein A7V and in the presence
of SANC00468, the mutant protein G15S lost hub 124 in their pro-
tomer B; hence GLY124 stayed as a persistent hub in only
SANC00303, SANC00467, SANC00469 and SANC00630-bound sys-
tems. Additionally, hub 128 stayed persistent in all ligand systems
except for SANC00468 in which it was lost in protomer B of K61R,
A193V, I259T and N274D mutant protein systems in the presence
of SANC00468. We also observed a new persistent hub for residue
10 in the presence of SANC00303.

In the case of averaged DC (Table 2, Fig. S4), we did not observe
any super-persistent hub over all the ligand systems. The key persis-
tent averaged DC hubs in the presence of most allosteric ligands
were comprised of residues 150 and 206. PHE150 was a persistent
hub to all ligand-bound systems, but was missed as a hub in pro-
tomer B of P184L and A116V mutant proteins in the presence of
SANC00467. ALA206 was again a persistent hub to all ligand-
bound systems, except for SANC00468 in which the hub was miss-
ing in protomer A of the L220F mutant protein. Interestingly persis-
tent hub GLY146 was lost in the presence of all allosteric
modulators.

Again, we did not observe any super-persistent hub using the EC
metric either (Table 2, Fig. S5). But a new persistent hub (residue



Table 2
Persistent hubs (in grey) as observed in the reference protein (apo and all ligand-bound states) and their comparison to 51 protein systems
(reference protein + mutants) in the presence of each allosteric modulator. Super-persistent hubs are highlighted in orange. The hubs that
are lost across all ligand systems are in pale blue.
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10) in the presence of SANC00303 and SANC00469 was obtained.
LEU115 was retained as persistent hub in all ligand-bound systems,
except in the presence of SANC00468 (the hub node was lost in
protomer B of the double mutant protein (A191V, L220F)); and in
the presence of SANC00630 (the hub node was lost in protomer
B of two mutant proteins M49I and A193V). Interestingly, the per-
sistent hub, ALA7, was lost in the presence of all allosteric modula-
tors according to the averaged EC metric.

LEU115 was also the key persistent hub according to the KCmet-
ric, and it was only lost in the presence of SANC00302 due to
absence of the hub node in protomer B of the reference protein
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(Table 2, Fig. S6). Two new persistent hubs (residues 10 and 150)
were introduced in the presence of SANC00469. Interestingly, the
persistent hub VAL36 was lost across all allosteric modulators
according to the averaged KC metric.

In general, by tracking the conservation of the persistent hubs as
defined in PART II, we observed that the presence of the mutations
affected the highly conserved communication hubs. This was evi-
dent by some of them being completely absent, i.e. hub 146 (DC),
hub 7 (EC), hub 36 (KC). Some of the persistent hubs were lost in
the presence of some ligand-bound systems. We also observed
newly introduced persistent hubs in some of the metrics, i.e. hub
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10 (KC; SANC00499 and EC; SANC00303 and 469). The super-
persistent hubs were only observed from the CC metric and this is
probably because CC identifies short communication paths (the
central nodes which are closer to most of the nodes).

3.8. Mutation cold spots via analysis of five DRN metrics

There are only limited studies about identification of mutation
cold spots with varying definitions of what it means [70,91–93].
The techniques that have been used include in silico saturation
mutagenesis, meaning mutating every residue to all the other 19
residues and predicting the change in stability [91]; or simply iden-
tifying regions where the mutations have not yet occurred in an
organism [70]. Here we propose to use DRN metric analysis and
Fig. 13. Heat map for the potential hubs according to the global top 5% for the averaged
SANC00302 and SANC00468. Detected hubs are annotated with their centrality values, w
the sake of comparison. Low to high centrality values are colored white, through yellow
profiles are marked with red boxes. (For interpretation of the references to colour in th
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define the cold spots as the regions that are the least affected or
not affected at all, by mutations. In the previous sections, we intro-
duced persistent hubs and super-persistent hubs, and we will con-
sider the cold spots as being those hubs that are super-persistent,
or almost so. The super-persistent hubs of the CC metric are all
located mainly at the interface of the dimer as well as in the first
two antiparallel beta strands. We believe that these regions should
be strongly considered in structure based drug discovery.

