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Turing instability in quantum 
activator–inhibitor systems
Yuzuru Kato  1* & Hiroya Nakao  2

Turing instability is a fundamental mechanism of nonequilibrium self-organization. However, despite 
the universality of its essential mechanism, Turing instability has thus far been investigated mostly 
in classical systems. In this study, we show that Turing instability can occur in a quantum dissipative 
system and analyze its quantum features such as entanglement and the effect of measurement. 
We propose a degenerate parametric oscillator with nonlinear damping in quantum optics as a 
quantum activator–inhibitor unit and demonstrate that a system of two such units can undergo Turing 
instability when diffusively coupled with each other. The Turing instability induces nonuniformity 
and entanglement between the two units and gives rise to a pair of nonuniform states that are mixed 
due to quantum noise. Further performing continuous measurement on the coupled system reveals 
the nonuniformity caused by the Turing instability. Our results extend the universality of the Turing 
mechanism to the quantum realm and may provide a novel perspective on the possibility of quantum 
nonequilibrium self-organization and its application in quantum technologies.

Nature displays a variety of orders that are self-organized via spontaneous symmetry breaking caused by internal 
interactions within systems, such as spontaneous magnetization, crystal growth, and superconductivity1–3. In 
particular, nonequilibrium open systems can support a wide variety of self-organized patterns that cannot occur 
in equilibrium systems, called dissipative structures. Examples of dissipative structures include fluid convection 
patterns, laser oscillations, chemical waves and patterns, and biological patterns and rhythms4–6. Self-organization 
and pattern formation have also been studied in quantum systems such as atomic Bose-Einstein condensates 
and trapped ions7,8, optomechanical systems9, and quantum dots10. Quantum synchronization11–22, which has 
recently gained growing interest, is also an example of quantum non-equilibrium self-organization.

In 1952, Turing showed that the difference between the diffusivities of reacting chemical species can desta-
bilize uniform stationary states and cause spontaneous emergence of nonuniform periodic patterns in spatially 
extended systems23. In 1972, Gierer and Meinhardt provided an intuitive explanation of Turing instability by 
introducing the now well-known concept of activator–inhibitor systems with local self-enhancement and long-
range inhibition24. Later, Turing instability and the resulting patterns were studied in various systems, such 
as those undergoing chemical reactions25–27 or biological morphogenesis28–30, ecological populations31–33, and 
nonlinear optical systems34–40. Turing patterns have also been theoretically investigated in stochastic systems41–44 
and networked systems45–49. The first experimental realization of Turing patterns was achieved in 199050, 40 
years after Turing’s seminal paper, followed by the first experimental determination of the bifurcation diagram51, 
using the chlorite-iodide-malonic acid reaction in a gel reactor. Recent progress and modern discussions on 
Turing instability have been reviewed, e.g., in Ref.52 and include various new aspects of Turing patterns includ-
ing instability in multi-species systems53,54, influences of domain growth55–58, and effects of delay and noise59.

Recent developments in nanotechnology have stimulated both theoretical and experimental investigations 
of Turing-type instability and patterns in micro- and nanoscale systems, such as rogue waves in a cavity with 
quantum dot molecules60, vectorial Kerr medium61, intracavity second harmonic generation62, longitudinal 
microresonators63, Kerr-active microresonators64, semiconductor microcavities65, and a bismuth monolayer66. 
Therefore, systematic analysis of the possibility of Turing instability in quantum systems is becoming important. 
In this research direction, pioneering studies on nonlinear optical systems, e.g., optical parametric oscillators38–40, 
have considered the possibility of pattern formation via Turing-type instability34 and discussed the effects of 
quantum fluctuations35 and quantum squeezing36. However, due to the difficulty in handling an infinite hierarchy 
of equations for operator products, the analysis was limited to the case that can be treated via the approximate 
stochastic differential equation of classical fields subjected to quantum fluctuations37.

Recently, using a fully quantum-mechanical master equation, the bifurcation in a system of a pair of coupled 
quantum Stuart–Landau oscillators from the uniform amplitude-death state to the nonuniform oscillation-death 
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state was discussed67–69, which can be regarded as a quantum manifestation of the Turing-type bifurcation origi-
nally analyzed in a classical system70. Though this bifurcation is interesting, it is not exactly the Turing instability 
in the original sense because the considered system is not of the activator–inhibitor type and does not possess 
a homogeneous stationary state when the coupling is absent70. Additionally, the relation between the Turing 
bifurcation and quantum features, such as quantum entanglement and quantum measurement, has not been 
studied in these papers67–69.

In this study, we analyze Turing instability in the original sense of Turing23 and Gierer and Meinhardt24 in 
quantum dissipative systems in the simplest setting, i.e., in a pair of symmetrically coupled units, by providing 
a minimal model of quantum activator–inhibitor systems. We show that a degenerate parametric oscillator with 
nonlinear damping can behave as a quantum activator–inhibitor unit and that diffusive coupling between two 
such units can induce Turing instability and lead to nonuniformity and entanglement between the two units, 
which gives rise to a pair of nonuniform states that are symmetrically mixed due to quantum noise. We further 
demonstrate that performing continuous measurement on the coupled system breaks this symmetry and reveals 
the true asymmetry caused by the Turing instability. A schematic diagram is shown in Fig. 1.

Quantum activator–inhibitor system
Quantum activator–inhibitor unit.  We first show that a single-mode, degenerate parametric oscilla-
tor with nonlinear damping in quantum optics71 can be considered a quantum activator–inhibitor unit  in the 
sense that the deterministic trajectory of the system in the classical limit obeys conventional activator–inhibitor 
dynamics.

We denote by ω0 the resonance frequency of the cavity and by ωp the frequency of the pump beam of squeez-
ing. In the rotating coordinate frame of frequency ωp/2 , the evolution of the density operator ρ representing the 
system state obeys the quantum master equation (QME)71

where [A,B] = AB− BA is the commutator of two operators A and B, a is the annihilation operator that subtracts 
a photon from the system, a† is the creation operator that adds a photon to the system ( † denotes the Hermitian 
conjugate), � = ω0 − ωp/2 is the detuning of the resonance frequency of the system from the half frequency 
of the pump beam, ηeiθ ( η ≥ 0 ) is the squeezing parameter representing the effective amplitude of the pump 
beam, D[L]ρ = LρL† − (ρL†L− L†Lρ)/2 is the Lindblad form representing the coupling of the system with 
the reservoirs through the operator L ( L = a or L = a2 ), and γ1 (> 0) and γ2 (> 0) are the decay rates for linear 
and nonlinear damping, i.e., the single-photon and two-photon loss, respectively, due to coupling of the system 
with the respective reservoirs. The reduced Planck constant is set as � = 1.

