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Abstract

Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the
functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological
organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs) and 15 age-, gender-
matched normal controls (NCs) were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI) were
acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-
group differences in network topological properties using graph theory method. We found that the HDIs showed decreases
in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited
significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle
cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the
left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons
suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus
were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the
whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms
underlying heroin addiction.

Citation: Jiang G, Wen X, Qiu Y, Zhang R, Wang J, et al. (2013) Disrupted Topological Organization in Whole-Brain Functional Networks of Heroin-Dependent
Individuals: A Resting-State fMRI Study. PLoS ONE 8(12): e82715. doi:10.1371/journal.pone.0082715

Editor: Giuseppe Biagini, University of Modena and Reggio Emilia, Italy

Received June 15, 2013; Accepted October 27, 2013; Published December 17, 2013

Copyright: � 2013 Jiang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was partially supported by the Guangdong No. 2 Provincial People’s Hospital, the funding of National Natural Science Foundation of China
(Grant numbers: 81071149, 81271548, and 81371535), the Science and Technology Planning Project of Guangdong Province, China (Grant numbers:
2011B031800044 and 2010B031600116), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars (RH), State Education Ministry. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ruiwang.huang@gmail.com (RH); jz.tian@163.com (JT)

. These authors contributed equally to this work.

Introduction

Drug addiction, a major social problem, appears to be a chronic

brain disease that involves complex interactions between biological

and environmental variables and is characterized by a compulsive

drive to take drugs despite serious negative consequences [1].

Heroin users are a major proportion of drug addicts, especially in

China [2]. Since the development of neuroimaging technologies,

many studies have been concerned with the mechanisms

underlying drug addiction [3,4,5].

Resting-state functional magnetic resonance imaging (RS-

fMRI), a non-invasive imaging technique, has been widely used

to explore the intrinsic functional organization of the human brain

[6,7,8]. Several studies that used this technique investigated

heroin-related changes in spontaneous brain activity

[9,10,11,12,13] and suggested that heroin addiction is related to

widespread functional abnormalities in many brain regions. These

regions include the amygdala [13], anterior cingulate cortex

(ACC) [10], hippocampus [13], insula [13], lingual gyrus [9],

orbitofrontal cortex (OFC) [9], and temporal cortex [10]. In

addition, functional connectivity alterations have been found in

heroin-dependent individuals (HDIs). Ma et al. [12] indicated that

heroin users showed increases in functional connectivity between

the nucleus accumbens and the ventral/rostral ACC and decreases

in connectivity between the prefrontal cortex and the OFC as well

as between the prefrontal cortex and the ACC. Liu et al. [11]

detected abnormal connectivity between the prefrontal cortex,

ACC, ventral striatum, insula, amygdala and hippocampus in

heroin users. However, to date no study has considered heroin-

related whole-brain functional networks during the resting-state.

Graph theory analysis provides a powerful tool for character-

izing topological organization, including identifying global and

nodal properties in whole brain functional networks. It has been

applied to the study of normal brains [14,15] and of various brain-

related diseases, such as Alzheimer’s disease [16], epilepsy [17,18],

depression [19], and schizophrenia [20,21]. Although two

previous studies [11,22] explored brain functional networks in

heroin addiction patients using graph theory analysis, these studies

focused on regional functional connectivity [11] or on four specific
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circuits (control, reward, motivation/drive and memory) [22].

However, what heroin-related alterations occur in the whole-brain

functional networks remains unknown. Because previous studies

[9,10,11,12,13] have indicated that the brain connectivity

alterations in HDIs are widespread, in this research we attempted

to analyze the topological properties of whole-brain functional

networks in HDIs based on graph theory.

In this study, we constructed brain functional networks with RS-

fMRI data for a group of HDIs and a group of controls, and

compared the topological organization of their brain networks

using graph theory. In addition, considering the duration of heroin

addiction as a vital clinical variable in understanding the effects of

heroin on functional abnormalities [9,23,24], we analyzed the

correlations between the altered network parameters and the

duration of heroin addiction.

