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Melanoma is the major lethal skin malignancy. However, the critical molecular drivers
governing melanoma progression and prognosis are still not clear. By analyzing The
Cancer Genome Atlas (TCGA) data, we identified FUT8-AS1 as a prognosis-related long
non-coding RNA (lncRNA) in melanoma. We further confirmed that FUT8-AS1 is
downregulated in melanoma. Reduced expression of FUT8-AS1 is correlated with
aggressive clinical factors and inferior overall survival. Using in vitro functional assays,
our findings demonstrated that ectopic expression of FUT8-AS1 represses melanoma cell
proliferation, migration, and invasion. FUT8-AS1 silencing promotes melanoma cell
proliferation, migration, and invasion. Furthermore, in vivo functional assays
demonstrated that FUT8-AS1 represses melanoma growth and metastasis.
Mechanistically, FUT8-AS1 was found to bind NF90, repress the interaction between
NF90 and primary miR-145 (pri-miR-145), relieve the repressive roles of NF90 on mature
miR-145-5p biogenesis, and thus promote miR-145-5p biogenesis and upregulate
mature miR-145-5p level. The expression of FUT8-AS1 is positively correlated with
miR-145-5p in melanoma tissues. Via upregulating miR-145-5p, FUT8-AS1 reduces
the expression of NRAS, a target of miR-145-5. FUT8-AS1 further represses MAPK
signaling via downregulating NRAS. Functional rescue assays demonstrated that
inhibition of miR-145-5p reverses the tumor suppressive roles of FUT8-AS1 in
melanoma. The oncogenic roles of FUT8-AS1 silencing are also blocked by MAPK
signaling inhibitor MEK162. In conclusion, these findings demonstrate that FUT8-AS1
exerts tumor suppressive roles in melanoma via regulating NF90/miR-145-5p/NRAS/
MAPK signaling axis. Targeting FUT8-AS1 and its downstream molecular signaling axis
represent promising therapeutic strategies for melanoma.
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INTRODUCTION

Despite the total cancer incidence rate is declined since 1991, the
incidence rate of skin melanoma is still increasing for both male
and female since 1975 (1). Therefore, skin melanoma has been
the fifth most common cancer in male, accounting for 7% of all
site cancers according to 2020 cancer statistics of USA (1). In
female, skin melanoma is the sixth most common cancer and
accounts for 4% of all site cancers according to 2020 cancer
statistics of USA (1). Although recent approval of molecule
targeted therapy and immunotherapy for melanoma has
greatly extended the survival of melanoma patients, most late
melanomas particular for those with metastases are still
incurable (2, 3). Thus, uncovering the critical molecular drivers
responsible for the progression and poor survival of melanomas
would enable more effective therapy for melanoma.

Recently, many high-throughput RNA sequencings and
systems biology approaches have revealed the critical roles of
non-coding RNA (ncRNA) in tumorigenesis and progressions
(4–6). Among these ncRNAs, long non-coding RNA (lncRNA)
and microRNA (miRNA) present significantly aberrant
expression, clinical reverences, and important roles in various
malignancies (7–10). lncRNA is a class of long ncRNAs with
more than 200 nucleotides (nt) in length, and while miRNA is a
class of short ncRNAs with 19–25 nt in length (11–14). Increasing
knowledge of lncRNA and miRNA has revealed that aberrant
expression of lncRNA and miRNA would be potential prognostic
anddiagnostic biomarkers formalignancies (15–17). Furthermore,
many lncRNAs and miRNAs also show oncogenic or tumor
suppressive roles, which are involved in almost every aspect of
cancers, including the initiation, proliferation, apoptosis, cell cycle,
senescence, stemness, migration, invasion, drug-resistance, and so
on (18–20).

In melanoma, the knowledge of miRNAs is relatively
abundant. Many oncogenic or tumor suppressive miRNAs
have been identified, such as the oncogenic miR-410-3p, miR-
21-5p, miR-125b-5p, and miR-378a-5p (21–24) and the tumor
suppressive miR-107, miR-140-5p, miR-204-5p, and miR-128-
3p (25–28). In our previous report, we also found that miR-145-
5p is downregulated in melanoma and suppresses melanoma cell
proliferation, migration, and invasion in vitro, and melanoma
tumor growth in vivo (29). The major mechanism of action of
miRNAs is to bind AGO2 and form RNA-induced silencing
complex (RISC), which further binds target mRNAs and induces
target mRNAs degradation and/or translation inhibition (30). In
our previous report, we also identified NRAS as a direct target of
miR-145-5p, which further modulates MAPK signaling (29).

In comparison, the knowledge of lncRNAs in melanoma is
relative less (31). The contributions of lncRNAs to melanoma
initiation and progression are only starting to be studied (32).
Several cancer-related lncRNAs in melanoma were revealed,
such as SLNCR1, OVAAL, EMICERI, THOR (33–36). In our
previous reports, we also identified three melanoma-related
lncRNAs, including PVT1, ILF3-AS1, and MHENCR (37–39).
The mechanisms of action of lncRNAs are complex and various.
Some lncRNAs directly bind proteins and modulates the
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expression and/or functions of interacted proteins, such as
OVAAL, THOR, and ILF3-AS1 (34, 36, 38). Some lncRNAs
directly bind miRNAs and repress the roles of interacted
miRNAs, such as MHENCR (39). Some lncRNAs may also
directly modulate neighboring protein-coding genes, such as
EMICERI (35). Despite several lncRNAs have been elucidated in
melanoma, the contributions ofmost other lncRNAs tomelanoma
are still unclear. As transcriptomic sequencings have identified
more than 58,000 lncRNAs in human (40), we could not preclude
the contributions of other lncRNAs to melanoma.