We employ the phase-space method72,73 and use the Wigner distribution W(x, p) as the quasiprobability distri-
bution to represent the density operator ρ , where x and p denote the position and momentum in the phase space, 
respectively. Using this approach, we can transform the QME to the evolution equation for W(x, p) on the phase 
space, which generally has derivative terms higher than the second order. When γ2 is small, we can neglect the 
higher order derivative terms, and the evolution equation for W(x, p) corresponding to QME (1) can be approxi-
mated by a semiclassical Fokker–Planck equation (FPE) or the corresponding stochastic differential equation 
(SDE). The deterministic trajectory in the classical limit of QME (1), which neglects the effect of small quantum 
noise and is given by the deterministic part of the SDE, is found to obey the following two-dimensional system:

(1)ρ̇ = −i
[

�a†a+ iη(a2e−iθ − a†2eiθ ), ρ
]

+ γ1D[a]ρ + γ2D[a2]ρ,
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Figure 1.   Quantum Turing instability. (a) Pair of quantum activator–inhibitor units. (b) Diffusive coupling 
between the two units can induce Turing instability, which leads to nonuniformity and entanglement between 
the units and yields a pair of nonuniform states that are symmetrically mixed due to quantum noise. (c) Further 
performing continuous measurement on the two units can break the symmetry and reveal the asymmetry 
caused by the Turing instability.
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See “Methods” for the detailed derivation of the equations and characterization of the quantum regime.
By appropriately choosing the parameters, classical system (2) obeys activator–inhibitor dynamics (see 

“Methods”). We set the parameters such that the position x and momentum p play the roles of the activator 
and inhibitor variables, respectively, namely, x autocatalytically enhances its own production while p suppresses 
the growth of x. It is noted that the system without nonlinear damping can also behave as a quantum activa-
tor–inhibitor unit, but nonlinear damping is necessary to prevent the system state from diverging to infinity 
after destabilization at the origin.

Figure 2a shows the deterministic vector field of Eq. (2), where the two curves represent nullclines of x and p 
(on which ẋ = 0 or ṗ = 0 ) and their intersection at (x, p) = (0, 0) corresponds to a stable fixed point. Figure 2b 
shows a scatter plot of a single trajectory of the semiclassical SDE obtained by direct numerical simulations 
(DNSs) in the steady state (see “Methods”), and Fig. 2c shows the stationary Wigner distribution obtained from 
QME (1). The semiclassical trajectory and the Wigner distribution are distributed around the classical fixed 
point at the origin due to quantum noise.

Diffusively coupled quantum activator–inhibitor units.  In the classical Turing instability, the uni-
form stationary state of spatially distributed activator–inhibitor systems is destabilized when diffusion of the 
activator and inhibitor species with appropriate diffusivity is introduced, leading to the formation of nonuni-
form states23. In the simplest setting, this counterintuitive Turing instability can already be observed in a system 
consisting of two diffusively coupled activator–inhibitor units with identical properties: a uniform stationary 
state of the system, in which the two units take the same states, becomes destabilized when the diffusivities are 
appropriately chosen, resulting in the formation of a nonuniform stationary state, in which the two units settle 
into different states from each other.

As a quantum model that undergoes Turing instability, we diffusively couple two identical quantum acti-
vator–inhibitor units (denoted 1 and 2), each of which obeys Eq. (1). The coupled system of the two units is 
described by a two-mode density operator ρ , which obeys the QME

where aj and a†j  are the annihilation and creation operators for the jth quantum activator–inhibitor unit ( j = 1, 2 ), 
respectively. The parameters �, ηeiθ , γ1 and γ2 are common to both units. In this equation, the first line represents 
the two single-mode units given by Eq. (1), and the newly introduced terms in the second line represent the 
coupling between the two units. The first coupling term can be represented as a sum of squeezing terms, i.e., 
−i

[

i Dh
4

{

(a1 − a2)
2 −(a†1 − a†2)

2
}

, ρ
]

=
∑

j=1,2

(

−i
[

i Dh
4 (a2j − a†2j ), ρ

])

− i
[

i Dh
2 (a†1a

†
2 − a1a2), ρ

]

 , which can 
be interpreted as single-mode and two-mode squeezing Hamiltonians, respectively. The second term with Dc 
represents dissipative coupling, namely, a coupling arising from dissipative processes12,14. It is noted that Eq. (3) 
is symmetric with respect to the exchange of the units 1 and 2.

By employing the phase-space method for two-mode systems, the deterministic dynamics in the classical 
limit of QME (3) can be derived as (see “Methods”)

(2)
(

ẋ
ṗ

)

=
( 2γ2−γ1

2 x +�p− γ2x(x
2 + p2)− 2η(x cos θ + p sin θ)

−�x + 2γ2−γ1
2 p− γ2p(x

2 + p2)+ 2η(−x sin θ + p cos θ)

)

.

