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ABSTRACT: Terpenoids form a large pool of highly diverse organic
compounds possessing several economically important properties,
including nutritional, aromatic, and pharmacological properties. The
1-deoxy-D-xylulose 5-phosphate (DXP) pathway’s end enzyme, nuclear
distribution protein (NudF), interacting with isopentenyl pyrophos-
phate (IPP) and dimethylallyl pyrophosphate (DMAPP), is critical for
the synthesis of isoprenol/prenol/downstream compounds. The
enzyme is yet to be thoroughly investigated to increase the overall
yield of terpenoids in the Bacillus subtilis, which is widely used in
industry and is generally regarded as a safe (GRAS) bacterium. The
study aims to analyze the evolutionary conservation across the active
site for mapping the key residues for mutagenesis studies. The 37-
sequence data set, extracted from 103 Bacillus subtilis entries, shows a
high phylogenetic divergence, and only six one-motif sequences
ASB92783.1, ASB69297.1, ASB56714.1, AOR97677.1, AOL97023.1, and OAZ71765.1 show a monophyly relationship, unlike a
complete polyphyly relationship between the other 31 three-motif sequences. Furthermore, only 47 of 179 residues of the
representative sequence CUB50584.1 are observed to be significantly conserved. Docking analysis suggests a preferential bias of
adenosine diphosphate (ADP)-ribose pyrophosphatase toward IPP, and a nearly threefold energetic difference is observed between
IPP and DMAPP. The loops are hereby shown to play a regulatory role in guiding the promiscuity of NudF toward a specific ligand.
Computational saturation mutagenesis of the seven hotspot residues identifies two key positions LYS78 and PHE116, orderly
encoded within loop1 and loop7, majorly interacting with the ligands DMAPP and IPP, and their mutants K78I/K78L and
PHE116D/PHE116E are found to stabilize the overall conformation. Molecular dynamics analysis shows that the IPP complex is
significantly more stable than the DMAPP complex, and the NudF structure is very unstable. Besides showing a promiscuous binding
of NudF with ligands, the analysis suggests its rate-limiting nature. The study would allow us to customize the metabolic load toward
the synthesis of any of the downstream molecules. The findings would pave the way for the development of catalytically improved
NudF mutants for the large-scale production of specific terpenoids with significant nutraceutical or commercial value.

1. INTRODUCTION
Isoprenoids are the most functionally and structurally varied
class of secondary metabolites, with over 55,000 identified
molecules,1,2 and have been used to make aromatic, flavoring,
and medicinal molecules.3−6 As the natural extraction of
isoprenoid-based bioactives has led to an overexploitation of
plants, the global research interest has now shifted to utilize the
generally regarded as safe (GRAS) status microbes like Bacillus
subtilis as the biocatalytic machinery.7 A key protein controlling
the yield of an end-product molecule is adenosine diphosphate
(ADP)-ribose pyrophosphatase or NudF (EC 3.6.1.13) that
orderly hydrolyzes dimethylallyl pyrophosphate (DMAPP) and
isopentenyl pyrophosphate (IPP) to prenol and isoprenol
(Figure 1), collectively termed as isopentenol (C5 alcohol), a
building block of all the higher-order downstream terpenoid
molecules.8 It belongs to the Nudix superfamily (Pfam
PF00293; InterPro IPR000086)9 and is involved in the
production of adenosine monophosphate (AMP) and ribose-

5-phosphate from ADP-ribose by actively dephosphorylating
the phosphate moieties of a variety of substrates. Its close
homolog is the NudB protein (EC: 3.6.1.67) from E. coli
(EcNudB), having a catalytic activity toward geranyl pyrophos-
phate (GPP) and farnesyl pyrophosphate (FPP).10 It has been
suggested that an additional phosphatase activity (AphA) is
needed to hydrolyze IPP to isoprenol because NudB can only
catalyze the hydrolysis of IPP to isopentenol.11 While EcNudB
exhibits a strong affinity for DMAPP, the NudF protein of
Bacillus subtilis (BsNudF) shows no such preference and equally
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interacts with both DMAPP and IPP to orderly produce an
equivalent amount of prenol and isoprenol.12 A varying affinity
for various substrates may substantially increase pressure on the
stoichiometric flux, and until the connected regulatory network
of proteins does not drain out the added molecules at an
equivalent rate, it becomes toxic to the cell and inhibits cell
growth. Hence, to escape this major bottleneck, a fusion protein
of isopentenyl-diphosphate delta isomerase (IDI), also known as
isopentenyl pyrophosphate isomerase (IPP isomerase), and
EcNudB has been utilized and with an increased expression, the
metabolic flux increases the bioproduction rate of only prenol
and reduces the isoprenol production. Endogenous over-
expression of IspG and 1-deoxy-D-xylulose-5-phosphate syn-
thase (DXP) as well as exogenous expression of YhfR and
BsNudF have been shown to increase the production rate of
downstream molecules in E. coli,13 and the overexpression of
NudF in B. subtilis has been shown to improve the isopentenol
yield.12

