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Breast cancer is the most common cancer in women, but few biomarkers are effective in
clinic. Previous studies have shown the important roles of non-coding RNAs in diagnosis,
prognosis, and therapy selection for breast cancer and have suggested the significance of
integrating molecules at different levels to interpret the mechanism of breast cancer. Here,
we collected transcriptome data including long non-coding RNA (lncRNA), microRNA
(miRNA), and mRNA for ~1,200 samples, including 1079 invasive breast carcinoma
samples and 104 normal samples, from The Cancer Genome Atlas (TCGA) project. We
identified differentially expressed lncRNAs, miRNAs, and mRNAs that distinguished
invasive carcinoma samples from normal samples. We further constructed an
integrated dysregulated network consisting of differentially expressed lncRNAs,
miRNAs, and mRNAs and found housekeeping and cancer-related functions.
Moreover, 58 RNA binding proteins (RBPs) involved in biological processes that are
essential to maintain cell survival were found in the dysregulated network, and 10 were
correlated with overall survival. In addition, we identified two modules that stratify patients
into high- and low-risk subgroups. The expression patterns of these two modules were
significantly different in invasive carcinoma versus normal samples, and some molecules
were high-confidence biomarkers of breast cancer. Together, these data demonstrated
an important clinical application for improving outcome prediction for invasive
breast cancers.
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INTRODUCTION

In women, breast cancer is the most commonly diagnosed cancer
and accounts for ~30% of new cancer diagnoses (Siegel et al.,
2017). Great improvements have been achieved in diagnosis,
surgery, and medical treatment for breast cancer in the past
decades. From 1989 to 2016, the death rate for breast cancer
dropped by 40% for female breast cancers in the United States.
However, it has still been the second leading cause of cancer
death in women in the last ten years (Siegel et al., 2017). Invasive
breast carcinoma accounts for about 80% of breast cancer
(Weigelt et al., 2008) and exhibits high heterogeneity in terms
of morphology, clinical features, and prognosis (Milanovic et al.,
2013), and the regulatory mechanisms at the genomic level still
thus need to be unearthed.

Many studies have investigated the pathogenesis underlying
breast cancer and have discovered diagnostic and prognostic
markers. In 2006, a study reported altered expression patterns of
microRNAs (miRNAs) during initiation and progression and
their relationship with cancer diagnosis, staging, and prognosis
(Calin and Croce, 2006). Another study investigated the
expression of deregulated miRNAs in breast cancer and found
correlations of altered miRNA expression with estrogen receptor
expression, vascular invasion, and other clinicopathological
characteristics (Iorio et al., 2005). Long non-coding RNAs
(lncRNAs) represent a new class of non-coding RNAs that are
at least 200 nucleotides in length and do not possess a clearly
defined open reading frame (Ponting et al., 2009). lncRNAs are
critical regulatory factors in cancer initiation and progression (Li
and Chen, 2013; Yang et al., 2014). The lncRNA DSCAM-AS1
holds a central position in estrogen receptor (ER)-regulated
breast cancer and modulates tamoxifen resistance and tumor
progression (Niknafs et al., 2016). Another lncRNA, MAGI2-
AS3, can target the Fas/FasL signaling pathway to suppress cell
growth in breast cancer (Yang et al., 2018b). Furthermore, a 12-
lncRNA signature has been proposed that can be used to identify
breast cancer patients at high risk of tumor recurrence, which
could be utilized in clinic (Zhou et al., 2016b). Recently, some
studies have shown that post-transcriptional regulatory networks
can be regulated by molecules at multiple levels (Wei et al., 2017;
Liu et al., 2019). By constructing a ceRNA network, a 10-lncRNA
signature has been proposed that classified patients into high-
and low-risk subgroups with significantly different survival
outcomes, highlighting the value of integrating data sets from
multiple levels (Zhou et al., 2016a). Mir-21 and lncRNA AWPPH
regulate cancer cell chemosensitivity and proliferation in triple-
negative breast cancer (Liu et al., 2019). Mir-223 promotes breast
cancer cell proliferation by targeting FOXO1 and provides a new
potential tumor marker (Wei et al., 2017). The above results
imply the significance of integrating molecules at different
regulatory levels for interpreting the mechanism of breast
cancer, especially in invasive breast carcinoma.