(3)

ρ̇ =
∑

j=1,2

(

−i
[

�a†j aj + iη(a2j e
−iθ − a†2j eiθ ), ρ

]

+ γ1D[aj]ρ + γ2D[a2j ]ρ
)

− i

[

i
Dh

4

{

(a1 − a2)
2 − (a†1 − a†2)

2
}

, ρ

]

+ DcD[a1 − a2]ρ,
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Figure 2.   Quantum activator–inhibitor unit. (a) Nullclines of the deterministic vector field of Eq. (2). Blue and 
green curves indicate the sets (x, p) satisfying ẋ = 0 and ṗ = 0 , respectively. (b) Stochastic trajectory of (x, p) 
obtained from the semiclassical SDE. (c) Stationary Wigner distribution W(x, p) obtained from the QME. The 
parameters are � = −0.6, γ1 = 0.4, γ2 = 0.1, θ = π , and η = 0.3.
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where xj and pj represent the position and momentum of the jth unit in the phase space of the two-mode Wigner 
distribution W(x1, p1, x2, p2)

73. We see that two classical activator–inhibitor units, each of which is described by 
Eq. (2), are diffusively coupled through the position x (activator) and momentum p (inhibitor) by the last term 
in each equation. These terms arise from the single- and two-mode squeezing Hamiltonians whose intensities 
are characterized by Dh and from the dissipative coupling whose intensity is characterized by Dc in Eq. (3). The 
diffusion constants of x and p in Eq. (4) are given by Dx = (Dc + Dh)/2 and Dp = (Dc − Dh)/2 , respectively. It 
should be noted that the first term characterized by Dh represents a Hamiltonian coupling and non-dissipative, 
but it acts as a dissipative coupling in the deterministic dynamics in the classical limit in Eq. (4).

The classical coupled system described by Eq. (4) can undergo Turing instability when the conditions of 
local self-enhancement and long-range inhibition are satisfied (see “Methods”). Therefore, the quantum acti-
vator–inhibitor system, Eq. (3), is also expected to exhibit Turing instability when the parameter values are 
appropriately chosen. Our aim in this study is to clarify whether Turing instability can occur within the original 
activator–inhibitor framework in the simplest setting in quantum dissipative systems. We note that the require-
ments of a coupled activator–inhibitor pair or the existence of homogeneous solution can be relaxed when we 
consider more general models53–59. In this study, we focus on the simplest case of a pair of symmetrically coupled 
quantum activator–inhibitor units and discuss quantum Turing instability in the original sense of Turing23 and 
Gierer-Meinhardt24. Due to its simplicity, the model allows the direct numerical simulations of quantum dynam-
ics and is the most amenable to experiment.

Turing instability
Semiclassical regime.  Deterministic system (4) has a fixed point at the origin of the 4-dimensional phase 
space, i.e., (x1, p1, x2, p2) = (0, 0, 0, 0) , which is stable when diffusive coupling is absent, i.e., Dx = Dp = 0 . Both 
units 1 and 2 settle to the origin, i.e., (xj , pj) = (0, 0) for j = 1, 2 ; hence, the whole system takes a uniform state. 
When diffusive coupling with appropriate diffusivities is introduced, this uniform state is destabilized by the Turing 
instability, and instead, a pair of stable nonuniform fixed points appear at (x1, p1, x2, p2) = (±A,±B,∓A,∓B) of 
deterministic classical system (4) (see “Methods”).

Correspondingly, in quantum system (3), when the diffusive coupling is absent ( Dx = Dp = 0 ), the state of 
each unit localizes around the stable fixed point at (0, 0) as shown in Fig. 2a. Thus, the two units obey the same 
distribution and the whole system is in the uniform state. However, when the diffusion constants are appropri-
ately chosen, this uniform state is destabilized by the Turing instability and gives way to nonuniform states as 
demonstrated below.

Figure 3 shows the Turing instability in the semiclassical regime observed by DNSs of QME (3). The same 
parameters as in Fig. 2 are assumed for both units. The two units are uncoupled ( Dx = Dp = 0 ) in Fig. 3a, 3c, 
3e, while they are coupled with appropriate diffusion constants ( Dx = 0.005,Dp = 0.995 ) in Fig. 3b, 3d, 3f. 
To visualize the nonuniformity of the system state ρ , we introduce the two-mode Husimi Q distribution72,73 
Q
(

x1, p1, x2, p2
)

= 1
π2 �α1,α2|ρ|α1,α2� with αj = xj + ipj (j = 1, 2) and use the marginal distributions 

Q(x1, x2) =
∫ ∫

dp1dp2Q
(

x1, p1, x2, p2
)

 and Q(p1, p2) =
∫ ∫

dx1dx2Q
(

x1, p1, x2, p2
)

 of the position (activator) 
variables x1,2 and momentum (inhibitor) variables p1,2 calculated from Q

(

x1, p1, x2, p2
)

.
In Fig. 3a, 3c without diffusive coupling, both Q(x1, x2) and Q(p1, p2) are symmetrically distributed around 

the origin. The variables of the two units are uncorrelated and statistically exhibit the same distribution. Thus, 
the state ρ of the whole system consisting of the two units is symmetric and uniform. In contrast, in Fig. 3b, 3d 
with diffusive coupling, Q(x1, x2) is not symmetric and takes two extrema near the two classical fixed points 
(x1, x2) = (A,−A) and (−A,A) , and similarly Q(p1, p2) takes two extrema near (p1, p2) = (B,−B) and (−B,B) . 
Thus, the two units tend to take the opposite states from each other and the state ρ of the whole system is nonu-
niform. It is noted that, because of quantum noise, the system state is mixed and the distributions have two 
symmetric peaks near both of the classical fixed points.

Figures 3e and 3f show the marginal Wigner distributions W(x1, p1) and W(x2, p2) of units 1 and 2 for the 
cases without (e) and with (f) diffusive coupling. These Wigner functions are obtained from the marginal density 
operators ρ1 = Tr 2[ρ] and ρ2 = Tr 1[ρ] , where Tr j[·] represents the partial trace over system j in the semiclassi-
cal regime. Due to the symmetry of the two units, W(x1, p1) and W(x2, p2) are identical to each other. Addition-
ally, the Wigner distributions in Fig. 3e without diffusive coupling are identical to that of a single unit shown in 
Fig. 2c. In Fig. 3e without diffusive coupling, the Wigner distributions have a single peak at the origin, whereas 
in Fig. 3f with diffusive coupling, the Wigner distributions have two symmetric peaks near the two stable fixed 
points (x1, p1, x2, p2) = (±A,±B,∓A,∓B) of deterministic classical system (4) (see “Methods”).

The above results clearly indicate that Turing instability has indeed occurred and resulted in the formation of 
nonuniform stationary states in two diffusively coupled quantum activator–inhibitor units described by Eq. (3). In 
this regime, we can also perform direct numerical simulations of the corresponding SDE, which clearly visualize 
the nonuniformity caused by the Turing instability (see “Methods”).