Materials and Methods

Subjects
We recruited seventeen heroin-dependent individuals (HDIs:

15 M/2 F, aged 26–50 years, mean 6 SD = 36.2966.86 years,

right-handed) from the Addiction Medicine Division of Guang-

dong No. 2 Provincial People’s Hospital. The HDIs were screened

using the Structured Clinical Interview (SCID-IV) for the

Statistical Manual of Mental Disorders, Fourth Edition (DSM-

IV), to confirm the diagnosis of heroin dependence. Urine tests

with a positive finding for heroin use were acquired before

enrolling in the treatment program. None of the HDIs had used

any other types of drugs according to a laboratory report and an

interview conducted by a clinical psychologist (30 years of clinical

experience). They were hospitalized for 6–7 days before RS-fMRI

scanning took place, none of the HDIs used heroin, as confirmed

by the medical personnel responsible for their care. All of HDIs

except two were under daily methadone maintenance treatment at

the time of study. In addition, we recruited fifteen age- and

gender-matched normal controls (NCs: 12 M/3 F, aged 20–46

years, mean 6 SD = 31.2768.10 years, right-handed) as the

normal controls. Table 1 lists the demographic details of all the

volunteers in this study. The detailed clinical descriptions for each

of HDIs are listed in Table S1.

Neither the HDIs nor NCs had any history of neurological

illness or head injury or had been diagnosed with schizophrenia or

an affective disorder according to their past medical history. This

study was approved by the Research Ethics Review Board of the

Southern Medical University in Guangzhou of China. Informed

written consent was obtained from each subject prior to the MRI

scanning.

Data acquisition
MRI data were obtained on a 1.5T Philips Achieva Nova Dual

MR scanner in the Department of Medical Imaging, Guangdong

No. 2 Provincial People’s Hospital. The RS-fMRI data were

obtained using a T2*-weighted gradient-echo echo-planar imaging

(EPI) sequence with the following parameters, TR = 2000 ms,

TE = 50 ms, flip angle = 90u, matrix = 64664,

FOV = 2306230 mm2, thickness/gap = 4.5/0 mm, 22 axial slices

covering the whole brain, 240 volumes obtained in about 8 min.

During the RS-fMRI scanning, all lights in the scanner room were

switched off, and the subjects were instructed to close their eyes, to

keep still, not to think systematically about anything, and not to fall

asleep. In addition, we acquired 3D high resolution brain

structural images using a T1-weighted 3D turbo-gradient-echo

sequence (TR = 25 ms, TE = 4.1 ms, flip angle = 30u, ma-

trix = 2566256, FOV = 2306230 mm2, thickness = 1.0 mm, and

160 sagittal slices).

Data preprocessing
All the MRI data were processed using SPM8 (http://www.fil.

ion.ucl.ac.uk/spm/) and DPARSF_V2.0 (http://www.restfmri.

net/forum/index.php) [25]. For each subject, we first removed

the first 10 volume images from the RS-fMRI data for scanner

stabilization and for the subject’s adaptation to the environment,

leaving 230 volumes for further analysis. Then we performed slice

timing to correct for the acquisition time delay between slices

within the same TR, realignment to the first volume to correct the

inter-TR head motions, spatial normalization to a standard MNI

template and resampling to a voxel size of 36363 mm3. No

spatial smoothing was applied by following previous studies

[26,27,28]. Finally, we performed band-pass filtering for each

voxel in the frequency of 0.01–0.08 Hz to reduce low-frequency

Table 1. Demographic information for the heroin-dependent individuals (HDIs) and the normal controls (NCs) in the present
study.