RNA-binding proteins (RBPs) are a type of proteins that bind
RNA through its globular RNA-binding domains (RBDs)
(Hentze et al., 2018). RBPs can bind mRNA, pre-rRNA, tRNA,
small nuclear RNA (snRNA), small nucleolar RNA (snoRNA)
and residual ncRNA (Gerstberger et al., 2014) and can alter the
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fate or function of the bound RNAs during post-transcriptional
gene regulation (PTGR), which correlates with the stability,
transport, localization, and degradation of different RNAs.
They act as important participants in gene regulation (Nishida
et al., 2017) and play an important role in maintaining genome
integrity (Gerstberger et al., 2014). RBPs have been found to be
closely related to many human diseases and to be involved in a
wide range of biological processes, such as tumorigenesis,
proliferation, development, and apoptosis, by interacting with
mRNA (Frisone et al., 2015; Grammatikakis et al., 2017),
microRNA (Ciafre and Galardi, 2013), and lncRNA (Luo et al.,
2013; Schmitt and Chang, 2016). There are ~20,000 protein-
coding genes in humans, and 7.5% of genes are involved in RNA
metabolism by binding to RNA (Hentze et al., 2018). But only a
few RBPs have received intensive study.

The Cancer Genome Atlas (TCGA) project was launched in
2005 and has accelerated the comprehensive understanding of
cancer genomic profiles, thus improving diagnostic methods,
therapy standards, and preventive strategies. TCGA has released
thousands of high-throughput molecular profiles at different
levels, which help researchers better understand cancer
pathogenesis, diagnosis, and prognosis. In this study, we
integrated the expression profiles of breast cancer at multiple
levels (lncRNA, miRNA, and mRNA) across ~1,200 samples,
including 1079 invasive breast carcinoma samples as well as 104
normal samples. We identified differentially expressed lncRNAs,
miRNAs, and mRNAs and then constructing a lncRNA-miRNA-
mRNA dysregulated network, which is a power-law, small-world
network. RBPs were found in the dysregulated network, and
some of them are related to overall survival time. In addition, two
modules were identified and exhibited a correlation with the
overall survival time. Further analysis showed that these modules
have significantly different expression patterns in cancer versus
normal samples. To better understand these two modules, we
mined the literature for the molecules in each module and found
that some molecules play important roles in breast
cancer biology.
MATERIALS AND METHODS

RNA-Seq Expression Data Sets
and Pre-Processing
RNA-seq expression data sets of ~1200 patient samples were
downloaded from TCGA (https://portal.gdc.cancer.gov/),
comprising 1079 invasive breast carcinoma samples and 104
normal samples (Table S1). MRNA, lncRNA, and miRNA were
included in each sample. Using Perl scripts, we combined ~1200
files into a single profile. The lncRNA expression profile was
extracted from the profile based on the latest annotation from the
Ensembl database. The biotypes of known lncRNAs are
3prime_overlapping_ncrna, ambiguous_orf, antisense,
antisense_RNA, lincRNA, ncrna_host , non_coding,
non_stop_decay, processed_transcript, retained_intron,
sense_intronic, and sense_overlapping. The biotype of protein-
coding genes is protein_coding. In total, 19951 mRNA, 15949
January 2020 | Volume 10 | Article 1284

https://portal.gdc.cancer.gov/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Dong et al. Dysregulated lncRNA-miRNA-mRNA Network
lncRNA, and 1881 miRNA were obtained from TCGA. Based on
previously published papers (Yan et al., 2015; Li et al., 2018b; Pan
et al., 2018), RNAs with expression 0 in more than 10% of
normal samples were eliminated.