Weak quantum regime.  Next, we show the results for the weak quantum regime. We set the parameters 
of QME (3) in a deeper quantum regime while keeping the deterministic system in the classical limit, Eq. (4), 
remain unchanged from the previous semiclassical case. See “Methods” for the characterization of the quantum 
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regime. Figure 4 shows the Turing instability in this regime. The two units are uncoupled in Fig. 4a, 4c, 4e, while 
they are coupled with appropriate diffusion constants in Fig. 4b, 4d, 4f.

As in the previous semiclassical case, when diffusive coupling is absent, the marginal Q distributions Q(x1, x2) 
and Q(p1, p2) of activator x and inhibitor p are symmetrically localized around the origin in Fig. 4a, 4c. When 
diffusive coupling is introduced, these joint distributions become nonsymmetric, indicating that the two units 
are anticorrelated and tend to take the opposite states from each other as shown in Fig. 4b, 4d. In this regime, due 
to the strong nonlinear damping, the two stable fixed points in the classical limit are closer to each other than in 
the semiclassical regime. Correspondingly, the nonuniformity of the joint distributions is less pronounced than 
in the semiclassical case due to the relatively strong effect of quantum noise.

Figures 4e and 4f show the marginal Wigner distributions W(x1, p1) and W(x2, p2) of units 1 and 2, which 
are identical to each other, before (e) and after (f) the Turing instability. Compared with the Wigner distribution 
in Fig. 4e before the Turing instability, the Wigner distribution in Fig. 4f after the instability is more elongated 
along the axis on which the two classical stable fixed points exist, although double symmetric peaks as in the 
semiclassical case are not observed due to the stronger effect of quantum noise.

Thus, although blurred by quantum noise, the system undergoes a transition from the uniform state to the 
nonuniform state with the introduction of diffusive coupling, namely, the Turing instability also occurs in the 
quantum regime considered here.

Strong quantum regime.  We also consider a strong quantum regime with a larger decay rate for nonlinear 
damping. Figure 5 shows the Turing instability in this regime. As the fluctuations are stronger than the two pre-
vious cases due to the effect of stronger quantum noise, only a slight nonuniformity can be observed. As shown 
later, the nonuniformity between the two units in this regime can be more clearly observed by using continuous 
measurement.

Phase diagram: nonuniformity and entanglement.  We have seen that Turing instability occurs in 
a pair of diffusively coupled quantum activator–inhibitor units in the semiclassical, weak quantum, and strong 
quantum regimes. Here, we analyze the dependence of the system’s behavior on the diffusion constants and the 
relationship between the Turing instability and quantum entanglement. We use the same parameter sets for the 
quantum activator–inhibitor units as in Figs. 3, 4, and 5 for the semiclassical, weak quantum, and strong quan-
tum regimes, respectively.

Figure 6 plots the (i) maximum eigenvalue �max of the linearized equation of Eq. (4) in the classical limit (a, b), 
(ii) root mean squared difference (RMSD) 

√

�(x1 − x2)2� =
√

Tr [(x1 − x2)2ρ] quantifying the nonuniformity 
between the two units (c, d, e), and (iii) negativity N  (see “Methods”) characterizing the degree of quantum 
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Figure 3.   Turing instability in a pair of diffusively coupled quantum activator–inhibitor units in the 
semiclassical regime. (a,b) 2D plots of the Q distribution Q(x1, x2) . (c,d) 2D plots of the Q distribution Q(p1, p2) . 
(e,f) 3D plots of the stationary Wigner distributions W(x1, p1) and W(x2, p2) of the units 1 and 2. Red and 
yellow dots in (a–d) represent stable fixed points of the deterministic system in the classical limit. In (a,c,e), the 
two units are uncoupled. The states of the units are uncorrelated and localized around the origin; hence, the 
whole system is in a uniform state. In (b,d,f), the two units are diffusively coupled. Due to the Turing instability, 
the two units tend to take different states from each other; hence, the whole system is nonuniform. In (e,f), 
the Wigner distributions for the units 1 and 2 are identical to each other and hence shown as a single plot. The 
parameters of the quantum activator–inhibitor units are � = −0.6, γ1 = 0.4, γ2 = 0.1, θ = π , and η = 0.3 . 
The diffusion constants are Dx = Dp = 0 ( Dh = 0 and Dc = 0 ) in (a,c,e) and Dx = 0.005 and Dp = 0.995 
( Dh = −0.99 and Dc = 1 ) in (b,d,f).
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Figure 4.   Turing instability in a pair of diffusively coupled quantum activator–inhibitor units in the weak 
quantum regime. (a,b) 2D plots of the Q distribution Q(x1, x2) . (c,d) 2D plots of the Q distribution Q(p1, p2) . 
(e,f) 3D plots of the stationary Wigner distributions W(x1, p1) and W(x2, p2) of units 1 and 2 (identical to 
each other). Red and yellow dots in (a–d) represent stable fixed points of the deterministic system in the 
classical limit. In (a,c,e), the two units are uncoupled. The states of the units are localized around the origin and 
uncorrelated with each other. In (b,d,f), the two units are diffusively coupled. Due to the Turing instability, the 
two units tend to take different states from each other and show a nonuniform distribution. The parameters 
of the quantum activator–inhibitor units are � = −0.6, γ1 = 1.2, γ2 = 0.5, θ = π , and η = 0.3 . The diffusion 
constants are Dx = Dp = 0 ( Dh = 0 and Dc = 0 ) in (a,c,e) and Dx = 0.005 and Dp = 0.995 ( Dh = −0.99 and 
Dc = 1 ) in (b,d,f).
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Figure 5.   Turing instability in a pair of diffusively coupled quantum activator–inhibitor units in the strong 
quantum regime. (a,b) 2D plots of the Q distribution Q(x1, x2) . (c,d) 2D plots of the Q distribution Q(p1, p2) . 
(e,f) 3D plots of the stationary Wigner distributions W(x1, p1) and W(x2, p2) of units 1 and 2 (identical to 
each other). Red and yellow dots in (a–d) represent stable fixed points of the deterministic system in the 
classical limit. In (a,c,e), the two units are uncoupled. The states of the units are localized around the origin and 
uncorrelated with each other. In (b,d,f), the two units are diffusively coupled. Due to the Turing instability, the 
two units tend to take different states from each other and show a nonuniform distribution. The parameters 
of the quantum activator–inhibitor units are � = −0.6, γ1 = 6.2, γ2 = 3, θ = π , and η = 0.3 . The diffusion 
constants are Dx = Dp = 0 ( Dh = 0 and Dc = 0 ) in (a,c,e) and Dx = 0.005 and Dp = 0.995 ( Dh = −0.99 and 
Dc = 1 ) in (b,d,f).
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entanglement (f, g, h) on the Dx − Dp plane, with respect to the steady state of QME (3). We note that Figs. 6a 
and 6b are common to all regimes, Figs. 6c and 6f are for the semiclassical regime, Figs. 6d and 6g are for the 
weak quantum regime, and Figs. 6e and 6h are for the strong quantum regime.