To further identify the lncRNAs involved in melanoma, we
analyzed The Cancer Genome Atlas (TCGA) Skin Cutaneous
Melanoma (SKCM) dataset, and searched the genes correlated
with outcome of melanoma patients. FUT8-AS1 was identified as
one of the most significantly correlated genes with melanomas’
prognosis. In this study, we further investigated the expression
and clinical reverence of FUT8-AS1 in melanoma. In vitro and in
vivo gain- and loss-of-function assays were performed to
elucidate the biological roles of FUT8-AS1 in melanoma.
Furthermore, the mechanism of action of FUT8-AS1 was
explored and we identified a relative novel mechanism of
action of FUT8-AS1, which is the promotion of miR-145-
5p biogenesis.
MATERIALS AND METHODS

Human Tissue Samples
A total of 68 malignant melanoma tissues and 36 age and gender-
matched skin tissues with melanocytic nevi were acquired from
patients who had undergone surgical resection at the 969th

Hospital of PLA (Hohhot, Inner Mongolia, China). All tissue
samples were diagnosed by histopathological examination. The
Review Board of the 969th Hospital of PLA approved this study.
Written informed consents were obtained from all patients.

Cell Culture and Treatment
Humanmelanoma cell lines CHL-1 and SK-MEL-2 were acquired
from Cell Resource Center, Chinese Academy of Sciences. CHL-1
and SK-MEL-2 cells were cultured in DMEM and MEMmedium
respectively supplemented with 10% fetal bovine serum (Gibco,
Thermo Fisher Scientific).Where indicated, cells were treated with
1 µMMEK162 (Selleck) for indicated time.

RNA Isolation and Real-Time PCR
Total RNA was isolated from indicated tissues and cells by Trizol
reagent (Invitrogen, Thermo Fisher Scientific) in accordance
with the manufacturer’s manual. The first strand cDNA was
generated using the RNA and the PrimeScript™ II 1st Strand
cDNA Synthesis Kit (Takara, Dalian, China). Real-time PCR was
performed using TB Green® Premix Ex Taq™ II (Takara) on
StepOnePlus Real-Time PCR System (Thermo Fisher Scientific)
with the primers 5’-GGCTCCTTGCTACTTTTAGGG-3’
(forward) and 5’-TGGGGGGGGTCTTTCTCTTC-3’ (reverse)
for FUT8-AS1, 5 ’-GAAATACGCCAGTACCGAATG-3’
(forward) and 5’-TTCTCCTCCAGGGAAGTCAG-3’ (reverse)
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for NRAS, 5’-GTCGGAGTCAACGGATTTG-3’ (forward) and
5’-TGGGTGGAATCATATTGGAA-3’ (reverse) for GAPDH.
GAPDH was used as endogenous control for the quantification
of FUT8-AS1 and NRAS expression. For the quantification of
miRNAs and pri-miRNAs expression, real-time PCR was carried
out using the TaqMan™ Advanced miRNA Assay (Thermo
Fisher Scientific) and TaqMan™ Pri-miRNA Assay (Thermo
Fisher Scientific) respectively on StepOnePlus Real-Time PCR
System in accordance with the manufacturer’s manuals.

Construction of Stable Cell Lines
To construct melanoma cells stably overexpressing FUT8-AS1,
FUT8-AS1 overexpressing lentivirus (LV11/CMV/Neo) were
acquired from GenePharma (Shanghai, China) and infected
into CHL-1 and SK-MEL-2 cells. Next, the cells were treated
with neomycin for 4 weeks to select CHL-1 and SK-MEL-2 cells
overexpressing FUT8-AS1. Two pairs of cDNA oligonucleotides
inhibiting FUT8-AS1 expression were designed and generated by
GenePharma. After annealing, double-strand oligonucleotides
were inserted into the shRNA lentiviral vector pLV6/EF-1a/Puro
to produce shRNA lentivirus inhibiting FUT8-AS1 expression. A
scrambled non-targeting shRNA was used as negative control
(NC). Next, CHL-1 and SK-MEL-2 cells were infected with the
shRNA lentivirus. The cells were treated with puromycin for 4
weeks to select FUT8-AS1 silenced cells. The shRNA sequences
were as follows: 5’-GATCCGCCCTACTTTATCTTGTAAGA
TTCAAGAGATCTTACAAGATAAAGTAGGGCTTTTTTG-3’
(forward) and 5 ’-AATTCAAAAAAGCCCTACTTTAT
CTTGTAAGATCTCTTGAATCTTACAAGATAAAGTA
GGGCG-3’ (reverse) for LV-shRNA-1, 5’-GATCCGCGGAA
GTTTATTTAGTACGGTTCAAGAGACCGTACTAAAT
AAACTTCCGCTTTTTTG-3’ (forward) and 5’-AATTCA
AAAAAGCGGAAGTTTATTTAGTACGGTCTCTTGA
ACCGTACTAAATAAACTTCCGCG-3’ (reverse) for LV-
shRNA-2, 5’-GATCCGTTCTCCGAACGTGTCACGTTTC
AAGAGAACGTGACACGTTCGGAGAACTTTTTTG-3’
(forward) and 5’-AATTCAAAAAAGTTCTCCGAACGTGT
CACGTTCTCTTGAAACGTGACACGTTCGGAGAACG-3’
(reverse) for LV-shNC. To construct melanoma cells
overexpressing FUT8-AS1 and concurrently inhibiting miR-
145-5p, FUT8-AS1 overexpressed CHL-1 cells were infected
with miR-145-5p inhibiting lentivirus (Genechem Co. Ltd.,
Shanghai, China) and treated with neomycin and puromycin
for 4 weeks to select FUT8-AS1 overexpressed and concurrently
miR-145-5p inhibited cells.

Cell Viability, Proliferation, Migration, and
Invasion Assays
Glo cell viability assay was performed to measure cell viability as
previously described (38). Briefly, 3,000 indicated melanoma
cells per well were plated into 96-well plates. At the indicated
time, the luminescence values were detected by the Cell Titer-Glo
Luminescent Cell Viability Assay (Promega) to record cell
viability. Ethynyl deoxyuridine (EdU) incorporation assay was
performed using the EdU Kit (Roche) to measure cell
proliferation as previously described (38). Transwell migration
Frontiers in Oncology | www.frontiersin.org 3
assay was performed to measure cell migration as previously
described (38). Transwell invasion assay was performed to
measure cell invasion as previously described (38).