Analysis of Differential Expression
Between Breast Carcinoma and
Normal Samples
Differentially expressed molecules were identified through the
use of previously reported methods (Li et al., 2015; Li et al.,
2018b). Firstly, RNAs were divided into two groups. RNAs with
an expression level equal to 0 in <30% tumor samples were
subjected to a t-test, and RNAs with an expression level equal to
0 in >30% tumor samples were subjected to a Fisher’s exact test.
For the RNAs in the first group, RNAs with a fold change larger
than 2 (or smaller than 0.5) and an adjusted p-value smaller than
0.01 were identified as differentially expressed. For RNAs in the
second group, we determined their expression in binary fashion:
ON (expressed, expression value larger than 0) and OFF (not
detected, expression value equal 0). Firstly, the frequencies of ON
and OFF in breast carcinoma and normal samples were
calculated, respectively. RNAs expressed twice more frequently
in cancer than in normal samples were marked as ‘ON in cancer’;
otherwise, RNAs were marked as ‘OFF in Cancer.’ Then, for each
RNA, the significance of the contingency between ON/OFF and
cancer/normal status was calculated by Fisher’s exact test with
adjustment for multiple testing via the Benjamini-Hochberg
method. RNAs with FDR smaller than 0.01 was used. In total,
4269 differentially expressed protein-coding genes were
identified, as well as 3057 differentially expressed lncRNAs and
367 differentially expressed miRNAs (Tables S2–S5). Validation
of the differentially expressed RNAs was performed by extracting
the expression values and normalized them based on Z-score.
After that, based on the R package ‘pheatmap,’ samples were
clustered using differentially expressed lncRNAs, miRNAs, and
mRNAs, respectively. PCA was also used to cluster the samples.

Ago CLIP-Seq-Supported miRNA
Target Sites
miRNA target sites were predicted using a target prediction
algorithm from miRanda (Betel et al., 2010) with the default
parameters. 3’UTR was used to predict target sites for mRNA,
while for lncRNA, the full length of the lncRNA transcript was
used. It has been reported that miRNAs function in the form of
ribonucleoprotein complexes, RISCs (RNA-induced silencing
complexes) (Fabian et al., 2010), and Argonaute (AGO)-family
proteins represent the best-characterized protein components
and are central to RISC function (Eulalio et al., 2008; Chekulaeva
and Filipowicz, 2009). Ultraviolet (UV) crosslinking and
immunoprecipitation (CLIP) was used to identify specific
protein-RNA interactions (Konig et al., 2012). Hence the
function of the Argonate-RNA-miRNA complex can be
verified through CLIP technology (Chou et al., 2013). Here we
downloaded AGO 1/2 CLIP-Seq datasets from starBase v2.0 (Li
et al., 2014a) and identified AGO binding sites to filter candidate
miRNA target sites. A target was reserved only if it overlapped
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with at least one AGO binding site. In total, 41632 miRNA-
lncRNA regulatory relationships were predicted, including 1176
lncRNAs and 2509 miRNAs, and 1247237 miRNA-mRNA
regulatory relationships were predicted, including 18252
protein-coding genes and 2511 miRNAs (Tables S6 and S7).

Constructing the Dysregulated lncRNA-
miRNA-mRNA Network
Based on the interactions of miRNA-lncRNA and miRNA-
mRNA, we constructed an initial lncRNA-miRNA-mRNA
network. A three-step filtering process was then performed: 1)
RNAs that were not differentially expressed were filtered; 2) the
expression of each RNA pair (miRNA-lncRNA or miRNA-
mRNA) should be significantly correlated (p-value < 0.01 and |
correlation coefficient| > 0.4) across samples based on Pearson
correlation; 3) only miRNAs that were shared by both lncRNA
and mRNA were considered. The dysregulated network was
constructed based on 876 interactions and 539 differentially
expressed molecules, including 75 miRNAs, 63 lncRNAs, and
401 protein-coding genes (Table S8). The network was
visualized using Cytoscape (Shannon et al . , 2003).
CytoCluster (Li et al., 2017), a Cytoscape plugin for cluster
analysis and visualization of biological networks, was used to
identify modules, employing the graphically based IPC-MCE
algorithm and adopting the default parameter values (0.6 as
the Threshold).