3.9. Identification of ligand specific allosteric communication paths
and changes in the presence of mutations

In this section we zoomed into the global top 5% averaged
metric calculations for the reference and the 50 mutant protein
EC metric for the reference and 50 mutant proteins in allosterically bound state to
hile their homologous residues in alternate samples are not, but are only shown for
, orange and red to black. Mutants demonstrating highly different centrality hub

is figure legend, the reader is referred to the web version of this article.)



Fig. 14. Differentiation of the communication paths traced by the averaged EC hubs (labeled), starting from the allosteric ligand towards the catalytic residue. The protease is
represented as a cartoon, onto which the averaged EC hub residues are overlaid as sphere representations, together with the non-hub catalytic residues HIS41 and CYS145 (in
orange spheres). The top panels show the hubs obtained in (A) the SANC00302-bound reference Mpro, and (B) the SANC00302-bound G71S mutant. The bottom panels show
the hubs obtained in (C) the SANC00468-bound reference Mpro, and (D) the SANC00468-bound A173V mutant. Compounds SANC00302 and SANC00468, the positions of
which are as observed after MD simulation, are depicted as green and purple stick figure representations respectively. The mutation loci are represented as purple spheres
and are each indicated by an arrow. Additional hubs in the two ligand-bound reference proteins include residues LEU115, ALA116 and CYS117 in the case of panel (A), and
residues LEU115, ALA116, CYS117, PRO122, GLY124 and VAL125 in panel (C), but are not shown as labels, for improved visibility. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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systems in the presence of allosteric modulators (Figs. S2-S6). We
picked up two ligands as specific examples: SANC00302 being the
least stable compound and SANC00468 being the most stable
within all mutant systems. We specifically focused on the pro-
tomer A EC results (Fig. 13) as a follow up on the allosteric commu-
nication path defined in Section 3.5.4, in which the path from
allosteric site to the active site was defined via averaged EC persis-
tent hubs (ALA7, LEU115 and VAL125) and hub score changes from
0 to 1 (MET17, ASN28 and GLY29) in the presence of ligand
binding.

Protomer A of the Mpro-SANC00302 reference protein – ligand
complex has 18 centrality hubs for EC (residues 7, 10, 17, 28, 29,
38, 113, 115, 116, 117, 122, 124, 125, 146, 147, 148, 149, 150),
including the residue path identified in Section 3.5.4 (Fig. 13).
When we collectively mapped these centrality hubs to the pro-
tein–ligand system, we had another very interesting observation:
These centrality hubs form a communication path between the
allosteric ligand binding site to the active site going through the
interface residues of Domain I and II (Fig. 14A). In the case of Pro-
tomer A of Mpro- SANC00468 reference protein – ligand complex,
some new centrality hubs are gained (9, 11, 13, 14), and some lost
(38, 149) compared to that of Mpro-SANC00302 system; totaling to
20 EC hub residues (7, 9, 10, 11, 13, 14, 17, 28, 29, 113, 115, 116,
117, 122, 124, 125, 146, 147, 148, 150) (Fig. 13).

Next, we looked at how these averaged EC hubs of protomer A
change in the presence of mutations. In general, we observed that,
there are more mutant cases where a large number of the central-
ity hubs is lost in the presence of SANC00302 compared to
SANC00468. Some examples of these cases from SANC00302 are
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the V20L, G71S, I136V, C160S and V261A mutant proteins. We fur-
ther observed that the decreased number of EC hubs leads to
diminished communication paths that are either weakened or
totally lost. The G71S-SANC00302 mutant system for instance,
could only maintain 7 EC hubs out of 18 (residues 9, 10, 11, 14,
115, 122, 125) (Fig. 14B). Extreme examples showing the loss of
the communication path in the presence of SANC00468 include
G15S, G71S and A173V mutants. The A173V-SANC00468 complex
with 8 EC hubs (7, 9, 10, 11, 113, 115, 124, 125) is presented in
Fig. 14D.
4. Conclusion

In this study we have provided important new insights towards
computational drug discovery, and applied them to the SARS-CoV-
2 Mpro protein. Here, we will list the novel aspects and link them to
our findings for Mpro protein.