Xenografts in Nude Mice
Athymic BALB/c nude mice were purchased from Chinese
Academy of Sciences and maintained in pathogen-free
condition. The use of animals was approved by the Review
Board of the 969th Hospital of PLA (Hohhot, Inner Mongolia,
China). A total of 3.0 × 106 indicated melanoma cells were
subcutaneously injected into the flanks of nude mice.
Subcutaneous xenograft volumes were detected using caliper
every 7 days and calculated following the formula V = 0.5 ×
LW2 (L, tumor length; W, tumor width). At the 28th

day after injection, subcutaneous xenografts were resected
and weighed. Subcutaneous xenografts were further used to
carry out immunohistochemistry (IHC) staining with the
primary antibody against Ki67 (ab15580, 1 µg/ml, Abcam).
Subcutaneous xenografts were also used to perform TdT-
mediated dUTP Nick-End Labeling (TUNEL) staining using
the One Step TUNEL Apoptosis Assay Kit (Beyotime,
Shanghai, China). To evaluate melanoma liver metastasis in
vivo, 3.0 × 106 indicated melanoma cells were intrasplenically
injected into nude mice to construct liver metastasis model. At
the 28th day after injection, the mice were sacrificed and the
livers were resected. Hematoxylin-eosin (H&E) staining was
performed using the livers. To evaluate melanoma lung
metastasis in vivo, 3.0 × 106 indicated melanoma cells were
injected into tail vein of nude mice to construct lung metastasis
model. At the 28th day after injection, the mice were sacrificed
and the lungs were resected. H&E staining was performed using
the lungs.
RNA Pull-Down Assay
FUT8-AS1 full-length sequences were PCR-amplified with the
primers 5 ’-GGAATTCTCGCTGCGCCGGTGGAGA-3 ’
(forward) and 5 ’-GCTCTAGATTTCAGTTGGAAGG
AGGTAGG-3’ (reverse). The PCR products were cloned into
the EcoR I and Xba I sites of pSPT19 vector (Roche) to construct
pSPT19-FUT8-AS1. NF90 binding sites mutated pSPT19-FUT8-
AS1 (pSPT19-FUT8-AS1-mut) was constructed using the Fast
Mutagenesis System (TransGen Biotech, Beijing, China) with the
p r im e r s 5 ’ - CTTTATCTTGTAAGAGGACAATCC
ACATTCAC-3’ (forward) and 5’-TTGTCCTCTTACAAGATA
AAGTAGGGCTTCG-3’ (reverse). Wild type and NF90 binding
sites mutated FUT8-AS1 was in vitro transcribed and
biotinylated from pSPT19-FUT8-AS1 and pSPT19-FUT8-AS1-
mut, respectively, using the Biotin RNA Labeling Mix (Roche)
and Sp6 RNA polymerase (Roche). After purification, 3 µg of
wild type or NF90 binding sites mutated FUT8-AS1 were
incubated with 1 mg of whole-cell lysates from CHL-1 cells at
25°C for 1 h. The streptavidin agarose beads (Thermo Fisher
Scientific) were used to enrich biotinylated RNA and interacted
proteins. The proteins present in the pull-down material were
detected using western blot.
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Western Blot
Western blot was conducted as previously described (38) with
the primary antibodies: for NF90, ab131004, 1:2,000, Abcam; for
EZH2, #07-689, 1:2,000, Millipore; for NRAS, ab154291, 1:1,000,
Abcam; for GAPDH, ab8245, 1:5,000, Abcam; for phospho-
MEK1/2, #9154, 1:1,000, Cell Signaling Technology; for MEK1/
2, #8727, 1:1,000, Cell Signaling Technology; for phospho-ERK1/
2, #4370, 1:2,000, Cell Signaling Technology; for ERK1/2, #4695,
1:1,000, Cell Signaling Technology.

RNA Immunoprecipitation (RIP)
RIP assays were performed in indicated melanoma cells using the
Magna RIP RNA-Binding Protein Immunoprecipitation Kit
(Millipore) and an antibody against NF90 (5 µg per reaction;
ab131004, Abcam) in accordance with the manufacturer’s manual.

Statistical Analysis
GraphPad Prism v6.0 was employed to perform all statistical
analyses. For comparisons, log-rank test, Mann-Whitney test,
two-tailed unpaired t test, one-way ANOVA followed by
Dunnett’s multiple comparisons test, Spearman correlation
analysis, or one-way ANOVA followed by Tukey’s multiple
comparisons test was conducted as indicated in figure legends.
P < 0.05 was considered as statistically significant.
Frontiers in Oncology | www.frontiersin.org 4
RESULTS

Reduced Expression of FUT8-AS1 Is
Correlated With Inferior Prognosis of
Melanoma
To search the genes correlated with prognosis of melanoma, we
analyzed The Cancer Genome Atlas (TCGA) Skin Cutaneous
Melanoma (SKCM) dataset to retrieve the differentially
expressed genes between different vital statuses (P-value < 0.01,
fold change ≥2, Supplementary Table 1). Among these
differentially expressed genes, we noted FUT8-AS1, which has
a relative more significant P-value and bigger fold change.
Further analysis of the TCGA-SKCM dataset revealed that
reduced expression of FUT8-AS1 indicated inferior overall
survival (Figure 1A). Two in silico tools, namely the Coding
Potential Assessment Tool (CPAT) (http://lilab.research.bcm.
edu/cpat/index.php) and the Coding Potential Calculator
(CPC) (http://cpc2.cbi.pku.edu.cn/) were employed to calculate
the coding potential of FUT8-AS1. CPC and CPAT scores of
FUT8-AS1 were equally low as well-known lncRNA HOTAIR
(Supplementary Figures 1A, B), which indicated the noncoding
nature of FUT8-AS1. Next, we measured FUT8-AS1 expression
in our own cohort including 36 benign nevi and 68 melanomas
using real-time PCR. The results indicated that FUT8-AS1 was
A B