Characteristics HDIs (n = 17) NCs (n = 15) p-value

Female/Male 2/15 3/12 0.645a

Age (years) 36.2966.86 31.2768.10 0.067b

Range (years) 26–50 20–46

Education (years) Range (years) 10.2463.21 2–15 11.0764.11 5–17 0.526b

Head motion

Translation (mm) 0.12660.051 0.10660.045 0.251b

Rotation (mm) 0.14960.120 0.12660.063 0.512b

Nicotine (Median, No. cigarette/day) 20 (0–40) 20 (0–40) 0.116b

Heroin use (years) Range (years) 9.2165.28 1–19 N/A

Heroin dosage (g/day) Range (g/day) 0.8060.54 0.1–2.0 N/A

Dosage of methadone (g/day) 39.41620.45 N/A

The duration of heroin usage means the period from the time of their initial heroin use to the time of their seeking medical attention.
aFisher’s exact test.
bTwo sample t-test.
doi:10.1371/journal.pone.0082715.t001
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drift and high-frequency physiological noise. The RS-fMRI data

for each subject were checked for head motion. No subject was

excluded according to the criteria that the translation and rotation

of head motion in any direction were not more than 1.5 mm or

1.5u.

Network analysis
Network construction. In order to construct brain func-

tional networks for each subject, we applied an automated

anatomical labeling (AAL) atlas [29] to parcellate the brain into

90 regions of interest (ROIs) (45 in each hemisphere). The names

of the ROIs and their corresponding abbreviations are listed in

Table S2. The time series for each ROI was calculated by

averaging the signals of all voxels within that region and by

linearly regressing out the following nine nuisance covariates: three

translation and three rotation head motion parameters and the

white matter, cerebrospinal fluid (CSF), and global mean signals.

For each subject, we obtained a 90690 correlation matrix by

calculating the Pearson’s correlation coefficient in the residual time

courses between all ROI-pairs. This matrix contained both

negative and positive values, we used the absolute value of each

element as the inter-regional functional connectivity by following

previous studies [19,26,30,31]. Finally, this correlation matrix was

thresholded into a binarized matrix with a sparsity value (the ratio

between total number of edges and the maximum possible number

of edges in a network). By taking each ROI as a node and the

functional connectivity as an edge, we obtained a 90690

connectivity matrix for each subject and analyzed the topological

organization of the whole-brain functional networks according to

graph theory.

Clearly, the choice of a sparsity value has a major effect on the

topological organization of networks [32,33]. By setting a specific

sparsity as the threshold, we were able to ensure that the brain

functional networks corresponding to each subject contained the

same number of edges. In order to balance the prominence of the

small-world attribute with an appropriate level of sparseness in the

networks for all subjects, we determined the range of sparsity

according to the following criteria: 1) the averaged degree (total

number of edges divided by N/2, with N = 90 here, denoting the

number of nodes) over all nodes of each network was larger than

log(N) [34,35]; and 2) the small-worldness of the network for each

subject was larger than 1.1 [33,34]. Thus, we determined the

range of sparsity (0.05#s#0.36) in which the network for each

subject holds the small-worldness property. Using different

threshold values over the range of 0.05#s#0.36 and intervals of

0.01, we set the connectivity matrix into a series of binaried

connectivity matrices for each subject and calculated the

topological properties. The subsequent network analysis was based

on the series of binarized connectivity matrices for each subject.

Network parameters. We described the global topological

properties of the brain functional networks by using the following

seven global network parameters: the clustering coefficient (Cp),

characteristic path length (Lp), normalized clustering coefficient

(c), normalized characteristic path length (l), small-worldness (s),

global efficiency (Eglob), and local efficiency (Eloc). Their expres-

sion and detailed descriptions are listed in Table S3.

Two nodal centrality metrics, nodal degree (Dnod ) and nodal

efficiency (Enod ), were used to describe the nodal properties of

brain functional networks. Their expressions and descriptions are

also presented in Table S3.

Instead of selecting a single sparsity threshold, we used the

integrated network parameters over the range of sparsity to detect

the between-group differences in the topological parameters of the

brain functional networks. The integrated global parameters were

given by [33]:

X int
glob~

X36

k~5

X kDsð ÞDs, ð1Þ

where the sparsity interval Ds equals 0.01 and X kDsð Þ refers to

any of the global parameters (Cp, Lp, c, l, s, Eglob, and Eloc) at a

sparsity of kDs. Similarly, the integrated nodal parameters can be

calculated by [33]:

Y int
nod (i)~

X36

k~5

Y i,kDsð ÞDs, ð2Þ

where Y represents either nodal parameters (Dnod , Enod ) of node i
at a sparsity of kDs.