We previously proposed a post-hoc analysis approach of MD
simulations using DRN analysis to consider the dynamic nature
of functional proteins and protein-drug complexes and to probe
the impact of mutations and their allosteric effects. We also estab-
lished a tool for DRN [57]. We and others, in a number of publica-
tions, showed the effectiveness of our DRN approach
[14,19,32,59,85,94–102]. In this study, for the first time, we inves-
tigated the relationships and effectiveness of five DRN metrics (BC,
CC, DC, EC and KC) in characterizing key communication residues of
the reference Mpro protein and in its allosteric behavior in the pres-
ence of potential allosteric modulators and evolutionary muta-
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tions. Further, we introduced the concept of analyzing globally
central nodes (i.e. the 5% most central nodes measured across all
samples) and developed an algorithm to pinpoint key hub residues,
meaning any node that forms part of the set of highest centrality
nodes for any given averaged centrality metric.

We investigated hub transition when exposed to a particular
environment (i.e. ligand binding) by considering these strongest
actors (hubs) across samples and showed how other non-hub resi-
dues behave at homologous positions. The key reason for using
DRN analysis in Mpro protein was to tackle the problem of protein
symmetry that we identified in our previous study [14], where we
observed that protomer dynamics could be switched between
identical copies of a protomer in a homodimer. In this study, we
investigated the phenomenon in greater detail using a combinato-
rial approach to examine patterns of change and conservation of
critical nodes, according to five independent criteria of network
centrality. Asymmetric behavior of multimeric proteins, in general,
is not considered in computational analysis. To our knowledge, this
is the first study of this problem using five DRN metrics, and
emphasizing the importance of this aspect while analyzing a pro-
tein’s allosteric behavior in the presence of ligands and mutations.

Applications of our approaches pinpointed a number of impor-
tant aspects in SARS-CoV-2 Mpro protein: (1) we identified hubs
that stayed the same in the apo state and upon a ligand binding
(constitutive hubs), indicating that there is no ligand effect from
symmetry; (2) we captured different persistent hubs from each
metric, and collectively they gave us highly crucial functional resi-
dues which were spreading out from the allosteric site to the inter-
face and antiparallel beta strands. We believe that the antiparallel
beta strands, especially the first two near to the dimer interface,
are crucial in the mechanical signal transduction; (3) we also
looked at the symmetry problem and analyzed hub losses and
gains in the presence of allosteric modulators. The identified resi-
dues that informed us about communication changes due to the
presence of ligands and mutations. A few examples of hub gains
and losses that we observed in functional residues are VAL13 (next
to the N-finger), GLY 138 (part of S1 subsite) and PHE140 (chame-
leon switch). We also observed a number of hub transitions in
antiparallel beta strands; (4) very interestingly, we showed that
EC centrality hubs form ligand specific communication paths
between the allosteric ligand binding site to the active site going
through the interface residues of domains I and II.

In general, structure based drug discovery approaches have
been used successfully for the design of many orthosteric drugs
and to some extent of allosteric modulators. However, the impact
of evolutionary mutations of pathogens is mostly undetermined
in rational drug design; even though the information obtained
may help to develop drugs that could circumvent or reduce poten-
tial drug resistance issues. Here, we applied this concept to identify
potential allosteric modulators in the presence of 50 early evolu-
tionary mutations of the SARS-CoV-2. We made several observa-
tions: (1) stability of the ligands drastically changed in the
presence of some of the mutations. The R60C, N151D, V157I,
C160S and A255Vmutant proteins could only hold two compounds
out of six stably. SANC00302 was the least stable compound (in 20
mutant systems) and SANC00468 was the most stable (in 43
mutant systems); (2) the persistent hubs, residues 7 (EC), 36 (KC)
and 146 (DC), lost their importance in network communication
in the presence of mutations; (3) in the presence of mutants some
new persistent hubs (residues 10 (EC), 115 (DC and KC) and 150
(KC)) were gained; (4) Further, we defined super-persistent hubs,
and we considered cold spots as being those hubs that are super-
persistent, or almost so. These regions could be considered in
structure-based drug discovery; (5) in the presence of some of
the mutations, the network communication within each protomer
drastically differed from each other, emphasizing the asymmetric
6452
behavior of the dimer protein; (6) most importantly, the allosteric
communication path, that was identified via EC hubs, between the
allosteric ligand binding site and the active site was lost in some of
the mutant protein-ligand systems.

Collectively, our approaches offer routes for novel rational drug
discovery methods and provide computationally feasible platforms
(1) to determine globally central nodes that form part of the set of
highest centrality nodes (hubs) for any given averaged centrality
metric; (2) to identify key functional residues implicated in allos-
teric signaling in the presence of allosteric modulators; (3) to
understand the potential asymmetric behavior of dimeric proteins
under internal and external forces and to distinguish those intro-
duced by ligand binding or by evolutionary mutations; (4) to uti-
lize five DRN metrics to pinpoint cold spot residues that can
potentially be chosen for structure guided drug discovery.