D E F

C

FIGURE 1 | The expression and clinical relevance of FUT8-AS1 in melanoma. (A) Kaplan-Meier survival curves of skin cutaneous melanoma (SKCM) from TCGA
dataset stratified by FUT8-AS1 expression (low 50% [n = 229] versus high 50% [n = 229]). P < 0.0001 by log-rank test. (B) FUT8-AS1 expression in 36 benign nevi
and 68 melanoma tissues was measured by real-time PCR. (C) FUT8-AS1 expression in 18 melanoma tissues with thickness <1 mm and 50 melanoma tissues with
thickness >1 mm. (D) FUT8-AS1 expression in 25 melanoma tissues without ulceration and 43 melanoma tissues with ulceration. (E) FUT8-AS1 expression in 52
melanoma tissues without distant metastasis and 16 melanoma tissues with distant metastasis. For (B–E), data are presented as median with interquartile range.
**P < 0.01, ****P < 0.0001 by Mann-Whitney test. (F) Kaplan-Meier survival curves of 68 melanomas stratified by FUT8-AS1 expression (low 50% [n = 34] versus
high 50% [n = 34]). P = 0.0103 by log-rank test.
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downregulated in melanoma tissues compared with benign nevi
(Figure 1B). Correlation analyses between FUT8-AS1 expression
and clinicopathological characters indicated that reduced
expression of FUT8-AS1 was correlated with thickness,
ulceration, and metastasis (Figures 1C–E). Moreover, Kaplan-
Meier survival analysis indicated that reduced expression of
FUT8-AS1 was correlated with inferior overall survival among
these 68 melanomas (Figure 1F). Thus, these findings suggest
that FUT8-AS1 is downregulated in melanoma and reduced
expression of FUT8-AS1 is correlated with aggressive clinical
factors and inferior overall survival.

FUT8-AS1 Inhibits Melanoma Cell
Proliferation, Migration, and Invasion
In Vitro
Due to the significant correlation between FUT8-AS1 expression
and clinical characteristics of melanoma, we next investigated the
potential roles of FUT8-AS1 in melanoma. We constructed
CHL-1 and SK-MEL-2 cells stably overexpressing FUT8-AS1
via FUT8-AS1 overexpression lentivirus mediated transfection.
The overexpression efficiencies were confirmed by real-time PCR
(Figures 2A, B). Glo cell viability assays indicated that both
Frontiers in Oncology | www.frontiersin.org 5
CHL-1 and SK-MEL-2 cells overexpressing FUT8-AS1 had
reduced cell viabilities compared with their control cells,
respectively (Figures 2C, D). EdU incorporation assays further
indicated that both CHL-1 and SK-MEL-2 cells overexpressing
FUT8-AS1 had slower cell proliferation rates compared with
their control cells, respectively (Figure 2E). Transwell migration
assays indicated that both CHL-1 and SK-MEL-2 cells
overexpressing FUT8-AS1 had less migrated cell numbers
compared with their control cells, respectively (Figure 2F).
Transwell invasion assays indicated that both CHL-1 and SK-
MEL-2 cells overexpressing FUT8-AS1 had less invasive cell
numbers compared with their control cells, respectively (Figure
2G). Thus, these findings suggest that FUT8-AS1 inhibits
melanoma cell proliferation, migration, and invasion in vitro.

To further confirm the tumor suppressive roles of FUT8-AS1
in melanoma, we constructed FUT8-AS1 stably silenced CHL-1
and SK-MEL-2 cells via two independent FUT8-AS1 specific
shRNAs lentivirus mediated transfection (Figures 3A, B). Glo
cell viability assays indicated that FUT8-AS1 silenced CHL-1 and
SK-MEL-2 cells both had increased cell viabilities compared with
their control cells, respectively (Figures 3C, D). EdU
incorporation assays indicated that FUT8-AS1 silenced CHL-1
A B D

E F G

C

FIGURE 2 | FUT8-AS1 inhibits melanoma cell proliferation, migration, and invasion. (A) FUT8-AS1 expression in CHL-1 cells overexpressing FUT8-AS1or control
was measured by real-time PCR. (B) FUT8-AS1 expression in SK-MEL-2 cells overexpressing FUT8-AS1 or control was measured by real-time PCR. (C) Cell
viabilities of CHL-1 cells overexpressing FUT8-AS1 or control were determined by the Glo cell viability assay. (D) Cell viabilities of SK-MEL-2 cells overexpressing
FUT8-AS1 or control were determined by the Glo cell viability assay. (E) Cell proliferation of CHL-1 and SK-MEL-2 cells overexpressing FUT8-AS1 or control were
determined by the EdU incorporation assay. The red color indicates EdU-positive nuclei. Scale bars, 200 µm. (F) Cell migration of CHL-1 and SK-MEL-2 cells
overexpressing FUT8-AS1 or control were determined by the transwell migration assay. Scale bars, 100 µm. (G) Cell invasion of CHL-1 and SK-MEL-2 cells
overexpressing FUT8-AS1 or control were determined by the transwell invasion assay. Scale bars, 100 µm. Data are presented as mean ± SD. *P < 0.05, **P <
0.01, ***P < 0.001 by two-tailed unpaired t test.
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and SK-MEL-2 cells both had quicker cell proliferation rates
compared with their control cells, respectively (Figure 3E).
Transwell migration assays indicated that FUT8-AS1 silenced
CHL-1 and SK-MEL-2 cells both had more migrated cell
numbers compared with their control cells, respectively
(Figure 3F). Transwell invasion assays indicated that FUT8-
AS1 silenced CHL-1 and SK-MEL-2 cells both had more invasive
cell numbers compared with their control cells, respectively
(Figure 3G). Collectively, these findings suggest that FUT8-
AS1 silencing promotes melanoma cell proliferation, migration,
and invasion in vitro, further supporting the tumor suppressive
roles of FUT8-A1 in melanoma.
Frontiers in Oncology | www.frontiersin.org 6
FUT8-AS1 Inhibits Melanoma Growth and
Metastasis In Vivo
To investigate the roles of FUT8-AS1 in melanoma growth in
vivo, FUT8-AS1 stably overexpressed and control CHL-1 cells
were subcutaneously inoculated into nude mice. Tumor volumes
were measured every 7 days and the tumors were excised and
weighed at the 28th day after inoculation. The results indicated
that the tumors formed by CHL-1 cells overexpressing FUT8-
AS1 had a slower growth rate and formed a smaller tumor compared
with the tumors formed by control cells (Figures 4A, B).
Proliferation marker Ki67 IHC staining indicated that the tumors
formed by CHL-1 cells overexpressing FUT8-AS1 had less Ki67
A B