Although sufficient IPP and DMAPP concentrations are
required for terpenoid synthesis,8 an excess of these molecules
can inhibit cell growth,12 and thus reduce terpenoid
production,14 and therefore, the NudF enzyme continuously
uses these potentially harmful debris molecules. To increase the

yield of the DXP pathway, researchers have specifically targeted
the first rate-limiting enzyme, DXP15,16 because itsKcat/Km score
is much smaller than that of all the other enzymes.17 Improving
the DXP activity has been considered as the most effective
measure to improve the overall yield for several species,
including Streptomyces,18 Lycopersicon esculentum,19 and Syn-
echococcus leopoliensis.20,21 Heterologous expression of Bacillus
subtilisDXP in E. coli has also been shown to increase the overall
yield.22 Yet another strategy, using the functionally mutated
recombinant poplar DXP,23 has shown a negligible feedback
inhibition for IPP/DMAPP and has been fruitful. To mitigate
the toxicity of IPP, the farnesyl diphosphate synthase and IDI
synthase have been overexpressed in E. coli, and it has led to an
800-fold production of sesquiterpene β-farnesene.24 Likewise,
the balanced metabolic concentration of IPP and DMAPP,25,26

heterologous expression of Haematococcus pluvialis IDI,27 or
overexpression of Lycium chinense IDI in E. coli28 have been
shown to increase the overall yield. Recently, the modulation of
the culture medium has also been demonstrated to increase the
isopentenol production by 2.5-folds in B. subtilis.29 Although the
majority of these methods have overexpressed the rate-limiting
enzymes or have changed the culture conditions, it may lead to a
complete metabolic imbalance and significantly minimize the
yield of downstream terpenoids. In this regard, directed co-
evolution of DXP, DXR, and IDI has been shown to increase
isoprene production.28 However, these strategies have also not
efficiently focused the major enzyme BsNudF for increasing the
overall yield, and directed evolution of NudF’s promiscuous
active site would therefore be significantly useful to increase the
biosynthetic rate of a downstream terpenoid. For understanding
the preferential binding of IPP/DMAPP, and catalytic and
behavioral switching of BsNudF, this article deciphers the key
functional details across the active site for decoding the
mutations that could improve its activity. As it comprehensively
maps the crucial residues at the functionally important positions,
the study will be fruitful in designing a custom set of key
interacting residues against a required ligand to attain a
theoretically impossible overall yield. Although DXP has been
shown to be the rate-limiting enzyme of the nonmevalonate
pathway,17 NudF, as the last biocatalyst to channelize the
metabolic flux, should also play a significant role in regulating the
overall yield of terpenoids, and its limited molecular engineering
study should thus be of prime interest for biological and
industrial research to optimally increase the productivity.

2. THEORETICAL CALCULATIONS
2.1. Construction of the Sequence Data set and

Functional Affirmation. Screening the NudF protein
sequences in the NCBI protein database, a set of 105,910
protein sequences is identified, among which only 103 Bacillus
subtilis entries are found and are used to build the primary data
set. Purging the completely redundant entries with at least 80%
alignment coverage through MMSeqs2,30 a reduced data set of
40 entries is derived, and their length pattern is noted. Three
entries WP_139026580.1, WP_139026569.1, and CUB36584.1
orderly encoding only 118, 86, and 55 residues, are found to be
the partial sequences and are purged. A final data set of 37
entries, including 1, 6, and 30 sequences orderly encoding 179,
205, and 185 residues, is thus created. As it is necessary to
functionally confirm the defined data set for further analysis, the
sequences are fed to MEME31 for screening the conservation of
the signature motif and affirming the functions of the sequences
to use the functionally correct entries. In the absence of any

Figure 1. MEP pathway, representing the biocatalysts at all
intermediary stages. From the glyceradehyde-3-phosphate (G3P) and
pyruvate, it synthesizes the 5-carbon building blocks DMAPP and IPP
for producing terpenoids. It includes an ordered set of seven enzymes
viz. DXP, DXP reductoisomerase (DXR), 2-C-methyl-D-erythritol 4-
phosphate cytidylyltransferase (IspD), 4-diphosphocytidyl-2-C-meth-
yl-D-erythritol kinase (IspE), 2-C-methyl-D-erythritol 2,4-cyclodiphos-
phate synthase (IspF), HMB-PP synthase (IspG), and HMB-PP
reductase (IspH), followed by the interplay of IDI and NudF.
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functionally similar experimentally resolved B. subtilis protein,
the homologous Escherichia coli structure (PDB ID: 5U7E) is
used as the representative entry to reliably localize the conserved
motifs. Furthermore, to deploy theBacillus subtilis representative
sequence for the downstream analysis, the smallest sequence
(CUB50584.1) is used from the constructed data set. It is
because evolution tends to decrease a protein sequence length to
pack the function more optimally.32