Finally, experimental verification of the predicted Mpro inhibi-
tors, and thus of the algorithms presented here, is highly desirable;
and we hope that this study will inspire wet-lab investigation.
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[81] Krukow P, Jonak K, Karpiński R, Karakuła-Juchnowicz H. Abnormalities in
hubs location and nodes centrality predict cognitive slowing and increased
performance variability in first-episode schizophrenia patients. Sci. Rep.
2019;9:9594. https://doi.org/10.1038/s41598-019-46111-0.

[82] Fornito, A., Zalesky, A., Bullmore, E. T. B. T.-F. of B. N. A. Chapter 5 - Centrality
and Hubs, Academic Press: San Diego, 2016; pp 137–161, 10.1016/B978-0-
12-407908-3.00005-4.

[83] Manyumwa, C. V.; Bishop, Ö. T. In Silico Investigation of Potential
Applications of Gamma Carbonic Anhydrases as Catalysts of Co2
Biomineralization Processes: A Visit to the Thermophilic Bacteria
Persephonella Hydrogeniphila, Persephonella Marina, Thermosulfidibacter
Takaii, and Thermus Thermophilus. Int. J. Mol. Sci. 2021, 22, 10.3390/
ijms22062861.

[84] Amusengeri, A.; Tastan Bishop, Ö. Discorhabdin N, a South African natural
compound, for Hsp72 and Hsc70 allosteric modulation: combined study of
molecular modeling and dynamic residue network analysis. Molecules 2019,
24, 188, 10.3390/molecules24010188.

[85] Allan Sanyanga T, Nizami B, Bishop ÖT. Mechanism of action of non-
synonymous single nucleotide variations associated with a-carbonic
anhydrase II deficiency. Molecules 2019;24:3987. https://doi.org/
10.3390/molecules24213987.

[86] Amitai G, Shemesh A, Sitbon E, Shklar M, Netanely D, Venger I, et al. Network
analysis of protein structures identifies functional residues. J. Mol. Biol.
2004;344:1135–46. https://doi.org/10.1016/j.jmb.2004.10.055.

[87] Thibert B, Bredesen DE, del Rio G. Improved prediction of critical residues for
protein function based on network and phylogenetic analyses. BMC
Bioinform. 2005;6:213. https://doi.org/10.1186/1471-2105-6-213.

[88] Snijder EJ, Decroly E, Ziebuhr J. The nonstructural proteins directing
coronavirus RNA synthesis and processing. Adv. Virus Res. 2016;96:59–126.
https://doi.org/10.1016/bs.aivir.2016.08.008.

[89] Cross TJ, Takahashi GR, Diessner EM, Crosby MG, Farahmand V, Zhuang S,
et al. Sequence characterization and molecular modeling of clinically relevant
variants of the SARS-CoV-2 main protease. Biochemistry 2020;59:3741–56.
https://doi.org/10.1021/acs.biochem.0c00462.

[90] Tee W-V, Guarnera E, Berezovsky IN. On the allosteric effect of NsSNPs and
the emerging importance of allosteric polymorphism. J. Mol. Biol.
2019;431:3933–42. https://doi.org/10.1016/j.jmb.2019.07.012.

[91] Vedithi SC, Rodrigues CHM, Portelli S, Skwark MJ, Das M, Ascher DB, et al.
Computational saturation mutagenesis to predict structural consequences of
systematic mutations in the beta subunit of RNA polymerase in
Mycobacterium leprae. Comput. Struct. Biotechnol. J. 2020;18:271–86.
https://doi.org/10.1016/j.csbj.2020.01.002.

[92] Shirian J, Sharabi O, Shifman JM. Cold spots in protein binding. Trends
Biochem. Sci. 2016;41:739–45. https://doi.org/10.1016/j.tibs.2016.07.002.