Hub identification. Hubs refer to highly connected nodes in

the network [32]. Here, following the method used in previous

studies [15,36], we used nodal betweenness centrality (Nbc) to

determine the hub regions of the brain functional networks (for a

detailed description, see Table S3. For each node, we first

calculated its normalized nodal betweenness centrality as follows:

Nnorm
bc (i)~

1=M
PM

k~1

N int
bc (i,k)

1=(N|M)
PN

i~1

PM

k~1

N int
bc (i,k)

, ð3Þ

where N int
bc (i,k) is the integrated nodal betweenness centrality of

node i in the network of subject k, M is the number of subjects in

each group and N is the number of nodes (here N = 90). Nodes

satisfying the criterion of Nnorm
bc (i)wmeanzSD were considered

to be the hubs of the brain functional networks [33]. Based on this

criterion, we then identified the hubs of the brain functional

networks separately for HDIs and NCs.

Statistical analysis
Between-group differences. Two sample t-tests were per-

formed to assess differences in age, duration of education, cigarette

smoking, and head motions between the heroin addict group and

the control group using SPSS (version 17.0). We used Fisher’s

exact test to estimate the difference in gender between the two

groups (SPSS, version 17.0). Significant between-group differences

were determined at p,0.05 (two-tailed).

A nonparametric permutation test [37] was performed to

determine significant differences in each integrated network metric

(five global parameters and two nodal centrality metrics) between

the two groups. Briefly, for each network metric, we first calculated

the between-group difference in the mean values. To obtain an

empirical distribution of the difference, we then randomly

reallocated all the values into two groups and recomputed the

mean differences between the two randomized groups (10,000

permutations). The limits of the 95th percentile for each empirical

distribution were used as the critical values for a two-tailed test of

whether the observed group differences could occur by chance. To

check the statistical power for the between-group comparisons in

nodal metrics, we also estimated the effect sizes (Cohen d)

according to Cohen’s definition [38].

We used a network-based statistic (NBS) approach [39] to detect

differences in the inter-nodal functional connections between the

HDIs and NCs. In brief, a primary cluster-defining threshold was

first used to identify suprathreshold connections for which the size

Disrupted Functional Networks of Heroin Addiction
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(i.e., number of edges) of any connected components was then

determined. A corrected p-value was calculated for each compo-

nent using the null distribution of the maximally connected

component size, which was derived empirically using a nonpara-

metric permutation approach. The detailed descriptions are

provided in Text S1.

Correlations between network parameters and duration

of heroin addiction. We analyzed the correlation between

each of the network parameters and the duration of heroin

addiction in HDIs using a multiple linear regression. The

significance levels were set at p,0.05 (two-tailed).

Although the two groups were statistically matched for age, the

heroin group was an average of 5 years older than the control

group. To control for any potential age-related effect, all of the

above analyses were repeated after removing the confounding

effect of age using a multiple linear regression.

Results

Demographic information
Statistical comparisons showed no significant differences in

gender, age, duration of education, cigarette smoking, and head

motions between the heroin group and the control group (Table 1).

Global parameters
Fig. 1 shows the plots of the global parameters (Cp, Lp, c, l, s,

Eglob, and Eloc) of the whole-brain functional networks changing

with sparsity in both the HDIs and NCs. Fig. 1 also shows the

comparisons for the values of Cp, c, s, Eglob, and Eloc to be lower,

but the values of Lp and l to be higher, in HDIs compared to

NCs.

Fig. 2 shows statistical comparisons of the integrated global

parameters between HDIs and NCs. The HDIs exhibited

significantly lower values for integrated small-worldness sint

(p = 0.035) and the integrated normalized clustering coefficient

cint (p = 0.049) compared to the controls. However, we found no

significant between-group difference in any of the integrated

parameters Cint
p , Lint

p , lint, Eint
glob, and Eint

loc.