Survival Analysis
The clinical data of all of the breast cancer patients were
downloaded from TCGA. Perl scripts were used to extract the
information regarding days to last follow up and vital status
(alive or dead) for each invasive breast carcinoma patient. For
each module, the average value in each sample was used.
Modules that relate to the overall survival were identified by
clustering the samples into two classes based on K-means
Clustering. An R package, ‘survival’ was then used to 1)
construct a surv object using the function ‘Surv’ based on the
status and time, 2) create fitted survival curves with the Kaplan-
Meier algorithm, using the function ‘survfit’ based on the surv
object and class label, and 3) test for a difference between the two
survival curves using a log-rank test. P-value < 0.05 was set as the
cutoff. All reported p-values were two-sided.

Functional Enrichment Analysis
In order to investigate functional roles, GO and KEGG analyses
were performed based on protein-coding genes in the network
using the Database for Annotation, Visualization, and Integrated
Discovery (DAVID, version 6.8) (Huang da et al., 2009; Huang
et al., 2009). Cancer hallmarks related GO terms were identified
by two previous studies (Subramanian et al., 2005; Plaisier et al.,
2012). Additionally, PANTHER (Mi and Thomas, 2009) (https://
reactome.org/) and REACTOME (Croft et al., 2011) (http://
pantherdb.org/) pathway analysis were performed. To further
investigate the functional roles, GAD, a database of genetic
association data from complex diseases and disorders, was also
used by DAVID (Huang da et al., 2009; Huang et al., 2009).
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Cancer Genes
Two cancer gene lists were used to further validate the roles in
cancer. The first one was compiled by by Mertins et al. (2016),
who collected 415 oncogenes and tumor suppressors from
UniProt (https://www.uniprot.org/) and published papers.
Another list of 524 genes that had been implicated in
malignant transformation according to a catalog of somatic
mutations in cancer (COSMIC, http://cancer.sanger.ac.uk/
cancergenome/projects/census) was collected by Uhlen et al.
(Uhlen et al., 2015). In total, 724 potentially cancer-related
genes were used (Table S9).
RESULTS

Differentially Expressed RNAs Distinguish
Invasive Breast Carcinoma From
Normal Tissues
We acquired the expression profiles of mRNA, lncRNA, and
miRNA from TCGA, which contains 1183 samples, comprising
1079 invasive breast carcinoma samples and 104 normal samples
(Table S1). Differentially expressed molecules were identified
using the method detailed in Li et al. (2018b). RNAs with an
expression level equal to 0 in <30% tumor samples were
subjected to t-test, and RNAs with an expression level equal to
0 in >30% tumor samples were subjected to Fisher’s exact test
(see Methods). In total, 4269 protein-coding genes that were
differentially expressed between invasive breast carcinoma and
normal samples were identified, including 2349 up-regulated and
1920 down-regulated genes (Tables S2 and S3). For lncRNAs,
3057 differentially expressed molecules were identified, of which
2033 were up-regulated and 1024 were down-regulated (Tables
S2 and S4). Additionally, 367 differentially expressed miRNAs
were identified. 152 miRNAs were up-regulated, and 215 were
down-regulated (Tables S2 and S5).

We validated our differentially expressed molecules by
performing unsupervised hierarchical cluster analyses for the
1179 invasive breast carcinoma samples and 104 normal samples
using the R package ‘pheatmap’ with the default distance. The
invasive breast carcinoma samples were clearly distinguished
from normal samples in terms of differentially expressed
lncRNAs, protein-coding genes, and miRNAs, respectively
(Figures 1A–C). To further check these differentially expressed
molecules, principle component analysis (PCA) analyses were
performed using the R function ‘prcomp.’ Consistent with the
unsupervised hierarchical clustering, the first two principal
components could distinguish the tumor samples from normal
samples (Figures 1D–F).