2.2. Modeling the Representative Sequence. As the B.
subtilis representative sequence CUB50584.1 is still not
experimentally determined, its tertiary structure is modeled
through template-based modeling methodology using MOD-
ELER, as per the recently published strategy.33,34 For reliably
predicting the model, the wild-type nucleoside diphosphate
sugar hydrolase from Bdellovibrio bacteriovorus (PDB ID:
5C7Q) is used as the template, sharing a sequence identity of
36%. As the first predicted protein model usually has several
nonphysical local clashes, the constructed model is energetically
relaxed through the conservative refinement strategy of
Galaxyrefine235 to maximally retain the topology extracted
from the template. The refined model is subsequently evaluated
through Swissmodel scoring measures36 and is also topologically
assessed against the one, predicted using the Alphafold
algorithm,37 to assess its credibility.
2.3. Phylogenetic and Conservation Analysis. Statisti-

cally significant evolutionary relationships are typically consid-
ered for drawing the meaningful phylogenetic connections
within the selected set of sequences/species. As a correct
sequence alignment is certainly required for extracting the
accurate evolutionary relationship, the 37 sequence B. subtilis
data set is aligned through the hidden Markov model based
clustal-omega module of HHPred.38 The constructed profile is
fed to the IQTree server39 for deriving the evolutionary tree on
the basis of the default parameters, using the default ultrafast
methodology over 10,000 bootstrap alignments at the minimum
correlation coefficient or the convergence threshold of 0.99. The
resultant consensus tree is visualized and analyzed through
ITOL.40 Furthermore, the sequence alignment is fed to
Consurf41 for plotting the average sequence conservation scores
over the predicted CUB50584.1 model, using the default
conditions, and analyzing the sequence variations across the
functionally crucial sites. Lastly, on basis of the functionally well-
annotated B. subtilis (strain 168) homolog P54570, the
constructed HMM profile is visualized using Espript42 to map
the encoded domains.
2.4. Active Site Prediction and Docking Analysis with

IPP and DMAPP. To reliably channelize the interaction of
substrates only at the biologically credible site(s) and to exclude
any fake docking solution, the CastP version3 server is used to
predict the active site(s).43 For screening the most promising
energetically feasible interaction site(s) of NudF against the
substrates IPP andDMAPP, the Dockthor server is used,44 using
the default parameters. Through a set of 24 docking runs, it
efficiently docks a ligand using the random seeds for all the
rotational, translational, and conformational degrees of freedom
of the ligand. Using amultiple solution genetic algorithm and the
MMFF94S molecular force field scoring function, it constructs
the docking solutions and assesses them on the basis of the
docking energy, ligand entropy, and desolvation score to select
their top-ranked cluster representatives. It is shown to be more
accurate than seven state-of-the-art docking algorithms viz.
AutoDock Vina, AutoDock, GOLD, Surflex-Dock, rDock,
HPepDock, and Glide.44

In the absence of any experimentally resolved IPP-/DMAPP-
NudF complex structure, the docking result constructed
through this highly accurate Dockthor algorithmwould certainly
be the reliable data to excavate the functional details. Hence, to
attain biologically correct predictions, a complete degree of
rotational freedom is orderly allowed for the six and five
rotatable bonds of the selected ligands. The resultant solutions
are subsequently analyzed using UCSF Chimera to extract the
key interacting residues.

2.5. Crucial Residues for Functional Mutagenesis. The
accuracy of a rationally evolved enzyme molecule is dependent
on the identification of the hotspot residues, whose mutations
could enhance its catalytic activity.45 To analyze the hotspot
regions, proximal to the active site and tunnel, and appropriately
map themutational landscape of the predicted proteinmolecule,
the hotspot server 3.1 is used.46 Although this server is capable of
modeling an input protein sequence, the constructed
CUB50584.1 model is considered to drive the analysis for the
topologically reasonable model. As this server robustly estimates
the thermodynamic stability of a mutation through FoldX and
Rosetta, it has been demonstrated to successfully exclude
disruptive mutations.47,48 To extract its fullest potential and
reliably select the best mutations from the preselected resultant
ones, the resulting data are analyzed along with the other
residues marked in the preceding steps.
To understand the most promising mutations across the

active site, the correlated mutations are mapped for the 179
residue sequence CUB50584.1 sequence through the GREM-
LIN server.49 As these coevolution-based contacts are crucial to
reliably discriminate the true hotspot residues from the spurious
ones, the contact map network is analyzed to mark the true
hotspots. Purging the unreliable positions, the true hotspots are
analyzed through the Dynamut2 server,50 trained, and tested on
the Protherm database.51 Its high accuracy is evident from the
fact that it outperforms the other measures with a Pearson’s
correlation of up to 0.72 and 0.64 for the single and multiple
point mutations with a root-mean-square error (RMSE) (kcal/
mol) of 1.02 and 1.8, respectively, making it a trustworthy
strategy for prioritizing the stabilizing/destabilizingmutations.50