Nodal parameters
Table 2 lists the brain regions that showed a significant

difference in any of nodal centrality metrics (Dint
nod and Eint

nod ) of the

brain functional networks between HDIs and NCs (p,0.05,

uncorrected). We found that in HDIs, the nodal centrality metrics

were significantly decreased in six brain regions, the bilateral

middle (dorsal) cingulate gyrus (MCG.L/R), left middle frontal

gyrus (MFG.L), left inferior temporal gyrus (ITG.L), right

Figure 1. Global parameters of the brain functional networks for the heroin-dependent individuals (HDIs) and the normal controls
(NCs) changing with the sparsity threshold. The error bar represents the standard deviation of a parameter at a given sparsity across all
subjects. The symbol (*) means that significant between-group difference in the given parameter was detected (p,0.05). Except for the sparsity
range of 0.05#sparsity#0.09, no statistically significant between-group differences were detected for other values of sparsity. Cp , clustering
coefficient; Lp, characteristic path length; c, normalized clustering coefficient; l, normalized shortest path length; s, small-worldness; Eglob, global
efficiency; Eloc, local efficiency.
doi:10.1371/journal.pone.0082715.g001
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precuneus (PCUN.R), and right thalamus (THA.R), most of which

belong to the cognitive control network [40,41,42]; but signifi-

cantly increased in three brain regions, the left hippocampus

(HIP.L), left inferior occipital gyrus (IOG.L), and left lingual gyrus

(LING.L). These regions were rendering plotted on a cortical

surface map and are shown in Fig. 3a. The result of effect sizes

presented in Table 2 indicated high statistical power of the

between-group comparions in nodal parameters.

Network hubs
The hub regions in the functional networks for HDIs and NCs

are listed in Table S4. We found fourteen hubs in the brain

functional networks of each subject group. Although the two

groups had the identical number of hubs, the locations of the hubs

were not completely the same. Eleven regions were shared hubs in

the brain functional networks of both groups. We also found three

hubs specific to HDIs, the left precuneus (PCUN.L), left

postcentral gyrus (PoCG.L), and right middle frontal gyrus

(MFG.R), and three hubs specific to the controls, the left middle

frontal gyrus (MFG.L), right precuneus (PCUN.R), and temporal

pole (TPOsup.R). We noticed that most of the shared hub regions

(nine hubs) were located in the association cortices, suggesting that

they had important functional roles in information transfer [14].

Functional connectivity
We utilized the NBS method to identify a single connected

subnetwork with 19 regions and 19 connections, which was

significantly altered in the HDIs compared to NCs (p,0.001,

corrected) (Fig. 4, Table S5). We noticed that the connections in

this single connected subnetwork are primarily long-distance

connections linking different brain lobes. Within this subnetwork,

all connections exhibited statistically significantly decreased values

in HDIs (Table S5). We found that the mean connectivity value of

this subnetwork correlated positively with three integrated global

parameters, Cint
p (r = 0.325, p = 0.069, marginally significant), cint

(r = 0.402, p = 0.023), and sint (r = 0.379, p = 0.032) (Fig. 4).

Correlations between network parameters and duration
of heroin addiction

No significant correlations (p.0.05) were found between the

integrated global parameters and the duration of heroin addiction

as well as between the connections shown in Fig. 4a and the

duration of heroin addiction. For the brain regions listed in

Table 2, we found that the integrated degree (Dint
nod ) of the HIP.L

showed a significantly positive correlation (p = 0.042), while the

integrated nodal efficiency (Eint
nod ) showed a marginally significantly

positive correlation (p = 0.054) with the duration of heroin

addiction (Fig. 3b).

Discussion

In this study, using graph theory analysis, we constructed the

functional networks, analyzed the network topological parameters,

and compared the differences in these parameters of the brain

functional networks between HDIs and NCs. The main findings

are as follows: (1) at the global level, the heroin group showed

significant decreases in the normalized clustering coefficient and in

small-worldness; (2) at the nodal level, we detected significantly

decreased nodal centralities primarily in regions of the cognitive

control network but significant increases primarily in the HIP.L in

HDIs; (3) at the connectivity level, we found a single connected

subnetwork which showed significantly decreased connections in

the heroin group. These findings may contribute to understanding

the disrupted topological organization of whole-brain functional

networks in HDIs.