D E

F G

C

FIGURE 3 | FUT8-AS1 silencing promotes melanoma cell proliferation, migration, and invasion. (A) FUT8-AS1 expression in CHL-1 cells silencing FUT8-AS1 or
control was measured by real-time PCR. (B) FUT8-AS1 expression in SK-MEL-2 cells silencing FUT8-AS1 or control was measured by real-time PCR. (C) Cell
viabilities of CHL-1 cells silencing FUT8-AS1 or control were determined by the Glo cell viability assay. (D) Cell viabilities of SK-MEL-2 cells silencing FUT8-AS1 or
control were determined by the Glo cell viability assay. (E) Cell proliferation of CHL-1 and SK-MEL-2 cells silencing FUT8-AS1 or control were determined by the EdU
incorporation assay. The red color indicates EdU-positive nuclei. Scale bars, 200 µm. (F) Cell migration of CHL-1 and SK-MEL-2 cells silencing FUT8-AS1 or control
were determined by the transwell migration assay. Scale bars, 100 µm. (G) Cell invasion of CHL-1 and SK-MEL-2 cells silencing FUT8-AS1 or control were
determined by the transwell invasion assay. Scale bars, 100 µm. Data are presented as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001 by one-way ANOVA
followed by Dunnett’s multiple comparisons test.
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positive cells compared with the tumors formed by control cells
(Figure 4C). TUNEL staining indicated that the tumors formed
by CHL-1 cells overexpressing FUT8-AS1 had more apoptotic cells
compared with the tumors formed by control cells (Figure 4D).
To investigate the roles of FUT8-AS1 in melanoma metastasis
in vivo, CHL-1 cells overexpressing FUT8-AS1 or control were
intrasplenically injected to construct liver metastasis model.
The results indicated that CHL-1 cells overexpressing FUT8-AS1
formed less liver metastases compared with control CHL-1 cells
(Figure 4E). Furthermore, CHL-1 cells overexpressing FUT8-AS1 or
control were injected into the tail veins of nude mice to construct
lung metastasis model. The results indicated that CHL-1 cells
overexpressing FUT8-AS1 formed less lung metastases compared
with control CHL-1 cells (Figure 4F). Thus, these findings suggest
that FUT8-AS1 inhibits melanoma growth and metastasis in vivo,
further supporting the tumor suppressive roles of FUT8-AS1
in melanoma.