2.6. Computational Mutagenesis and Flexibility
Analysis. On the basis of docking and mutagenesis results,
the most favorable binding and substrate preferences are
excavated. To robustly quantify the strength of interaction for
each of the ligands, the Dynamut2 results are analyzed for the
five prioritized residues (ARG18, ALA117, ASP139, GLU140,
and ASP141), and their five top-ranking ΔΔG scores are
analyzed. To examine these data, NetsurfP2.0,52 with an 80%
correlation with experimentally confirmed data, is preferred to
estimate the relative solvent accessible surface area for the five
key positions for the native protein. To further examine the
topological features of the NudF structure, the flexibility of its
Cα-backbone is predicted using CABS-flex 2.0, which computes
an average topological fluctuation diversity of 10 medoids of the
10 cluster sets, derived from a 10 ns simulated set of 1000
decoys.53 To further obtain more insights of the binding affinity
of the two ligands, a small 100 ns molecular dynamics (MD)
simulation is finally done to analyze the physical movements of
ligands and protein atoms. The IPP and DMAPP topologies are
constructed through PRODRG2,54 and the CUB50584.1 model
and its two complexes are simulated through the WebGro
server.55

To perform the simulation, the native protein and its
complexes are prepared using the GROMOS96 43a1 force-
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field.56 Deploying the SPC water model as a solvent over the
triclinic simulation box, the structures are neutralized by adding
0.15M sodium chloride. To energetically relax the system before
MD, the steepest descent algorithm (5000 steps) is applied.
Considering 1000 frames per simulation, the structures are
simulated for 100 ns using the constant temperature of 300 K
and a pressure of 1.0 bar. The trajectory is lastly integrated
through the leap-frog algorithm for assessing the resultant

trajectory through all of its encoded parameters, viz. time-

dependent root-mean-square deviation (RMSD) for the overall

structure and RMS fluctuations (RMSF) across its residues,

radius of gyration (Rg), number of hydrogen bonds, overall and

per-residue solvent accessible surface area (SASA), and ligand

RMSD.

Figure 2. (A) Top-3motifs, screened against the functionally deciphered structure 5U7E of E. coli, (B) structural overlap of the constructedmodel over
the 5U7E, (C) Ramachandran map of the predicted model, and (D) topological superimposition of this model (red) over the Alphafold model (cyan).
A complete overlap implies the topological accuracy of the predicted NudF structure.
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3. RESULTS AND DISCUSSIONS

3.1. Construction of the Sequence Data set and Its
Functional Affirmation. To affirm the functional attribute of
all the derived 37 sequences, the relative location of their three
top-ranked conserved motifs is screened against the functionally
deciphered structure (5U7E) of E. coli through MEME (Figure
2A). The members of the Nudix superfamily encode the
signature sequence GX5EX7REUXEEXG/TU, where U is either
L/V or I,57 as represented in green in this figure. This conserved
sequence is responsible for metal-binding and forms the catalytic
site in more than 4000 enzymes in numerous species including
eukaryotes, prokaryotes, and viruses.58 The NudF length range
is shown to be 179−205, with 182-residue sequence being the
most common. Here, the six 205-residue sequence subset shows
a stark feature, that is, ASB92783.1, ASB69297.1, ASB56714.1,
AOR97677.1, AOL97023.1, and OAZ71765.1encode only one
characteristic motif, as observed for 5U7E, unlike the other
B.subtilis sequences having all the three conserved motifs.

3.2. Modeling the Representative Sequence. The
representative B. subtilis sequence CUB50584.1 is modeled
using 5C7Q through the template-basedmodelingmethodology
usingMODELLER9.25. The predicted structure is refined using
GalaxyRefine235 and is subsequently evaluated through
Swissmodel.36 The model shows a Molprobity score of 1.28,
indicating a topological accuracy of a reasonably high accuracy
X-ray structure, and its RMSD score is found to be 0.887 against
the deployed template (Figure 2B). Furthermore, 98.87%model
residues are found localized within the Ramachandran favored
regions (Figure 2C). The model also shows a low RMSD of
1.116 against the structure, predicted using Alphafold
algorithm,37 and these two decoys are found to be structurally
superimposed, with a marginal deviation of a few loop and
terminal residues (Figure 2D). It is thus confirmed that
Alphafold specifically works well especially for proteins, sharing
a sequence identity lesser than 30% against the known
templates, as reported recently.37 The predicted structure is
then reliably deployed for the subsequent analysis.

Figure 3. Unrooted circular tree of the 37 sequence NudF data set. The scale bar represents the average number of substitutions per site.
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3.3. Phylogenetic and Conservation Analysis. Feeding
the sequence alignment of HHPred-clustal omega to IQTree
and building the evolutionary tree using 10,000 bootstrap
alignments at the convergence threshold of 0.99, the resultant
consensus solution is visualized and analyzed through ITOL
(Figure 3). Although the single motif-six sequence subset

(AOR97677.1, OAZ71765.1, ASB69297.1, ASB92783.1,
ASB56714.1, and AOL97023.1) appears to be clustered with
5U7EA and the representative sequence CUB50584.1, encoding
all three motifs, their average sequence identity is 30.3640.339,
compared to 14.73 and 21.3630.3304 against 5U7EA and
CUB50584.1, respectively. Moreover, all the other sequences