The Dysregulated Network Is a Biological
Network Performing Housekeeping and
Cancer-Related Functions
All of the differentially expressed molecules mentioned above were
used to construct the dysregulated network. We predicted miRNA
target sites for all protein-coding genes and lncRNAs based on the
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algorithm from miRanda (Betel et al., 2010), using the default
parameters (see Methods). It has been reported that miRNA
functions in the form of ribonucleoprotein complexes, RISCs
(RNA-induced silencing complexes) (Fabian et al., 2010), and
Argonaute (AGO)-family proteins represent the best-
characterized protein components and are central to RISC
function (Eulalio et al., 2008; Chekulaeva and Filipowicz, 2009).
Ultraviolet (UV) crosslinking and immunoprecipitation (CLIP)
was used to identify specific protein-RNA interactions (Konig
et al., 2012). Hence, the function of the Argonate-RNA-miRNA
complex can be verified through CLIP technology. Candidate
miRNA and target site pairs were filtered by the AGO 1/2 CLIP-
seq data from starBase (Li et al., 2014a) (see Materials and
Methods). A total of 41632 interactions, including 2509
miRNAs and 1176 lncRNA targets, were predicted as well as
1247237 interactions between 2577 miRNAs and 18252 protein-
coding genes (Tables S6 and S7). Next, based on the three-step
filtering process (see Materials and Methods), a dysregulated
network was constructed from 876 interactions and 539
differentially expressed molecules, including 75 miRNAs, 63
lncRNAs, and 401 protein-coding genes (Figure 2A, Table S8).

It has been shown that many biological networks are small-
world networks (Latora and Marchiori, 2001; Wagner and Fell,
2001), which have also been reported to be scale-free networks
(Amaral et al., 2000). We tested whether our dysregulated
network is a scale-free network by analyzing the degree
distribution, which is one of the most important characteristics
of a scale-free network and is defined as the number of edges
incident to a node. As shown in Figure S1A, more than 88% of
nodes had less than five edges, whereas only 6% of nodes had
more than 10 edges. It fitted a power-law distribution with R2 =
0.86 and correlation = 0.99, suggesting that our network is a
scale-free network (Barabasi, 2009). In addition, most of the
shortest paths were between 4 and 6 (Figure S1B), which is
consistent with the property of a small-world network. Closeness
is a measure of how close an individual is to other individuals in a
network (Borgatti, 1995; Costenbader and Valente, 2003). The
more central a node is, the closer it is to all other nodes. As
shown in Figure S1C, the majority of nodes were highly central.
Together, these data revealed that our dysregulated network is a
scale-free and small-world network, indicating that our network
is a canonical biological network.

The functions of the dysregulated network were investigated
by using the protein-coding genes in this network to perform
functional enrichment analysis (see Methods). All top-ten
enriched gene ontology (GO) terms were related to cell cycle,
mitotic nuclear division, and nuclear division (Figure 2B). These
were all housekeeping functions for maintaining cell survival. We
further acquired all of the housekeeping genes identified by Jiang
et al. (2018) and found that 84 (21%) protein-coding genes in our
dysregulated network were housekeeping genes (Table S10). In
addition, based on a previous study (Salem et al., 2016), we
obtained a list of GO terms related to hallmarks of cancer and
found that these terms were also enriched in our network
(Figure 2C). For example, signal transduction (GO:0007165)
and positive regulation of cell proliferation (GO:0008284) are
January 2020 | Volume 10 | Article 1284
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Self Sufficiency in Growth Signals, while negative regulation of
cell proliferation (GO:0008285) and negative regulation of cell
cycle (GO:0045786) are Insensitivity to Antigrowth Signals.
Taken together, our dysregulated network demonstrated
important and functional roles.

Moreover, we performed pathway enrichment analyses using
three different pathway databases, the Kyoto Encyclopedia of
Genes and Genomes (KEGG), PANTHER (Mi and Thomas,
2009), and REACTOME (Croft et al., 2011). For the KEGG
pathway, housekeeping and cancer-related functions were again
enriched (Figure S2A). The housekeeping functions were cell
cycle and axon guidance, and the cancer-related functions were
pathways in cancer, Melanoma, Colorectal cancer and Prostate
cancer (Figure S2A). For the PANTHER and REACTOME
pathway databases, most of the top terms were housekeeping
functions (Figures S2B, C).