FUT8-AS1 Enhance miR-145-5p
Biogenesis via Binding NF90
Many lncRNAs were shown to exert their biological roles via
interacting with proteins (41). To identify whether FUT8-AS1
could also interact with proteins, we used the online in silico tool
RNA-Protein Interaction Prediction (RPISeq) (http://pridb.
gdcb.iastate.edu/RPISeq/) to predict the potential interaction
between FUT8-AS1 and proteins. Notably, we predicted a
potential interaction between FUT8-AS1 and NF90 with an
Frontiers in Oncology | www.frontiersin.org 7
interaction probability of 0.95. FUT8-AS1 contains a conserved
NF90 binding sequence (5’-CUGUU-3’, 452-456nt of FUT8-
AS1, Supplementary Figure 2), supporting the potential
interaction between FUT8-AS1 and NF90. NF90 has been
revealed to repress miR-145-5p biogenesis via binding pri-
miR-145 (42). Our previous report had revealed the tumor
suppressive role of miR-145-5p in melanoma (29). Therefore,
we next investigated the potential effects of FUT8-AS1 on
NF90/miR-145-5p. RNA pull-down assays using in vitro
transcribed biotin-labeled FUT8-AS1 showed the specific
enrichment of NF90, but not EZH2 (Figure 5A). In addition,
the enrichment of NF90 by FUT8-AS1 was significantly reduced
by the mutation of NF90 binding sequence in FUT8-AS1 (Figure
5A). RIP assays with NF90 specific antibody showed the
enrichment of FUT8-AS1, but not GAPDH mRNA (Figure
5B), which further supports the interaction between FUT8-
AS1 and NF90. To investigate whether NF90 regulates miR-
145-5p biogenesis in melanoma and whether FUT8-AS1
modulates the effects of NF90 on miR-145-5p, we first detected
the effects of NF90 on miR-145-5p. Silencing of NF90
significantly upregulated miR-145-5p expression in both CHL-
1 and SK-MEL-2 cells (Figure 5C). RIP assays with NF90 specific
antibody revealed the significant enrichment of pri-miR-145 in
both CHL-1 and SK-MEL-2 cells (Figures 5D, E), supporting the
binding of NF90 to pri-miR-145 in melanoma. Furthermore,
overexpression of FUT8-AS1 significantly decreased the binding
between pri-miR-145 and NF90 in SK-MEL-2 cells (Figure 5D).
A B
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FIGURE 4 | FUT8-AS1 inhibits melanoma growth and metastasis in vivo. (A, B) CHL-1 cells overexpressing FUT8-AS1 or control were subcutaneously inoculated
into nude mice. Tumor volumes were measured every 7 days (A). The tumors were excised and weighed at the 28th day after inoculation (B). (C) The tumors formed
by CHL-1 cells overexpressing FUT8-AS1 or control were used to perform Ki67 IHC staining. Scale bars, 50 µm. (D) The tumors formed by CHL-1 cells
overexpressing FUT8-AS1 or control were used to perform TUNEL staining. Scale bars, 50 µm. (E) CHL-1 cells overexpressing FUT8-AS1 or control were inoculated
into spleen of nude mice to construct liver metastasis model. The livers were excised and used to perform H&E staining. Scale bars, 500 µm. (F) CHL-1 cells
overexpressing FUT8-AS1 or control were inoculated into tail vein of nude mice to construct lung metastasis model. The lungs were excised and used to perform
H&E staining. Scale bars, 1,000 µm. Data are presented as mean ± SD. n = 6 mice in each group. *P < 0.05, **P < 0.01 by Mann-Whitney test.
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FIGURE 5 | FUT8-AS1 upregulates miR-145-5p via binding NF90. (A) RNA pull-down assays using in vitro transcribed wild-type or NF90 binding site mutant FUT8-
AS1. The enriched proteins were measured by western blot. (B) RIP assays were performed in CHL-1 cells using NF90 specific antibody or non-specific IgG. The
enriched RNA was detected by real-time PCR. (C) After transfection of NF90 specific siRNAs pool or non-targeting negative control (NC) siRNAs into CHL-1 and SK-
MEL-2 cells, miR-145-5p expression levels and NF90 protein expression levels were measured by real-time PCR and western blot, respectively. (D) RIP assays were
performed in SK-MEL-2 cells overexpressing FUT8-AS1 or control using NF90 specific antibody or non-specific IgG. The enriched RNA was detected by real-time
PCR. (E) RIP assays were performed in CHL-1 cells silencing FUT8-AS1 or control using NF90 specific antibody or non-specific IgG. The enriched RNA was
detected by real-time PCR. (F) pri-miR-145 expression levels in CHL-1 and SK-MEL-2 cells overexpressing FUT8-AS1 or control were measured by real-time PCR.
(G) Mature miR-145-5p expression levels in CHL-1 and SK-MEL-2 cells overexpressing FUT8-AS1 or control were measured by real-time PCR. (H) pri-miR-145
expression levels in CHL-1 and SK-MEL-2 cells silencing FUT8-AS1 or control were measured by real-time PCR. (I) Mature miR-145-5p expression levels in CHL-1
and SK-MEL-2 cells silencing FUT8-AS1 or control were measured by real-time PCR. (J) After transfection of NF90 specific siRNAs pool into CHL-1 and SK-MEL-2
cells overexpressing FUT8-AS1 or control, mature miR-145-5p expression levels were measured by real-time PCR. (K) After transfection of NF90 specific siRNAs
pool into CHL-1 and SK-MEL-2 cells silencing FUT8-AS1 or control, mature miR-145-5p expression levels were measured by real-time PCR. (L) miR-145-5p
expression levels in the same 68 melanoma tissues used in Figure 1 were measured by real-time PCR. The correlation between miR-145-5p and FUT8-AS1
expression levels in these 68 melanoma tissues was calculated by Spearman correlation analysis. r = 0.5877, P < 0.0001. For (B–K), data are presented as mean ±
SD. **P < 0.01, ***P < 0.001, ns, not significant, by two-tailed unpaired t test [B, C, D, E (the comparison between IgG and Anti-NF90 for LV-shNC), F, G, J, K] or
one-way ANOVA followed by Dunnett’s multiple comparisons test [E (the comparison between LV-shRNA-1, LV-shRNA-2, and LV-shNC for Anti-NF90), H, I].
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Conversely, silencing of FUT8-AS1 increased the binding
between pri-miR-145 and NF90 in CHL-1 cells (Figure
5E). These data suggested that FUT8-AS1 reduced the
binding of NF90 to pri-miR-145. Next, we measured pri-miR-
145 and mature miR-145-5p expression levels in FUT8-AS1
overexpressed CHL-1 and SK-MEL-2 cells. The results
indicated that pri-miR-145 was reduced in FUT8-AS1
overexpressed CHL-1 and SK-MEL-2 cells compared with their
control cells (Figure 5F), and while mature miR-145-5p was
significantly increased in FUT8-AS1 overexpressed CHL-1 and
SK-MEL-2 cells (Figure 5G). Furthermore, pri-miR-145 and
mature miR-145-5p expression levels in FUT8-AS1 silenced
CHL-1 and SK-MEL-2 cells were measured. The results
indicated that pri-miR-145 was increased in FUT8-AS1
silenced CHL-1 and SK-MEL-2 cells compared with their
control cells (Figure 5H), and while mature miR-145-5p was
significantly reduced in FUT8-AS1 silenced CHL-1 and SK-
MEL-2 cells (Figure 5I). To elucidate whether the regulation
of miR-145-5p by FUT8-AS1 is dependent on NF90, we depleted
NF90 in FUT8-AS1 overexpressed and silenced CHL-1 and SK-
MEL-2 cells, and then measured mature miR-145-5p expression
levels. The results revealed that depletion of NF90 abolished the
effects of FUT8-AS1 overexpression and silencing on miR-145-
5p (Figures 5J, K). Collectively, these findings suggest that
FUT8-AS1 interacted with NF90, relieved the repressive roles
of NF90 on miR-145-5p biogenesis, and therefore downregulated
pri-miR-145 and upregulated mature miR-145-5p levels in
melanoma. The positive correlation between FUT8-AS1 and
Frontiers in Oncology | www.frontiersin.org 9
miR-145-5p expression levels was also found in melanoma
tissues (Figure 5L).

FUT8-AS1 Represses NRAS/MAPK
Signaling
In our previous report, we have found that miR-145-5p activated
MAPK signaling via directly targeting NRAS (29). Therefore, we
further investigated the effects of FUT8-AS1 on NRAS/MAPK
signaling. Our findings revealed that NRAS mRNA levels were
decreased in FUT8-AS1 overexpressed cells and increased in
FUT8-AS1 silenced cells (Figures 6A, B). Consistently, NRAS
protein levels were decreased in FUT8-AS1 overexpressed cells
and increased in FUT8-AS1 silenced cells (Figures 6C, D). Next,
the effects of FUT8-AS1 on MAPK signaling were investigated.
As shown in Figures 6E, F, the phosphorylation levels of MEK1/
2 and ERK1/2 were decreased in FUT8-AS1 overexpressed cells
and increased in FUT8-AS1 silenced cells (Figures 6E, F). Thus,
these data suggest that FUT8-AS1 represses NRAS/MAPK
signaling in melanoma.