Figure 4. (A) Consurf-derived sequence conservation for the 37 sequence NudF data set, projected onto the representative sequence model
CUB50584.1. (B) Color range varying between 1 and 9,maroon referring to the completely conserved positions. (C)Complete overlap of the IPP- and
DMAPP-interacting positions and Nudix domains of P54570 (residues 40−171) and CUB50584.1 (residues 42−177).
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are not found to share substantial sequence similarity, as also
observed with their scrutiny through HMM-based Clustal
Omega alignment.38 All the other sequences are found
uncluttered with any other entry, and as recently shown in the
phylogenetic study of 80,000 Nudix homologs, a general
monophyly is prominent, besides a few occasional incidences
of homoplasy.59 The constructed profile is further fed to
Consurf for mapping the average sequence conservation scores
over the predicted structure, using the default conditions,41 and
the sequence variation across the functionally crucial sites is
analyzed (Figure 4). The HMM alignment of the 37 sequence
data set and the functionally decoded protein P54570 is mapped
using Espript39 to designate the essential sequence features of
the CUB50584.1 sequence. It is observed that the Nudix
domains of CUB50584.1 and P54570 fully overlap (Figure 4C).
A set of 14 residues, viz. ILE20, ALA45, GLN62, GLY77,

GLU80, GLY82, ALA89, GLU92, GLU95, GLU96, THR112,

ALA126, THR130, and GLU148 is found to be completely
conserved, with a conservation score of 9. Moreover, 33 residues
LEU4, THR8, PHE15, PRO30, ASN31, LYS36, ILE39, HIS42,
PRO43, ALA50, LYS56, VAL60, LYS65, ILE71, PRO85,
THR88, ARG91, LEU93, GLU94, THR97, LEU106, ILE107,
GLU119, TYR124, ASP141, VAL144, ALA154, LEU157,
ASP166, LYS167, THR168, PHE170, and GLN173 show a
conservation score of 7 and 8, indicating significantly higher
conservation. Furthermore, 11 residues, viz. PRO13, ARG23,
VAL24, ALA33, MET34, LYS69, LYS131, SER150, GLU153,
ASP160, and HIS164 are found to be completely variable across
the defined data set. It is astonishing that the representative B.
subtilis sequence encodes mere 11 (6.145%) variant residue loci
in contrast to the statistically higher sequence conservation at 47
(26.259%) positions (Figure 4), and still, the enzyme is able to
show a highly promiscuous nature, and it indicates that a few key

Figure 5. Dockthor results of both IPP and DMAPP. (A) Pocket1 (B) Pocket2 represented in correlation with the two ligands IPP (yellow) and
DMAPP (blue), along with the close analytical view of Pocket1, in terms of (C) molecular surface. (D) Active site topology at the vent of the tunnel.
(E) Two-dimensional and (F) three-dimensional interaction maps of protein with DMAPP. (G) Two-dimensional and (H) three-dimensional
interaction maps of protein with IPP show the key residues interacting within the active site.
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residues should play a major role within the active site of this
enzyme.
3.4. Active Site Prediction and Docking Analysis with

IPP and DMAPP. Excluding the shallow openings and using a
probe radius of 1.4 Å, CastP43 delineates the empty concavities
on a protein surface to map the volume spectrum of cavities and
pockets. It robustly deciphers the surface properties and
localizes the functionally important zone and shows only two
biologically meaningful active pockets in the predicted NudF
model, with a molecular surface area (Å2) and molecular volume
(Å3) of 501 and 946.6 (Pocket1) and 208.9 and 661.3
(Pocket2), respectively, and this is in accordance with the
known structural details of the NudF’s E. coli homolog, wherein
two active sites have been observed.60 Furthermore, these
pockets are orderly found to span a set 12 (MET1, LEU4-A-
GLU6, ARG37, ILE39, TYR111, PRO114, GLY115, ALA117,
ASP118, and ILE120) and 30 (ARG18-VI-LYS21, VAL40-NH-
PRO43, ALA45, VAL60, GLN62-YRK-ALA66, GLU73-IPAG-
LYS78, GLU96, THR112, GLU119, LEU121, ASP141,
GLU142, ASP165, ALA166, and LYS167) residues. Here, it is
worth noting that Dockthor uses only one most-voluminous
docking site for both ligands (Pocket1, Figure 5A), and it
indicates a preferential binding of ligands over the second
superficial site (Pocket2, Figure 5B).
As a modest level of NudF is enough to overcome the IPP/

DMAPP toxicity,12 this enzyme must interact with both of these
substrates, and this responsible molecular NudF surface (Figure
5C) closely interacts with the two ligands (Figure 5D). The
ligands IPP and DMAPP orderly show an interaction energy
(kcal/mol) and affinity score (kcal/mol) of −115.388 and
−6.431, and −41.402 and −5.271. Through random forest,
Dockthor has tested the predicted binding affinity over the
PDBbind v2013 data set, and it has shown the RMS error of
2.256 kcal/mol at a correlation coefficient of 0.705, indicating a
reasonable credibility of the predicted docking solution.61