As shown in Fig. 6a, 6b, the eigenvalue �max of the uniform state is positive in the region below the dotted 
curve, where the diffusivity of the inhibitor Dp is relatively large compared to that of the activator Dx . Turing 
instability is expected to occur also in this region in the quantum system. The red dot ( Dx = 0.005,Dp = 0.995 ) 
represents the diffusion constants in the classical limit corresponding to Figs. 3, 4, and 5.

The RMSD plotted in Fig. 6c–6e shows that the nonuniformity is indeed caused by the Turing instability in 
the semiclassical, weak quantum, and strong quantum regimes and significantly correlated with the maximal 
eigenvalue �max in the classical limit. There is a tendency that the nonuniformity is most strongly pronounced in 
the semiclassical regime (c), moderately in the weak quantum regime (d), and only weakly in the strong quantum 
regime (e), reflecting that the quantum noise is weaker and that the system state more clearly localizes around 
the two classical fixed points in this order (see Figs. 3, 4, and 5).

The negativity N  shown in Fig. 6f–6h also increases with �max , indicating that quantum entanglement 
between the two units also arises in the nonuniform state yielded by the Turing instability. Thus, the entangle-
ment tends to be positively correlated with the nonuniformity between the two activator–inhibitor units and 
becomes stronger in the lower-right part where Dx is small while Dp is large in this parameter region. It is noted 
that a high-N  region also arises when Dp is close to zero while Dx is relatively large, which is outside the Turing-
unstable region and simply shows that the two units are already entangled before the onset of Turing instability 
by the effects of two-mode squeezing and dissipative coupling.

Symmetry breaking via continuous measurement.  We have observed that Turing instability desta-
bilizes the uniform state of the system of two units and gives rise to nonuniformity. The distributions in the 
nonuniform state are localized around the two classical fixed points as observed in Figs. 3, 4, and  5. This can be 
interpreted as a quantum-mechanically mixed state of the two classical situations where the system converges to 
either of the two stable fixed points. Thus, in contrast to the classical Turing instability in which only one of the 
two states is realized depending on the initial conditions, the symmetry of the coupled system is still preserved 
due to quantum noise even if the system state is nonuniform. Here, we show that further performing continuous 
measurement on the system can break this symmetry and reveal the true asymmetry of the system, which can 
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2
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be observed only in quantum systems. A similar measurement-induced spontaneous Z2 symmetry breaking in 
a spin-chain system has been reported74.

We introduce continuous measurement on the linear damping (single-photon loss) bath coupled to each 
unit in QME (3). The stochastic master equations (SMEs) describing the system and the measurement results 
are then given by75

where the first equation describes the stochastic evolution of the density operator ρ of the whole system under 
the effect of the measurement and the second equation describes the result Yj ( j = 1, 2 ) of the measurement on 
each unit. The term H[L]ρ = Lρ + ρL† − Tr [(L+ L†)ρ]ρ represents the effect of measurement performed on 
the quadrature L+ L† ; κj and φj (0 ≤ κj ≤ 1, 0 ≤ φj < 2π) represent the efficiency and quadrature angle of the 
measurement on the jth unit (j = 1, 2) , respectively; Yj is the output of the measurement result on the jth unit 
(j = 1, 2) ; and dW1 and dW2 represent independent Wiener processes satisfying �dWk(t)dWl(t)� = δkldt for 
k, l = 1, 2 . In contrast to QME, which gives averaged results over all possible measurement outcomes, this SME 
gives a single quantum trajectory of the system under the continuous measurement and can reveal the symmetry 
breaking of the system, which is preserved due to quantum noise in the steady state of QME.

Figure 7 shows the behavior of the system under continuous measurement in the semiclassical regime. The 
parameters are the same as in Fig. 3b, 3d, 3f, namely, the uniform state of the system has been destabilized by the 
Turing instability. Considering that the nonuniformity is more pronounced in the position variable x than in the 
momentum variable p in Fig. 3d, we set φj = 0 and perform the measurement on the quadrature xj = (aj + a†j )/2 
( j = 1, 2 ), which is conjugate to the momentum pj , of both units. We set the measurement efficiency as κj = 0.25 
( j = 1, 2 ) for both units and the initial state of the whole system as the two-mode vacuum state.

Figures 7a and 7b show the instantaneous marginal Wigner distributions W(x1, p1) of ρ1 and W(x2, p2) of ρ2 
at time t = 50 sufficiently after the initial transient, obtained by a DNS of SME (5). In contrast to Fig. 3f, these 
Wigner distributions are not stationary and continue to fluctuate due to the continuous measurement. Each 
distribution is localized around either of the two stable fixed points of classical system (4) and tends to take the 
opposite state from the other one.