The Tumor Suppressive Roles of FUT8-
AS1 Are Dependent on the Regulation of
miR-145-5p/NRAS/MAPK Signaling Axis
To elucidate whether the tumor suppressive roles of FUT8-AS1
in melanoma were dependent on the regulation of miR-145-5p/
NRAS/MAPK signaling axis, we inhibited miR-145-5p in
FUT8-AS1 overexpressed CHL-1 cells (Figure 7A). Glo cell
viability assays indicated that the reduced cell viabilities caused
A B
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C

FIGURE 6 | FUT8-AS1 represses NRAS/MAPK signaling. (A) NRAS mRNA expression levels in SK-MEL-2 cells overexpressing FUT8-AS1 or control were
measured by real-time PCR. (B) NRAS mRNA expression levels in CHL-1 cells silencing FUT8-AS1 or control were measured by real-time PCR. (C) NRAS protein
levels in SK-MEL-2 cells overexpressing FUT8-AS1 or control were measured by western blot. (D) NRAS protein levels in CHL-1 cells silencing FUT8-AS1 or control
were measured by western blot. (E) Phosphorylation levels of MEK1/2 and ERK1/2 in SK-MEL-2 cells overexpressing FUT8-AS1 or control were measured by
western blot. (F) Phosphorylation levels of MEK1/2 and ERK1/2 in CHL-1 cells silencing FUT8-AS1 or control were measured by western blot. Data are presented as
mean ± SD. **P < 0.01 by two-tailed unpaired t test (A) or one-way ANOVA followed by Dunnett’s multiple comparisons test (B).
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by FUT8-AS1 overexpression were reversed by miR-145-5p
inhibition (Figure 7B). EdU incorporation assays indicated that
the slower cell proliferation rates caused by FUT8-AS1
overexpression were reversed by miR-145-5p inhibition (Figure
7C). Transwell migration assays indicated that the reduced
migrated cell number caused by FUT8-AS1 overexpression were
reversed by miR-145-5p inhibition (Figure 7D). Transwell
invasion assays indicated that the reduced invasive cell number
caused by FUT8-AS1 overexpression was reversed by miR-145-5p
inhibition (Figure 7E). Collectively, these findings showed
that the suppressive roles of FUT8-AS1 in melanoma cell
proliferation, migration, and invasion were reversed by miR-
145-5p inhibition.

To further elucidate whether the roles of FUT8-AS1 in
melanoma were dependent on the regulation of MAPK
signaling, we treated FUT8-AS1 silenced and control CHL-1
cells with MEK1/2 inhibitor MEK162. Glo cell viability assays
indicated that MEK162 treatment abolished the increased cell
viabilities caused by FUT8-AS1 silencing (Figure 8A, compared
with Figure 3C). EdU incorporation assays indicated that
MEK162 treatment abolished the accelerated cell proliferation
rate caused by FUT8-AS1 silencing (Figure 8B, compared with
Figure 3E). Transwell migration assays indicated that MEK162
Frontiers in Oncology | www.frontiersin.org 10
treatment abolished the increased migrated cell number caused
by FUT8-AS1 silencing (Figure 8C, compared with Figure 3F).
Transwell invasion assays indicated that MEK162 treatment
abolished the increased invasive cell number caused by FUT8-
AS1 silencing (Figure 8D, compared with Figure 3G). Thus,
these findings suggested that the roles of FUT8-AS1 in
melanoma were dependent on the regulation of miR-145-5p/
NRAS/MAPK signaling.
DISCUSSION

Great progressions in molecule targeted therapy and
immunotherapy have highlighted the therapeutic strategies
based on molecular aberrations in melanoma (43). Current
targeted therapies mainly focus on aberrant proteins. Recently,
increasing evidences have revealed that except for proteins,
ncRNAs also demonstrate important roles in cancers and
would be developed as therapeutic targets (4, 44, 45). In this
study, via analyzing public TCGA dataset, we identified a novel
melanoma correlated lncRNA FUT8-AS1. FUT8-AS1 is locating
at chromosome 14q23.3 and has only one exon. The knowledge
of FUT8-AS1 is lacking with only one report showing that
A B
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FIGURE 7 | miR-145-5p inhibition reversed the tumor suppressive roles of FUT8-AS1 in melanoma. (A) FUT8-AS1 and miR-145-5p expression levels in CHL-1 cells
overexpressing FUT8-AS1 and concurrently silencing miR-145-5p were measured by real-time PCR. (B) Cell viabilities of CHL-1 cells overexpressing FUT8-AS1 and
concurrently silencing miR-145-5p were determined by the Glo cell viability assay. (C) Cell proliferation of CHL-1 cells overexpressing FUT8-AS1 and concurrently
silencing miR-145-5p were determined by the EdU incorporation assay. The red color indicates EdU-positive nuclei. Scale bars, 200 µm. (D) Cell migration of CHL-1
cells overexpressing FUT8-AS1 and concurrently silencing miR-145-5p were determined by the transwell migration assay. Scale bars, 100 µm. (E) Cell invasion of
CHL-1 cells overexpressing FUT8-AS1 and concurrently silencing miR-145-5p were determined by the transwell invasion assay. Scale bars, 100 µm. Data are
presented as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001; ns, not significant, by one-way ANOVA followed by Tukey’s multiple comparisons test.
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FUT8-AS1 is correlated with outcome of a subpopulation of
glioblastoma multiforme patients (46). In this study, we further
investigated the expression, clinical significance, roles, and
mechanism of action of FUT8-AS1 in melanoma.