Global parameters
The human brain is widely believed to be a complex system that

requires a suitable balance between local specialization and global

integration of the brain’s functional activities [43]. Functional

segregation and integration are two fundamental organizing

principles for the human brain, a concept which is supported by

the model of a small-world network characterized by a high local

clustering coefficient and the shortest path length [32]. Small-

world properties enable a network to maintain highly effective,

specialized modular information processing as well as rapid global

information transfer [44]. As has been found in previous studies of

human brain functional networks [16,17,18,20,33], in this study,

the whole-brain functional networks of both HDIs and NCs

conserved small-worldness.

In this study, we found alterations in the global parameters of

the brain functional networks of HDIs compared to NCs.

Statistical analysis revealed a decreased normalized clustering

coefficient in the HDIs. The normalized clustering coefficient is

one of the indices that can characterize how brain networks shift to

either a regular or a random network [45]. The decreased

clustering coefficient in HDIs indicated that their brain functional

networks may shift toward random organization. Previous studies

[9,46,47] have suggested heroin users showed poor performance in

decision making tasks compared to healthy participants. Shift

toward random organization in functional network may be related

with randomized decision making in HDIs. In addition, we also

detected decreased small-worldness in HDIs, suggesting the

topological organization in the whole-brain functional networks

of HDIs was less optimal than that of the controls. Those decreases

in the global network parameters in HDIs may have resulted from

the decreased functional connections in a subnetwork (Fig. 4,

Figure 2. Bar plots of the differences in the integrated global
topological parameters of brain functional networks between
the heroin-dependent individuals (HDIs) and the normal
controls (NCs). The symbol (*) indicates significant between-group
differences in the integrated normalized clustering coefficient cint

(p = 0.049) and integrated small-worldness sint (p = 0.035). Cint
p , inte-

grated clustering coefficient; Lint
p , integrated characteristic path length;

lint , integrated normalized shortest path length; Eint
glob, integrated global

efficiency; Eint
loc , integrated local efficiency.

doi:10.1371/journal.pone.0082715.g002
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Table S5) [19]. These connections enable spatially remote brain

regions to communicate with each other and strengthen the

functional integration of the brain [48]. Finding that these

decreases may indicate that the brain functional integration in

HDIs is disrupted.

Nodal parameters
Besides of the decreased global parameters, we also found

decreased nodal centralities (integrated nodal degree and nodal

efficiency) in several regions in HDIs, including the MCG.L/R,

MFG.L, and PCUN.R. These regions are thought to be involved

in the cognitive control network [40,41,42]. Previous studies have

suggested drug addiction individuals exhibited deficits in neural

systems associated with cognitive control [12,49,50,51]. In a task-

fMRI study, Kaufman et al. [49] found the dorsal cingulate cortex

was less responsive during successful No-Go inhibitions in cocaine

users, suggesting the drug-related dysfunction of cognitive control.

Using resting-state fMRI, Ma et al. [12] found that heroin users

showed reduced functional connectivity within the circuit of

cognitive control, indicating the weakened strength of control in

the addictive state. Recently, Liu et al. [50] studied heroin users

using diffusion tensor imaging and reported that heroin users

showed reduced white matter integrity in the frontal and cingulate

cortex, which suggested diminished cognitive control upon craving

and motivation in heroin users. Thus, our findings of decreased

nodal centralities in the cognitive control regions in HDIs

provided further evidence that the function of cognitive control

is weakened in drug addiction [52].