The anticorrelation between the states of the two units is evident in Fig. 7c–7f, where the time evolution 
of the average values of the position and momentum operators of both units, �xj� = Tr [((aj + a†j )/2)ρ] and 
�pj� = −iTr [((aj − a†j )/2)ρ] ( j = 1, 2 ), obtained from a single stochastic trajectory of quantum SME (5) are 
plotted. The two units randomly alternate between the two nonuniform states and tend to take opposite states 
from each other. This clearly indicates that the symmetry preserved by quantum noise is broken and that the 
asymmetry caused by the Turing instability in the classical sense is revealed by the extraction of information on 
the x variables of the two units via continuous measurement.
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Figure 7.   Turing instability under continuous quantum measurement in the semiclassical regime. (a,b) 3D 
snapshot plots of the Wigner distributions W(x1, p1) and W(x2, p2) at t = 50 . (c,d,e,f) Time evolution of the 
average values of the position and momentum operators for two units: (c) 〈x1〉 , (d) 〈x2〉 , (e) 〈p1〉 , and (f) 〈p2〉 . 
(g) Time evolution of the negativity N  . The parameters are � = −0.6, γ1 = 0.4, γ2 = 0.1, θ = π , η = 0.3 , 
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Figure 7g shows the time evolution of the negativity N  under the continuous measurement. The two units 
are clearly entangled and the degree of entanglement continuously fluctuates around the value of N  in the steady 
state when the measurement is not performed.

Similarly, Fig. 8 shows the effect of continuous measurement in the weak quantum regime shown in Fig. 4. We 
observe qualitatively similar results to those for the semiclassical case in Fig. 7 in the quantum regime. Although 
the nonuniformity is less pronounced, the negativity is slightly larger on average, and the fluctuations are stronger 
due to the effect of the stronger quantum measurement noise. Notably, the negativity takes larger values than the 
case without performing measurement, indicating that the symmetry breaking due to the continuous measure-
ment induces stronger entanglement in this regime.

Finally, we show in Fig. 9 the effect of continuous measurement in the strong quantum regime shown in Fig. 5. 
Although the fluctuations are stronger due to the effect of the stronger quantum measurement noise than the 
two previous cases, the nonuniformity between two single units, which was quite small in Fig. 5, is enhanced 
and more explicitly observed under the continuous measurement. Additionally, the negativity takes larger values 
than the case without measurement also in this strong quantum regime. See also the Supplementary Movies for 
the time evolution of the marginal Wigner distributions of the two units.
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Figure 8.   Turing instability under continuous quantum measurement in the weak quantum regime. (a,b) 3D 
snapshot plots of the Wigner distributions W(x1, p1) and W(x2, p2) at t = 49.3 . (c,d,e,f) Time evolution of the 
average values of the position and momentum operators for two units: (c) 〈x1〉 , (d) 〈x2〉 , (e) 〈p1〉 , and (f) 〈p2〉 . 
(g) Time evolution of the negativity N  . The parameters are � = −0.6, γ1 = 1.2, γ2 = 0.5, θ = π , η = 0.3 , 
Dh = −0.99 , Dc = 1 ( Dx = 0.005 and Dp = 0.995 ), and φj = 0 and κj = 0.25 for both j = 1, 2 . In (f), the black 
line represents the value for the steady state of the system without performing measurement.
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line represents the value for the steady state of the system without performing measurement.
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Concluding remarks
We have theoretically demonstrated that Turing instability can occur in a quantum dissipative system. We showed 
that a degenerate parametric oscillator with nonlinear damping can be regarded as a quantum activator–inhibi-
tor unit and that diffusive coupling between two such quantum activator–inhibitor units can give rise to Turing 
instability when the diffusivities of the activator and inhibitor variables are appropriately chosen. Due to the 
Turing instability, the system becomes nonuniform but still remains in a symmetrically mixed state by the effect 
of quantum noise. Further performing continuous quantum measurement breaks the symmetry and reveals the 
asymmetry between the two units.

We suppose that the physical setup assumed in our model can, in principle, be implemented by using cur-
rently available experimental devices. The quantum activator–inhibitor unit is essentially a degenerate parametric 
oscillator with nonlinear damping71. The coupling terms via squeezing can be implemented by adjusting the 
single-mode squeezing parameter of the two quantum activator–inhibitor systems and introducing two-mode 
squeezing76. The dissipative coupling term could be realized by indirectly coupling the two oscillators through 
an additional cavity and adiabatically eliminating it77; similar approaches have also been proposed for realizing 
dissipative couplings between ensembles of atoms16 and optomechanical Stuart–Landau oscillators14. Another 
possible approach to the experimental realization of the proposed setups would be to use “membrane-in-the-
middle” optomechanics78. Physical implementations of single-mode squeezing and nonlinear damping79, dis-
sipative coupling14, and two-mode squeezing80 have also been proposed. We expect that our numerical results 
for the Wigner distributions can be experimentally observed via quantum tomography81. The experimental 
implementation of the continuous quantum measurement has also been reported recently82.

In this study, we numerically analyzed a pair of quantum activator–inhibitor units that exhibits Turing insta-
bility in the classical, deterministic limit. For classical systems, analytical perturbative approaches have been 
applied to the classical master equation for predicting stochastic Turing patterns41,83–85. We may be able to employ 
similar perturbative approaches for the quantum master equation12 and analyze the quantum Turing instability 
in more detail.

The quantum activator–inhibitor unit could also be implemented by using quantum spin systems, which is 
interesting because small quantum spin systems may help us cope with the exponential increase in the dimen-
sions of the Hilbert space for large quantum networks17. Similar to previous studies that discussed the Kerr 
effects15,86 and quantum jumps87 in nonequilibrium pattern formation in quantum dissipative systems, clarifying 
the relationship between the Turing instability and strong quantum effects would be important. A more detailed 
systematic analysis on the relationship between Turing instability and entanglement is also a future study.

Although we analyzed only the minimal two-unit setup in this study, we may further consider Turing insta-
bility in larger networks of quantum activator–inhibitor units, similar to the Turing instability in networks of 
classical activator–inhibitor systems 45–49. Compared to previous studies on quantum effects on nonlinear optical 
pattern formation35,36, which are not easy to analyze even numerically because calculations of all operator prod-
ucts are required37, the activator–inhibitor system proposed in this study can be extended to larger networks more 
easily. Thus, it may be used to reveal the novel emergence of self-organized patterns in quantum dissipative sys-
tems, similar to previous studies on the Kuramoto transition12, quantum chimera states88, and oscillation death89 
in globally connected quantum Stuart–Landau oscillator networks. Though we focused on a pair of coupled 
activator–inhibitor units in this study, we may also be able to further couple many units on a lattice or network 
of units and analyze the spatio-temporal pattern formation in fully quantum mechanical dissipative systems.