Examining the docked complexes using the discovery studio, it is
observed that DMAPP has two interactions with NudF. While
the DMAPP-O atom forms a hydrogen bond with the Ser113-
HG atom of NudFwith a bond length of 1.355 Å, the DMAPP-C
atom shows hydrophobic π-interactions with a DMAPP-C atom

with a bond length of 5.085 Å. IPP, on the other hand, it has
favorable interactions with NudF, and its oxygen atom forms
conventional hydrogen bonds with NudF-ARG64-HH21 and
-HH22 atoms, with bond lengths of 2.912 and 2.592,
respectively, as well as two salt bridges with ARG64-HH12
and LYS167-HZ2 atoms, with bond lengths of 2.561 and 2.753,
respectively. Moreover, the IPP-O atom shows three electro-
static interactions with ARG64-NH1, −NH2, and LYS167-NZ
atoms with bond lengths of 5.255, 3.963, and 3.212 Å
respectively.
Screening the active site residues within 5 Å of these two

ligands, it is observed that 14 residues viz. VAL19, ILE20,
HIS42, ALA45, GLN62, ARG64, GLU73, ALA76, LYS78,
THR112, GLU119, LEU121, ASP165, and LYS167, and 8
residues viz. VAL22, GLU38, VAL40, HIS42, SER113, PHE116,
ALA117, and GLU119 orderly interact with the two ligands IPP
(yellow) andDMAPP (blue), as shown in Figure 4C. To analyze
it further, the two-dimensional and three-dimensional inter-
action maps are drawn for DMAPP (Figure 5E,F) and IPP
(Figure 5G,H). It indicates that two key hotspot residues LYS78
and PHE116, orderly responsible for interacting with these
ligands through one and two residues in the active site, could be
the key to specifically alter the active site to stabilize its affinity
for the conditionally required ligand.

3.5. Crucial Residues for Functional Mutagenesis.
Through GREMLIN,49 the contact map network of the
modeled protein is constructed. For all the predicted contacts,
it yields the two-dimensional distance matrix along with their
probability scores and is shown to be accurately predicting both
direct and indirect residue couplings. The coevolution-based
network for CUB50584.1 is analyzed (Figure 6A), and the
statistically top-ranked contacts are extracted. A set of 22
functional hotspot residues, viz. ARG18, ILE20, LYS21, ASN41,
PRO43, LEU67, ILE71, LYS78, LEU79, PRO81, GLY82,
PHE110, TYR111, THR112, PHE116, ALA117, LEU121,
ASP139, GLU140, ASP141, ALA166, and PHE170, with a
theoretically credible probability score higher than 0.5, are found
in NudF. However, LEU79 is found to be completely buried in
the structural core of NudF. Moreover, ILE20 and THR112 are
found to be completely conserved and are thus excluded. The 19

Figure 6.GREMLIN resultant (A) contact map network and (B) number of contacts for the 19 key hotspot residues, placed proximal to the active site.
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key hotspot residues are found to define a structural network of
0−4 contacts. As previously stated,62,63 the loop proline residues
usually stabilize a structural bend through internal hydrogen
bonding, and PRO43 and PRO81 are also not considered for
subsequent computational mutagenesis study. Plotting the
number of contacts for the hotspot residues, seven positions,
viz. ARG18, PRO43, LYS81, ALA117, ASP139, GLU140, and
ASP141 are not found to have any contacts (Figure 6B), and as
the delicate balance between the flexibility and stiffness is
sustained by the key contacts, majorly regulating the functional
role(s) of a protein, these positions (Figure 7) are selected for
further analysis.
3.6. Computational Mutagenesis and Flexibility

Analysis. Excavating the key residues, the Dynamut2 server is
used to estimate the stability changes upon a point mutation on
the CUB50584.1 model. Themethod derives the scores through
the topological environment property and dynamic behavior of a
residue and is recently shown to outperform the prediction
measures including FoldX and MAESTRO.50 Restricting the
search to the prioritized residues, the most stabilizing top five
mutations are selected. The ΔΔG scores (KJ/mol) of these
mutations ranges from −1.67 to 1.06 (Figure 8, Supplementary
Table 1). To correctly drive the analysis, the relative surface
accessibility (RSA) for the selected residues is computed using
NetSurfP2.0.52 It reveals how easily a residue can be accessed
from the protein surface, and as themutations at this position are
less likely to disrupt the overall fold of a protein, the chance of
developing a functionally fruitful mutation should be substan-
tially higher. The prioritized residues orderly show an RSA score
of 0.393, 0.232, 0.536, 0.696, 0.622, 0.449, and 0.397 (Figure
8A), categorized as exposed or buried at the threshold of 0.25.
To excavate the active site and its key catalytic residues, the

average structural fluctuations across NudF are predicted using
CABS-flex 2,53 and a set of 8 loops: loop1−loop8 (Figure 8B),
spanning from ILE14-ARG23, ASP26-ARG37, ILE39-VAL46,
ALA50-VAL58, GL62-ILE72, GLY77-PRO85, TYR111-
LEU121, and THR130-VAL144, marked in red in Figure 8C,
are found to be flexible. These loops, encompassing a 48.6%
structure, majorly define the activity site topology and are
envisaged to substantially regulate the functional nature of
NudF. It is interesting to observe that the selected five residues