Interestingly, we found the MFG and PCUN were hub regions

for HDIs and NCs, but located in contralateral hemisphere, i.e.,

MFG.R and PCUN.L were hubs of HDIs, while MFG.L and

PCUN.R were hubs of NCs. This finding may reflect the existing

compensatory mechanism or neuroadaptation in the addiction

brain [53,54,55]. For example, Jager et al. [54] found that the

adolescent cannabis users showed excessive activity in the

prefrontal regions during a novel task, suggesting functional

compensation. Also Kanayama et al. [55] reported that the

cannabis users might call upon additional brain regions not

typically used for spatial working memory (such as regions in the

basal ganglia) to compensate for the deficits in spatial working

memory. In the present study, the brain functional networks of

HDIs may need to enhance the function of MFG.R and PCUN.L

to compensate for impaired function of MFG.L and PCUN.R due

to their decreased nodal centralities in HDIs.

Figure 3. Brain regions exhibiting abnormal integrated nodal parameters of the brain functional networks and their relationship
with the duration of heroin addiction in the heroin-dependent individuals (HDIs) compared to the normal controls (NCs). (a) Surface
visualization of regions with abnormal nodal centralities using BrainNet Viewer (http://www.nitrc.org/projects/bnv/). Areas color-coded in red (blue)
indicate the regions in which the values of nodal centralities corresponding to HDIs were higher (lower) than those of controls. See Table 2 for details.
(b) Scatter plot of the integrated nodal parameters against the duration of heroin addiction. In the left hippocampus (HIP.L), we detected a
significantly positive correlation between the integrated nodal degree and the duration of heroin addiction (p = 0.042) and a tendency toward a
positive correlation between the integrated nodal efficiency and the duration of heroin addiction (p = 0.054) in HDIs. The abbreviations of regions are
listed in Table S2.
doi:10.1371/journal.pone.0082715.g003
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We also found that the HDIs showed increased nodal

centralities in the HIP.L compared to NCs, a finding which was

consistent with several previous studies [11,52,56]. Using graph

theory analysis, Liu et al. [11] suggested that the hippocampus had

a higher nodal degree in the brain of chronic heroin users. Ma et

al. [56] found that heroin users showed increased functional

connectivity in the hippocampus compared to controls. Baler and

Volkow [52] demonstrated that the memory/learning circuit

related to drug addiction is primarily located in the amygdala and

hippocampus. In fact, the hippocampus is the main brain region

involved in memory and learning [57], and is thought to

strengthen the learning of drug-related cues which leads to drug-

seeking behaviors [58]. Therefore, an increase in nodal centrality

in the HIP.L may excite the expectation of the drug in HDIs.

Moreover, the integrated nodal degree and the nodal efficiency

were positively correlated with the duration of heroin addiction,

but only in the HIP.L. This indicated that longer the heroin use,

the higher the nodal centrality of the HIP.L. Thus, the disrupted

topology properties in the hippocampus may indicate that the

pattern of relapse to drug-seeking behaviors that is commonly seen

in HDIs is driven by abnormal memory processing.

Notably, the disrupted nodal topology can also be interpreted

from the perspective of physiological aspect. Previous studies

[59,60,61,62,63] have suggested that the effects of opioid drugs on

the brain might depend on the opioid receptor density. The frontal

cortex and cingulate cortex (anterior and middle) have the high

opiate receptor-binding potentials [64] and have been reported to

be commonly affected by different opoioid drugs, such as cocaine

[59], nicotine [61], morphine [62,65] and remifentanil [63,66].

Thus, the current findings of decreased nodal centralities in the left

middle frontal cortex and bilateral middle cingulate cortex in

HDIs may reflect an outcome of disrupted opioidergic modula-

tion. Actually, we cannot attribute all altered nodal centralities to

opioid receptor. In current study, we also found heroin affected

nodal centrality in the left hippocampus which has not been

reported to include high opioid receptor. This is in line with

several task and resting-state pharmacological fMRI studies

[62,65], which reported that morphine affected functional

topography of hippocampus in healthy volunteers. We noticed

that no change of nodal centrality has been detected in this study

in at least several areas, the insula, thalamus, amygdala, and

putamen, though these regions are more susceptible to the high

opioid receptor [64]. These suggest that the findings of abnormal

nodal centralities in HDIs partly reflect the opioid receptor

distribution.