To further validate their important roles in cancer, we
obtained 415 oncogenes and tumor suppressors from Mertins
et al. (2016) and 524 genes that have been implicated in
Frontiers in Genetics | www.frontiersin.org 5
malignant transformation from Uhlen et al. (2015). In total,
724 cancer genes were used (Table S9). 656 of them were
expressed in our dataset, and 31 were in our network (Figure
S2D). Based on a hypergeometric test, the p-value was 7.46E-05,
which suggested that our dysregulated network was significantly
enriched in cancer-related genes. We further performed
functional enrichment analysis using DAVID (Huang da et al.,
2009; Huang et al., 2009) based on the Genetic Association
Database (GAD), which is a database of genetic association data
from complex diseases and disorders. Surprisingly, breast cancer
was the most enriched term (Figure 2D), which corroborated the
important roles of our dysregulated network in cancer biology.

RBPs in Our Dysregulated Network
Next, we investigated the RBPs in our dysregulated network.
Based on published papers (Cook et al., 2011; Gerstberger et al.,
2014; Fredericks et al., 2015; Hentze et al., 2018), 58 RBPs were
found in our dysregulated network, of which 28 were upregulated
and 30 were downregulated (Table S11). To improve our
FIGURE 1 | Clustering based on differentially expressed molecules. Unsupervised hierarchical clustering of all samples based on differentially expressed lncRNAs
(A) protein-coding genes (B) and miRNAs (C). The unsupervised hierarchical clustering was performed using an R package, ‘pheatmap’ with the default distance
setting, Euclidean distance. (D–F) PCA analysis based on differentially expressed lncRNAs (D), protein-coding genes (E), and miRNAs (F). PCA analysis was
performed by the R function ‘prcomp’.
January 2020 | Volume 10 | Article 1284
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understanding of the roles of RBP in invasive breast carcinoma,
STRING (https://string-db.org/) was used to construct a protein–
protein interaction (PPI) network (Figure 3A). Random networks
of the same size were generated by STRING, which was used to
assess whether the given network had more internal interactions
than would be expected for a random set of the same size. A small
PPI enrichment p-value indicates that the nodes are not random
and that the observed number of edges is significant. Based on
STRING, the PPI enrichment p-value was 1.0e-16, which means
that these RBPs have more interactions than would occur in a
random set. This enrichment indicated that these RBPs are at least
partially biologically connected as a group. The GO analysis
showed that all top 10 molecular function (MF) terms were
binding-related functions and the top two were poly(A) RNA
Frontiers in Genetics | www.frontiersin.org 6
binding and RNA binding, which further confirms that they are
RBPs (Figure 3B), and that these RBPs are involved biological
processes that are essential to maintain cell survival like cell cycle,
cell division, DNA packaging, and chromosome organization
(Figure 3C). Moreover, GAD enrichment analysis was also
performed, and it is worth noting that breast cancer was again
the most enriched term (Figure S3).