ARG18, ALA117, ASP139, GLU140, and ASP141 are encoded
by the loop1, loop7, and loop8, and it could be there that the
loop1 acts as a capping loop and loop7 and loop8 make the
active site sufficiently voluminous to interact with IPP and
DMAPP. It is similar to E. coliNudF loop9, which is stabilized by
its closed conformation.60

To further analyze the dynamic atomic interactions of IPP/
DMAPP within the active site, 100 ns NudF and its complexes
are simulated using WebGro, as shown recently.64,65 MD
simulation is a robustly accurate strategy to analyze the
conformational changes that occur when a ligand is induced to
fit.66 Using the GROMACS-based Webgro55 server, the
protein/complex system is computationally evolved using the
classical mechanics algorithm for a short 100 ns timespan, and
the conformational stability or binding affinity of a ligand is
assessed across the simulation trajectory. To analyze the
simulation results, Rg or the average distance between the
center of mass and the rotational axis is usually used to estimate
the conformational stability of a system against any
physicochemical strain,67 and its lower score implies a higher
stability. Here, the apoprotein shows the Rg scoring variations
between ∼1.5 and 2.75 nm (Figure 9), and its complex with
DMAPP and IPP orderly shows the respective scores of ∼1.8−
2.05 and ∼1.875−2.05 nm, indicating that the apoprotein is
relatively more unstable than its complex structure, exactly like
E. coli NudF.60 Moreover, the IPP complex is more stable than
the DMAPP complex because its trajectory mostly crawls at
substantially lower scores across the simulation. The RMSD is
another helpful measure for estimating the structural stability
and the overall deviation from the backbone topology during the
complex formation at a specified temperature, as used earlier by
GROMACS.68,69 The backbone-based RMSD trajectory score
should be the lowest because it directly gives the deviation of
mean atomic coordinates and reflects the macromolecule’s
conformational stability. The scrutiny of the RMSD across the
trajectory shows that the RMSD variations of the apoprotein
range between the acceptable range of ∼0.5−2.5 nm in contrast
to the respective ranges of 0.3−0.9 and 0.3−0.75 for its DMAPP
and IPP complexes (Figure 9). Unlike the DMAPP complex
trajectory, showing substantially higher undulations, the IPP
complex gets stabilized after ∼60 ns.

Figure 7. Seven key hotspot residues excavated for designing the functionally improved mutants.
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Furthermore, the RMSF, or residue fluctuations across the
simulation, reveals a macromolecular system’s conformational
stability, and its scoring undulations describe structural
complexity, with a lower value signifying higher overall
stability.56,63 For NudF, RMSF is found to be within ∼0.5−2
nm (Figure 9), although its three C-term loop residues and two
preceding terminal 11-residue α-helices, connected through a
five-residue loop, shows a stark increment crossing ∼3 nm. In

contrast, the DMAPP and IPP complexes orderly show the

RMSF divergence between∼0.1−0.8 and∼0.06−0.525 nm, and

here, the terminal double-helix does not show any significant

displacement. It is interesting to note that the RMSF score
across the chain for NudF-IPP is lesser than the NudF-DMAPP

scores, indicating that the former is a more stable complex

structure.

Figure 8. Structural scrutiny. (A) DDG−RSA plot for the five top-ranked mutations of the seven prioritized residues, (B) predicted NudF flexibility
showing a high score for the eight loop regions, and (C) structural position of the eight flexible loops. A lower DDG score implies a more energetically
stable conformation.
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As the ligand binding causes conformational changes in the
receptor, its respective substructural alterations are likely to
affect SASA, and thus, it has been utilized multiple times to
assess the level of receptor exposure to the surrounding solvent
molecules.67,68 Although a significant deviation is not observed
in the per-residue SASA score, usually showing a comparatively
large surface area or a lower compactness of this substructure,
the SASA scores are found to be highly variant across the

simulation trajectory. The SASA for the NudF structure is
observed to consistently drop along the trajectory from 112.5 to
97.5 nm2 (Figure 9), although the respective score of the
DMAPP complex declines from 117.5 to 97.5 nm2, with a sharp
drop at 20 ns. In contrast, the corresponding score for the IPP
complex declines from 112.5 to 100 nm2, and except for a few
time intervals, minute variations were observed throughout the
simulation period. SASA for the IPP complex drops dramatically

Figure 9.MDanalysis for the apoproteinNudF and its DMAPP and IPP complexes for the RMSD, RMSF, radius of gyration, solvent accessible surface
area, area/residues, hydrogen bonds, and ligand RMSD scores. It clearly indicates a prioritized binding for IPP within the promiscuous active site of
NudF.
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from 110 to 103 nm2 after 5 ns. The equivalent declination for
the DMAPP complex, on the other hand, is noticed after 17.5 ns,
and its trajectory has significantly more unequal undulations.
NudF also exhibits this distinctive declination after 10 ns, and
here, it could indicate a significant functional transition, leading
to the substantial increase in structural compactness. Moreover,
after the initial decline, the SASA graph moves likewise for both
DMAPP and IPP complexes.
For estimating the binding affinity of IPP/DMAPP with