FUT8-AS1 is reduced in melanoma tissues compared with
benign nevi. Reduced expression of FUT8-AS1 is correlated with
thickness, ulceration, metastasis, and inferior overall survival of
melanomas. Gain and loss-of-function assays demonstrated that
FUT8-AS1 suppresses melanoma cell proliferation, migration,
and invasion in vitro. Furthermore, FUT8-AS1 represses
melanoma growth and metastasis in vivo. Thus, FUT8-AS1
is identified as a tumor suppressive lncRNA in melanoma.
FUT8-AS1 would also be a potential prognostic biomarker for
melanoma. Enhancing FUT8-AS1 and/or its effects in
downstream signaling would be potential therapeutic strategies
for melanoma.

In addition, we identified a relative novel molecular
mechanism of FUT8-AS1, which is the promotion of miR-145-
5p biogenesis via competitively binding NF90. Previous reports
about the effects of lncRNAs on miRNAs are mainly the
competitive binding of miRNAs by lncRNAs, which further
relieve the repressive roles of miRNAs on their mRNA targets
(47). lncRNA-ATB is a classic example, which competitively
binds miR-200s and upregulates miR-200s targets ZEB1 and
ZEB2 in hepatocellular carcinoma (48). In our previous report,
we have demonstrated that lncRNA MHENCR competitively
binds miR-425 and miR-489, and therefore upregulates their
Frontiers in Oncology | www.frontiersin.org 11
targets IGF1 and SPIN1 in melanoma (39). In this study, we
found that FUT8-AS1 does not bind miR-145-5p, but promotes
miR-145-5p biogenesis.

Combining bioinformatic prediction and experimental
verification, we found that FUT8-AS1 directly binds NF90.
NF90 is a well-characterized dual strand RNA binding protein.
Intriguingly, our previously identified tumor suppressive miR-
145-5p was recently reported to be downstream target of NF90
by Zhuang et al. (42). NF90 directly binds pri-miR-145 and
represses the biogenesis of mature miR-145-5p (42). In this
study, we found that via competitively binding NF90, FUT8-
AS1 represses the binding of NF90 to pri-miR-145. Therefore,
FUT8-AS1 represses the effects of NF90 on miR-145-5p
biogenesis. Lastly, FUT8-AS1 downregulates pri-miR-145 and
upregulates mature miR-145-5p. The significant positive
correlation between FUT8-AS1 and miR-145-5p expression in
melanoma tissues supports the positive modulation of miR-145-
5p by FUT8-AS1 in human melanoma. Furthermore, functional
rescue assays showed that miR-145-5p inhibitors reverse the
tumor suppressive roles of FUT8-AS1 in melanoma, supporting
miR-145-5p as an important downstream target of FUT8-AS1.
Several reports, including our own, have identified NRAS as a
critical downstream target of miR-145-5p (29, 49, 50). Via
targeting NRAS, miR-145-5p further represses MAPK
signaling. MAPK signaling has been frequently shown to be
aberrantly activated in melanoma (3). Therefore, in this study we
further investigated the effects of FUT8-AS1 on NRAS/MAPK
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FIGURE 8 | MEK1/2 inhibitor MEK162 abolished the oncogenic roles of FUT8-AS1 silencing in melanoma. (A) CHL-1 cells silencing FUT8-AS1 or control were
treated with 1 µM MEK162. Then, cell viabilities of treated cells were determined by the Glo cell viability assay. (B) CHL-1 cells silencing FUT8-AS1 or control were
treated with 1 µM MEK162. Then, cell proliferation of treated cells was determined by the EdU incorporation assay. The red color indicates EdU-positive nuclei. Scale
bars, 200 µm. (C) CHL-1 cells silencing FUT8-AS1 or control were treated with 1 µM MEK162. Then, cell migration of treated cells was determined by the transwell
migration assay. Scale bars, 100 µm. (D) CHL-1 cells silencing FUT8-AS1 or control were treated with 1 µM MEK162. Then, cell invasion of treated cells was
determined by the transwell invasion assay. Scale bars, 100 µm. Data are presented as mean ± SD. ns, not significant, by two-tailed unpaired t test.
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signaling via regulating miR-145-5p. In line with expectation,
our results showed that FUT8-AS1 represses the expression of
NRAS and further represses MAPK signaling in melanoma.
MAPK signaling inhibitor MEK162 abolished the oncogenic
roles of FUT8-AS1 silencing in melanoma, which further
supports that miR-145-5p/NRAS/MAPK signaling is the
critical mediator of the roles of FUT8-AS1 in melanoma.
Therefore, we identified relative novel mechanism of action of
lncRNA and also the detailed downstream molecular signaling
cascade of FUT8-AS1 in melanoma.

In summary, our findings suggested FUT8-AS1 as an
important tumor suppressive lncRNA in melanoma, which
represses melanoma cell proliferation, migration, and invasion
in vitro, and melanoma tumor growth and metastasis in vivo.
FUT8-AS1 exerts its tumor suppressive roles via binding
NF90, relieving the repressing roles of NF90 on miR-145-5p
biogenesis, upregulating miR-145-5p, repressing NRAS, and
lastly repressing MAPK signaling in melanoma. Furthermore,
our data and TCGA data both suggested that FUT8-AS1 is
correlated with inferior outcome of melanoma patients. Overall,
these data provide novel molecular driver of melanoma
progression and potential target for melanoma outcome
prediction and therapy.
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Supplementary Figure 1 | FUT8-AS1 is a noncoding RNA. (A) The coding
potential of FUT8-AS1 was calculated by the Coding Potential Calculator (CPC).
GAPDH and HOTAIR were used as coding and noncoding RNA controls,
respectively. (B) The coding potential of FUT8-AS1 was calculated by the Coding
Potential Assessment Tool (CPAT). GAPDH and HOTAIR were used as coding and
noncoding RNA controls, respectively.

Supplementary Figure 2 | FUT8-AS1 has a conserved NF90 binding sequence.
The structure of FUT8-AS1 was predicted by the mfold web server (http://unafold.
rna.albany.edu/?q=mfold). Red line indicates the conserved NF90 binding
sequence (5′-CUGUU-3′, 452-456nt of FUT8-AS1).
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