[93] Naftaly S, Cohen I, Shahar A, Hockla A, Radisky ES, Papo N. Mapping protein
selectivity landscapes using multi-target selective screening and next-
generation sequencing of combinatorial libraries. Nat. Commun.
2018;9:3935. https://doi.org/10.1038/s41467-018-06403-x.

https://doi.org/10.1016/0040-4020(80)80168-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1186/1756-0500-5-367
https://doi.org/10.1186/1756-0500-5-367
https://doi.org/10.1021/jp003020w
https://doi.org/10.1021/jp003020w
https://doi.org/10.1080/08927029408021981
https://doi.org/10.1063/1.328693
https://doi.org/10.1063/1.328693
https://doi.org/10.1002/(SICI)1096-987X(199709)18:12&lt;1463::AID-JCC4&gt;3.0.CO;2-H
https://doi.org/10.1002/(SICI)1096-987X(199709)18:12&lt;1463::AID-JCC4&gt;3.0.CO;2-H
https://doi.org/10.1063/1.470043
https://doi.org/10.1016/j.csbj.2021.08.043
https://doi.org/10.1038/s41598-018-35835-0
https://doi.org/10.1093/emboj/cdf327
https://doi.org/10.1093/emboj/cdf327
https://doi.org/10.1021/acscatal.0c03420
https://doi.org/10.1074/jbc.M705240200
https://doi.org/10.1074/jbc.M311744200
https://doi.org/10.1074/jbc.M311744200
https://doi.org/10.1111/j.1742-4658.2006.05130.x
https://doi.org/10.1111/j.1742-4658.2006.05130.x
https://doi.org/10.1128/JVI.02612-07
https://doi.org/10.1073/pnas.1835675100
https://doi.org/10.1073/pnas.1835675100
https://doi.org/10.1371/journal.pbio.0030324
https://doi.org/10.1371/journal.pbio.0030324
https://doi.org/10.1002/iub.2465
https://doi.org/10.1038/s41467-020-18709-w
https://doi.org/10.1038/s41467-020-18709-w
https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494
https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494
http://refhub.elsevier.com/S2001-0370(21)00481-5/h0365
http://refhub.elsevier.com/S2001-0370(21)00481-5/h0365
https://doi.org/10.1002/chin.200516167
https://doi.org/10.1016/j.bse.2004.11.009
https://doi.org/10.1016/S0031-9422(00)94649-1
https://doi.org/10.1016/S0031-9422(00)94649-1
http://www.scielo.org.za/pdf/sajc/v66/15.pdf
https://doi.org/10.1093/nar/gkr320
https://doi.org/10.1074/jbc.AC120.016154
https://doi.org/10.1074/jbc.AC120.016154
https://doi.org/10.1128/jvi.02680-07
https://doi.org/10.1128/jvi.02680-07
https://doi.org/10.1038/s41598-019-46111-0
https://doi.org/10.3390/molecules24213987
https://doi.org/10.3390/molecules24213987
https://doi.org/10.1016/j.jmb.2004.10.055
https://doi.org/10.1186/1471-2105-6-213
https://doi.org/10.1016/bs.aivir.2016.08.008
https://doi.org/10.1021/acs.biochem.0c00462
https://doi.org/10.1016/j.jmb.2019.07.012
https://doi.org/10.1016/j.csbj.2020.01.002
https://doi.org/10.1016/j.tibs.2016.07.002
https://doi.org/10.1038/s41467-018-06403-x


O. Sheik Amamuddy, R. Afriyie Boateng, V. Barozi et al. Computational and Structural Biotechnology Journal 19 (2021) 6431–6455
[94] Fischer A, Häuptli F, Lill MA, Smieško M. Computational assessment of
combination therapy of androgen receptor-targeting compounds. J. Chem. Inf.
Model. 2021;61:1001–9. https://doi.org/10.1021/acs.jcim.0c01194.

[95] Wang S, Xu Y, Yu XW. A Phenylalanine dynamic switch controls the
interfacial activation of rhizopus Chinensis lipase. Int. J. Biol. Macromol.
2021;173:1–12. https://doi.org/10.1016/j.ijbiomac.2021.01.086.

[96] Ma S, Li H, Yang J, Yu K. Molecular simulation studies of the interactions
between the Human/Pangolin/Cat/Bat ACE2 and the receptor binding domain
of the SARS-CoV-2 spike protein. Biochimie 2021;187:1–13. https://doi.org/
10.1016/j.biochi.2021.05.001.

[97] Chebon-Bore L, Sanyanga TA, Manyumwa CV, Khairallah A, Bishop ÖT.
Decoding the molecular effects of atovaquone linked resistant mutations on
Plasmodium falciparum Cytb-Isp complex in the phospholipid bilayer
membrane. Int. J. Mol. Sci. 2021;22:2138. https://doi.org/10.3390/
ijms22042138.