Limitations
Several limitations need to be addressed. First, due to the cross-

sectional nature of this study, we can only infer that the network

properties of the brain functional networks of heroin addicts are

disrupted. We are not able to determine the precise relationship

between heroin abuse and abnormalities of the network param-

eters. Second, the nodal centrality results could not survive when

we adopted multiple comparisons (FDR and FEW corrections),

meaning this should be considered as an exploratory analysis. To

increase the statistical power, the findings need replication with a

larger sample of subjects or a limited number of selected ROIs.

Third, the HDIs received methadone treatment at the time of the

fMRI study which might affect the brain spontaneous activity

[67,68] and the topological properties of functional network in the

Table 2. Brain regions showing abnormal nodal centrality in the heroin-dependent individuals (HDIs) compared with the normal
controls (NCs).

Regions Classification Mean (SD) p-value (Cohen d)

Dint
nod Eint

nod Dint
nod Eint

nod

HDIs NCs HDIs NCs

HDIs,NCs

ITG.L Association 3.50 (1.35) 5.23 (1.66) 0.15 (0.02) 0.16 (0.01) 0.0007 (1.2) 0.0005
(1.2)

MCG.L Paralimbic 6.62 (1.99) 8.67 (1.99) 0.17 (0.02) 0.19 (0.01) 0.002 (1.0) 0.002
(1.0)

MCG.R Paralimbic 6.63 (1.87) 8.08 (1.54) 0.18 (0.02) 0.19 (0.01) 0.004 (0.8) 0.006
(0.8)

THA.R Subcortex 4.03 (2.34) 5.98 (2.18) 0.14 (0.03) 0.17 (0.02) 0.045 (0.9) 0.037
(0.9)

PCUN.R Association 5.93 (1.93) 6.66 (1.99) 0.17 (0.02) 0.18 (0.02) 0.046 (0.4) 0.049
(0.4)

MFG.L Association 5.43 (1.32) 6.58 (1.93) 0.17 (0.01) 0.18 (0.01) — 0.048
(0.8)

HDIs.NCs

LING.L Association 8.11 (1.50) 6.19 (1.36) 0.18 (0.01) 0.17 (0.01) 0.001 (1.3) 0.005
(1.2)

IOG.L Association 6.51 (1.66) 5.19 (1.68) 0.17 (0.01) 0.16 (0.01) 0.012 (0.8) 0.020
(0.7)

HIP.L Subcortex 4.50 (1.61) 3.03 (1.59) 0.15 (0.02) 0.13 (0.03) 0.014 (0.9) 0.014
(0.9)

The threshold was p,0.05 (uncorrected). The symbol ‘—’ indicates no significant between-group difference. Dint
nod and Eint

nod represent the integrated nodal degree and
nodal efficiency, respectively. Cohen d indicates the value of effect size. The small, medium, and large levels of the effect size are 0.2, 0.5, and 0.8, respectively, according
to Cohen’s definition [38].
doi:10.1371/journal.pone.0082715.t002
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present study. Therefore, in the future, we should design a more

rigorous experiment to exclude the effect of methadone. Fourth,

we could not completely eliminate the effects of physiologic noise

due to the low sampling rate (TR = 2 s), which can cause

respiratory and cardiac fluctuations to impact the fMRI time

series, even though a 0.01–0.08 Hz band-pass filter was used to

reduce this effect. Finally, we only estimated the relations between

the network properties and the duration of heroin addiction.

Whether brain functional network properties are related with

other clinical variables including decision-making behavior,

impulsivity and consequences on daily life should be explored in

the future.

In summary, we investigated the whole-brain functional

network in HDIs using resting-state fMRI and a graph theory

method. We found that compared to the normal controls, the

whole-brain functional networks in HDIs may shift toward

random organization, as indicated by a lower normalized

clustering coefficient and lessened small-worldness. We also found

that the nodal properties were disrupted, especially in regions of

cognitive control network in HDIs. Our study indicated disrup-

tions in the whole-brain functional networks of HDIs, findings

which may be helpful for better understanding the mechanisms

underlying heroin addiction.
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