NudF (Figure 9), the MD trajectories are further investigated to
analyze the extent of hydrogen bonds made along the
simulation, as usually done.67,68 Along the trajectory, NudF
shows a nearly 100−120 hydrogen bonds. However, the
DMAPP and IPP complexes orderly show 100−130 and 110−
130 hydrogen bonds, and an almost similar variation throughout
the trajectory. It indicates their nearly similar scale of atomic
interaction within the active site, as also shown by their
substantially similar SASA undulations. Although, observing the
earlier results, the affinity of DMAPP should not be comparable
to that of IPP, consistency of hydrogen bonds is maintained for
both the ligand complexes throughout the trajectory, and it
indicates the comparable stability of these complexes. To
excavate it further, the protein−ligand hydrogen bonding
variations are analyzed through the trajectory, and for the
DMAPP complex, the number of hydrogen bonds is found to
slowly increase to two with significantly variant undulations.
However, for the IPP complex, the number of bonds
consistently increases, and after ∼60 ns, nearly one bond is
maintained throughout the simulation, showing its more stable
interaction. As hydrogen bonds are the major interactions to
drive the proper anchoring of ligands within the active site, the
higher number of such bonds should be responsible for a
stronger interaction.67,68

Figure 8 deciphers three key features. First, the ddG score is
found to be the highest for PHE116 and LYS78 residues, and it
confirms that the two residues certainly hold the key to actively
evolve the enzyme against the substrates by increasing the
structural stability. Second, ASP139, GLU140, and ASP141
show a remarkably insignificant ddG score, and it implies that
these positions are highly crucial for the NudF function and their
top-ranked mutations also failed to stabilize the protein, as
earlier discussed by Nobel Laureate Frances Arnold.70 However,
these three residues, along with the substructure T130-L138,
show a high RSA score, and it indicates that the flexibility of this
superficial loop region could impart a significant functional
attribute to NudF. Restricting the search to LYS78 and PHE116
indicates that these positions should be significantly crucial for
the stability and interaction affinity of the active site. Third, as
LYS78 is superficially more exposed in comparison to ARG116
and is only in contact with one other residue, it should be first
mutated to study its effect on the overall product yield. It opens
venues for their experimental verifications as the top-ranked
mutants K78I/K78L and PHE116D/PHE116E could selec-
tively stabilize the conformation and could be responsible for the
ligand specificity, urgently needed to design the novel
industrially useful NudF enzyme.
The study extends our understanding about ADP-ribose

pyrophosphatase and shows that it has a preferential bias for IPP
over DMAPP, with−115.388 (kcal/mol) versus−41.402 (kcal/
mol), respectively, although if the former is missing, the protein
interacts with DMAPP at a much slower rate, and probably, this
could be a key signal to IDI to initiate the conversion of DMAPP
to IPP. Recently, the promiscuous activity of EcNudB toward

geranyl diphosphate and farnesyl diphosphate has been
demonstrated to generate several isoprenoid alcohols, including
isopentenol, geraniol, and farnesol, as well as their derivatives.71

Thus, the promiscuous dephosphorylation of NudF should be
studied further through various other substrates, and with that, it
would open venues to industrially engineer the cells, wherein the
downstream reactions could be channeled more actively with
minimal cellular regulation.

4. CONCLUSIONS
The research thoroughly examines the Bacillus subtilis ADP-
ribose pyrophosphatase and its 37 functionally confirmed
homologs with the projected tertiary structure of the 179-
residue representative sequence CUB50584.1. Besides analyzing
the phylogenetic relationship, it maps the highly conserved and
variant loci to build the knowledge base for its directed evolution
experiments. Although the sequence data set shows a
significantly high phylogenetic divergence, 26.259% residues
are found to have a statistically higher evolutionary conservation.
ADP-ribose pyrophosphatase shows a prioritized interaction
with IPP than DMAPP, according to the docking energy data,
with −115.388 (kcal/mol) versus −41.402 (kcal/mol). The
topological variations are restricted to eight loop regions,
maximally encompassing the active site, demonstrating their
importance for the ligand binding. Seven residues (ARG18,
PRO43, PRO81, ALA117, ASP139, GLU140, and ASP141) are
not found to have even one contact in the contact map network
of 22 hotspot sites, and mutational analysis for these seven
positions shows the highest ΔΔG scores for LYS78 and
PHE116, orderly encoded within loop1 and loop7, encapsulat-
ing the active site. Quite similar to NudF, the four top-ranked
mutants F116E, F116D, K78I, and K78L show the highestΔΔG
scores of 1.06, 0.97, 0.88, and 0.84, and it indicates that these
positions should be the key to maximally direct the synthesis of
required terpenoids in Bacillus subtilis. MD analysis reveals that
the NudF structure is unstable, just like E. coliNudB, and that its
IPP complex is more stable than theDMAPP complex. Thus, the
present study must be industrially useful to channelize the entire
DXP pathway toward the increased production of prenol or
isoprenol or their downstreammolecules without generating any
metabolic burden.
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