The quantum Turing instability may also find technical applications. For example, signal amplification near 
bifurcation points has been theoretically investigated in classical biological systems90,91 and other classical92, 
nanoscale93, and quantum94 nonlinear systems, and signal amplifiers using nonlinear bifurcation have been 
experimentally implemented95. Similarly, the Turing bifurcation in quantum dissipative systems may also offer 
new engineering applications for quantum signal amplification and quantum sensing.

As Turing instability is a paradigm of nonequilibrium self-organization in classical systems96, we believe 
that our results on the possibility of Turing instability in quantum dissipative systems also play an essentially 
important role in studying self-organization in quantum systems and will be relevant in the growing field of 
quantum technology.

Methods
Classical activator–inhibitor systems and Turing instability.  A classical activator–inhibitor system 
is generally described by

where (̇) denotes the time derivative and x and p represent the activator and inhibitor variables, respectively. 
We assume that this system has a stable fixed point at (x, p) = (x̄, p̄) . Denoting small variations from (x̄, p̄) as 
δx = x − x̄ and δp = p− p̄ and linearizing Eq. (6), we obtain

where we assume that the coefficients satisfy

(6)
ẋ = f (x, p),

ṗ = g(x, p),

(7)
d

dt

(
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)

=
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fx fp
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 These are the conditions in which x is the activator and p is the inhibitor. These standard conditions can be eased 
in more general settings55, but we restrict our focus on the cases satisfying these conditions.

We consider two diffusively coupled activator–inhibitor units with identical properties, described by

where Dx and Dp represent the diffusion constants of the activator and inhibitor variables, respectively. This 
coupled system has a trivial fixed point (x1, p1, x2, p2) = (x̄, p̄, x̄, p̄) , which corresponds to a uniform state of the 
whole system.

In Turing instability, contrary to our intuition, this uniform state can be destabilized by the effect of diffusion 
when the parameters satisfy appropriate conditions. To see this, we linearize Eq. (9) as

where δxj = xj − x̄ and δpj = pj − p̄ ( j = 1, 2 ) are small variations. The maximum eigenvalue of the Jacobian 
matrix in Eq. (10) is given by

 Therefore, when �max > 0 , namely, when

the uniform fixed point (x1, p1, x2, p2) = (x̄, p̄, x̄, p̄) of the coupled system destabilizes.
In our model, the functions f and g are given by

where γ1, γ2, η , and � are parameters. The derivatives of f and g at this fixed point are given by

 With the parameter values used in the present study, the single system in Eq. (6) has a stable fixed point at 
(x, p) = (x̄, p̄) = (0, 0) , the conditions in Eq. (8) for the single system to be of the activator–inhibitor type are 
satisfied, and the condition for the Turing instability in Eq. (12) can be satisfied for a pair of diffusively coupled 
quantum activator–inhibitor units.

As the Turing instability takes place, the trivial fixed point (0, 0, 0, 0) of the system is destabilized, and two 
new stable fixed points,

which correspond to the nonuniform states of the whole system, arise via the supercritical pitchfork bifurcation, 
where

(8)
fx = ∂f /∂x|(x̄,p̄) > 0, fp = ∂f /∂p|(x̄,p̄) < 0,

gx = ∂g/∂x|(x̄,p̄) > 0, gp = ∂g/∂p|(x̄,p̄) < 0.
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With the parameter values used in this study, the derivatives of f and g are fx = 0.5 , fp = −0.6 , gx = 0.6 , and 
gp = −0.7 . In Figs. 3 and 4, the maximum eigenvalue of the uniform fixed point is �max ≈ 0.3724 > 0 ; hence, 
Turing instability has already occurred.

Quantum‑classical correspondence via the Wigner distribution.  We generally consider a quantum 
dissipative system with N modes, which is coupled with n reservoirs. We denote by a1, . . . , aN and a†1, . . . , a

†
N 

the annihilation and creation operators of the system, respectively. A general form of the QME describing this 
quantum dissipative system is given by

where ρ is the density operator representing the system state, H is a system Hamiltonian, Lj is a coupling opera-
tor between the system and jth reservoir (j = 1, . . . , n) , and D[L]ρ = LρL† − (ρL†L+ L†Lρ)/2 is the Lindblad 
form72,73.

By using the standard method of phase-space representation72,73, we can introduce the Wigner distribution 
W(α) ∈ R of ρ as

where α = (α1,α
∗
1 , . . . ,αN ,α

∗
N ) ∈ C

2N  represents the state variable in the 2N-dimensional phase space, 
D(�, a) = exp

(

∑

j(�ja
†
j − �

∗
j aj)

)

 , d2N� = d�1d�
∗
1 . . . d�Nd�

∗
N , αj ,α∗

j ∈ C , �j , �∗j ∈ C , and ∗ indicates complex 
conjugate. QME (17) for the density operator ρ can be transformed into a partial differential equation for the 
Wigner distribution W(α)72,73, given by

 Here, the differential operator Lp can be explicitly calculated from Eq. (17) by using the standard calculus72,73.
When the quantum effect is relatively weak, we may neglect the derivative terms higher than the second order 

in Eq. (19). Then, by introducing a real-valued representation of the phase-space variable, X = (x1, p1, . . . , xN , pN ) 
with αj = xj + ipj ( j = 1, . . . ,N ), we can approximate Eq. (19) by the semiclassical FPE for W(X),

 Here, A(X) ∈ R
2N is the the drift vector, and D(X) ∈ R

2N×2N represents the diffusion matrix. The SDE cor-
responding to the above FPE is given by

Here, A(X) is the same as in Eq. (20), the matrix G(X) ∈ R
2N represents the noise intensity satisfying 

G(X)GT (X) = D(X) with T representing the matrix transpose, and dW = (dw1, . . . , dw2N ) ∈ R
2N represents 

a vector of independent Wiener processes satisfying �dwk(t)dwl(t)� = δkldt with k, l = 1, . . . , 2N . The determin-
istic trajectory in the classical limit is given by the deterministic term of the SDE, namely, Ẋ = A(X).