[98] Amusengeri A, Tata RB, Tastan Bishop Ö. Understanding the pyrimethamine
drug resistance mechanism via combined molecular dynamics and dynamic
6455
residue network analysis. Molecules 2020;25:904. https://doi.org/
10.3390/molecules25040904.

[99] Arifuzzaman M, Mitra S, Das R, Hamza A, Absar N, Dash R. In Silico analysis of
nonsynonymous single-nucleotide polymorphisms (NsSNPs) of the SMPX
gene. Ann. Hum. Genet. 2020;84:54–71. https://doi.org/10.1111/ahg.12350.

[100] Xiao F, Song X, Tian P, Gan M, Verkhivker GM, Hu G. Comparative dynamics
and functional mechanisms of the CYP17A1 tunnels regulated by ligand
binding. J. Chem. Inf. Model. 2020;60:3632–47. https://doi.org/10.1021/acs.
jcim.0c00447.

[101] Dehury B, Tang N, Mehra R, Blundell TL, Kepp KP. Side-by-side comparison of
notch- And C83 binding to c-secretase in a complete membrane model at
physiological temperature. RSC Adv. 2020;10:31215–32. https://doi.org/
10.1039/d0ra04683c.

[102] Keretsu S, Ghosh S, Cho SJ. Molecular modeling study of C-Kit/Pdgfra dual
inhibitors for the treatment of gastrointestinal stromal tumors. Int. J. Mol. Sci.
2020;21:8232. https://doi.org/10.3390/ijms21218232.

https://doi.org/10.1021/acs.jcim.0c01194
https://doi.org/10.1016/j.ijbiomac.2021.01.086
https://doi.org/10.1016/j.biochi.2021.05.001
https://doi.org/10.1016/j.biochi.2021.05.001
https://doi.org/10.3390/ijms22042138
https://doi.org/10.3390/ijms22042138
https://doi.org/10.3390/molecules25040904
https://doi.org/10.3390/molecules25040904
https://doi.org/10.1111/ahg.12350
https://doi.org/10.1021/acs.jcim.0c00447
https://doi.org/10.1021/acs.jcim.0c00447
https://doi.org/10.1039/d0ra04683c
https://doi.org/10.1039/d0ra04683c
https://doi.org/10.3390/ijms21218232

	Novel dynamic residue network analysis approaches to study allosteric modulation: SARS-CoV-2 Mpro and its evolutionary mutations as a case study
	1 Introduction
	2 Materials and methods
	2.1 Preparation of the reference and mutant SARS-CoV-2 Mpro and HCoV-OC43 Mpro structures
	2.2 High-throughput virtual screening of SANCDB compounds against Mpro proteins
	2.3 Molecular dynamics simulations protocol of Mpro and mutant systems
	2.4 Calculation of dynamic residue network metrics
	2.5 Identification of top 5% global high network centrality residues
	2.6 Application of a binary logic to investigate protomer hub combinations from DRN analysis

	3 Results and discussion
	3.1 Revisiting the structure of Mpro and mutants
	3.2 Identification of allosteric modulators against dimeric SARS-CoV-2 Mpro protein
	3.3 Identification of hub residues while considering symmetry in homodimers
	3.4 Metric based investigation of persistent hubs
	3.4.1 Betweenness centrality
	3.4.2 Closeness centrality
	3.4.3 Degree centrality
	3.4.4 Eigencentrality
	3.4.5 Katz centrality

	3.5 Establishing subnetworks for further investigation of hub changes upon allosteric binding within the reference homodimer
	3.5.1 Betweenness centrality
	3.5.2 Closeness centrality
	3.5.3 Degree centrality
	3.5.4 Eigencentrality
	3.5.5 Katz centrality

	3.6 The stability of allosteric modulators in the presence of evolutionary mutations
	3.7 Persistent and super persistent hubs of the averaged DRN metrics in the presence of mutations
	3.8 Mutation cold spots via analysis of five DRN metrics
	3.9 Identification of ligand specific allosteric communication paths and changes in the presence of mutations

	4 Conclusion
	Funding
	Notes
	Data and software availability
	CRediT authorship contribution statement
	Acknowledgment
	Appendix A Supplementary data
	References