Derivation of Semiclassical Fokker–Planck and stochastic differential equations.  We here give 
explicit forms of the approximate Fokker–Planck equation (FPE) and semiclassical stochastic differential equa-
tion (SDE) derived from quantum master equation (QME) (3) for two diffusively coupled quantum activator–
inhibitor units,

By using the standard calculus for the phase-space representation72,73, we can derive the following partial 
differential equation representing the time evolution of the Wigner distribution W(α, t) for α = (α1,α

∗
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∗
2 ) 

from Eq. (22) :
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 Here and henceforth, j denotes j = 2 when j = 1 and j = 1 when j = 2 , and c.c. denotes the complex conjugate.
In the semiclassical regime where γ2 is sufficiently small, the third-order derivative terms in Eq. (23) can be 

neglected11,15,89 and the coefficients of the second-order derivative terms are positive. Therefore, Eq. (23) can be 
approximated by the FPE

Using a real-valued representation, i.e., X = (x1, p1, x2, p2) with αj = xj + ipj (j = 1, 2) , Eq. (25) can be rewrit-
ten as

where

 Thus, the drift vector is given by A(X) = (Ax1 ,Ap1 ,Ax2 ,Ap2) and the diffusion matrix D(X) is expressed as

where we defined

The SDE corresponding to FPE (26) is given by

where G(X) satisfies G(X)GT (X) = D(X) and dW(t) = (dw1(t), dw2(t), dw3(t) , dw4(t))
T is a vector of independ-

ent Wiener processes satisfying �dwk(t)dwl(t)� = δkldt for k, l = 1, 2, 3, 4.
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 Thus, the matrix G(X) can be chosen as G(X) = U(X)
√

D′(X)U−1(X)89, i.e.,

Direct numerical simulations of the quantum SDE.  In addition to the QME, we also perform direct 
numerical simulations of semiclassical SDE (30) corresponding to FPE (26) to show the relationship of the dis-
tributions of the quantum states with the classical fixed points after the Turing instability. For example, supple-
mentary Figures S1(a) and S1(b) show scatter plots of a stochastic trajectory of two diffusively coupled quantum 
activator–inhibitor units, and Fig. S1(c) shows the 2D plot of the Wigner distribution W(x1,2, p1,2) in Fig. 3f. In 
Figs. S1(a) and S1(b), the states of units 1 and 2 stochastically go back and forth between the two stable fixed 
points due to quantum noise. These scatter plots agree with the Wigner distributions distributed around the two 
stable fixed points in Fig. S1(c).

Characterization of the quantum regime.  We characterize the degree of quantum effect as the nonlin-
ear damping parameter γ2 is varied by using the accuracy of the semiclassical approximation. The discrepancy 
between the semiclassical approximation and the original QME characterizes how deep the system is in the 
quantum regime. To keep the parameters of the corresponding classical systems unchanged, the linear damping 
parameter is chosen as γ1 = γ ′

1 + 2γ2 , where γ ′
1 is a constant, and the other parameters are fixed to the same 

values as those used previously.
Figures 10a, 10b and 10c plot the average numbers of photons in both units and the nonuniformity 

√

�(x1 − x2)2� as functions of the nonlinear damping parameter γ2 . Here, the average number of photons is 
calculated as an ensemble average �a†j aj� = Tr [a†j ajρ] (j = 1, 2) of a†j aj obtained from the QME and as an aver-
age �αjα∗

j �α of αjα∗
j  obtained from the semiclassical SDE, where the relation

holds approximately in the semiclassical regime. The semiclassical results well approximate the results of the 
QME in the regime with small γ2 , and the error due to the semiclassical approximation gradually increases with 
increasing γ2 . Thus, when γ2 = 0.1 (Figs. 2, 3, 6c, 6f, and 7), the semiclassical approximation is valid and the 
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Figure 10.   Characterization of the quantum regime: average photon numbers, nonuniformity, purity, and 
elements of the density matrix of a single unit vs. γ2 . (a) Average photon number of unit 1. (b) Average photon 
number of unit 2. (c) Root mean squared distance 

√

�(x1 − x2)2� (d) Purity P. (e–g) Elements of the density 
matrix of a single unit ρ1 with respect to the number basis in the semiclassical (e), weak quantum (f), and strong 
quantum regime (g). In (a–c), results obtained from the semiclassical SDE �αjα∗

j �α − 1/2 (red dots) and QME 
〈a†j aj〉 (blue lines) ( j = 1, 2 ) are shown, where �αjα∗

j �α is calculated as a time average of αj(t)α∗
j (t) over a time 

interval of length 30000 after the initial transient. The parameters are � = −0.6, θ = π , η = 0.3 , Dh = −0.99 , 
Dc = 1 ( Dx = 0.005 and Dp = 0.995 ), and γ1 = γ ′

1 + 2γ2 with γ ′
1 = 0.2 . In (e-g), γ2 = 0.1 (e), γ2 = 0.5 (f), 

γ2 = 3 (g).
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system is in the semiclassical regime, whereas when γ2 = 0.5 (Figs. 4, 6d, 6g and 8) and γ2 = 3 (Figs. 5, 6e, 6h 
and 9), the semiclassical approximation is no longer valid and the system is in the quantum regime. The degree 
of quantum effect can also be characterized by the purity as shown in Fig. 10d, where the purity increases with 
the increase of γ2 . We also show in Fig. 10e–10g the elements of the density matrix of a single unit ρ1 with respect 
to the number basis in the semiclassical (e), weak quantum (f), and strong quantum regime (g). We see that the 
energy level up to which the elements of the density matrix take non-zero value becomes lower and the discrete-
ness of the energy spectrum becomes more prominent with the increase of γ2.

Negativity.  We use the negativity N = (
∥

∥ρŴ1
∥

∥

1
− 1)/2 to quantify the quantum entanglement of the two 

units, where ρŴ1 represents the partial transpose of the density operator ρ of the two-mode system with units 
1 and 2 with respect to unit 1 and �X�1 = Tr|X| = Tr

√
X†X97,98. A non-zero negativity indicates that the two 

units are entangled. Note that the negativity N ′ = (
∥

∥ρŴ2
∥

∥

1
− 1)/2 calculated with respect to unit 2 is equal to 

the negativity N  calculated with respect to the unit 1.
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