To investigate whether these RBPs were associated with
prognosis in invasive breast carcinoma patients, the overall
survival for each RBP was calculated using the R package
‘survival’ (see Methods). Ten RBPs (CDKN2A, DCAF13,
DNMT3B, EXO1, FANCI, KPNA2, RACGAP1, SORBS1,
TP63, and ZNF106) were significantly associated with overall
survival, including seven upregulated and three downregulated
FIGURE 2 | Functional analysis for the dysregulated network. (A) The dysregulated lncRNA-miRNA-mRNA network. The network was visualized using Cytoscape.
(B) The top 10 enriched GO terms. (C) The top 10 enriched cancer hallmark-related GO terms. (D) The top 10 enriched GAD terms.
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https://string-db.org/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Dong et al. Dysregulated lncRNA-miRNA-mRNA Network
RBPs (Figures S4 and S5). Notably, some were reported to play
roles in breast cancer (see Discussion). Overexpression of
DCAF13, DNMT3B, KPNA2, EXO1, FANCI, RACGAP1, and
ZNF106 in invasive breast carcinoma patients showed poor
survival, while overexpression of CDKN2A, SORBS1, and
TP63 showed better survival (Figures S4 and S5).
Frontiers in Genetics | www.frontiersin.org 7
Modules in the Dysregulated Network
Relate to the Survival of Invasive Breast
Carcinoma Patients
To further investigate the roles of our dysregulated network,
CytoCluster (Li et al., 2017), a Cytoscape plugin for cluster
analysis and visualization of biological networks, was used to
FIGURE 3 | RBPs in the dysregulated network. (A) Protein–protein interaction (PPI) network of RBPs based on STRING. (B) The top 10 enriched GO MF terms.
(C) The top 10 enriched GO BP terms. BP, biological process.
January 2020 | Volume 10 | Article 1284
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identify modules (see Methods). Subsequently, to explore the
relationship between the modules and the prognosis of patients
with invasive breast carcinoma, the overall survival for each
module in invasive breast carcinoma patients was investigated
Frontiers in Genetics | www.frontiersin.org 8
(see Methods). We found that two modules were significantly
(p < 0.05) correlated with overall survival (Figures 4A–D).
Moreover, their expression patterns in normal and invasive
breast carcinoma samples were assessed. These two modules
FIGURE 4 | Analysis of modules identified from the dysregulated network. (A, B) The two modules identified from the dysregulated network using Cytoscape with
default parameters. (C, D) Kaplan-Meier plot of survival for these two modules. (E) Expression patterns of the modules in normal and cancer samples. The average
expression value of each molecule crossing all normal/cancer samples was used.
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showed significant differences in expression patterns between
normal and invasive breast carcinoma samples (Figure 4E). Both
showed significantly lower expression in invasive breast
carcinoma samples, indicating that lower expression of these
modules contributes to the development of invasive
breast carcinoma.

In addition, to further investigate the functions of these two
modules in breast cancer, literature-mining was used for the
molecules in each module. Module 1 had 25 nodes, including
eight miRNAs, two lncRNAs, and 15 protein-coding genes.
Twenty-two of the molecules, including all of the miRNAs,
have been shown to play important roles in breast cancer. For
example, mir-195 inhibits tumor growth and metastasis in breast
cancer cells (Singh et al., 2015; Wang et al., 2016c). Mir-497
contributes to cell proliferation, migration, and invasion of
estrogen receptor alpha-negative breast cancer by targeting
estrogen-related receptor alpha (Han et al., 2016; Wu et al.,
2016b). TGFBR3 inhibits breast cancer progression through
TGF-beta signaling (Lee et al., 2010). In addition, other
molecules in module 1 such as ADAMTS5 (Fontanil et al.,
2017), ARHGAP20 (Asaduzzaman et al., 2017), C2orf88 (Lo
et al., 2015), EZH1(Liu et al., 2012), FAM13A (Goto-Yamaguchi
et al., 2018), FGF1 (Slattery et al., 2013), GNAL (Yi et al., 2009),
GRAMD3 (Boiles et al., 2015), PELI2 (Zang et al., 2017), PLSCR4
(Sahay et al., 2015), PTPN14 (Belle et al., 2015), RBMS3 (Zhu
et al., 2019a), SH3BGRL2 (Alexe et al., 2007; Wen et al., 2018),
let-7c (Fu et al., 2017), mir-100 (Jiang et al., 2016b), mir-10b
(Wang et al., 2016b), mir-125b (Wang et al., 2019a), mir-139
(Dai et al., 2017), and mir-21 (Yan et al., 2008; Yanwirasti and
Arisanty, 2017; Zhu et al., 2019b) have been reported to play
important roles in breast cancer. Module 2 had nine nodes,
including two miRNAs, five lncRNAs, and two protein-coding
genes. Five of these molecules have been shown to play
important roles in breast cancer. For example, Wang et al.,
(2019b) reported that overexpression of miR-377 correlates
with better prognosis in triple-negative breast cancer.
ADAMTS-5 may alter the cellular microenvironment, affecting
the balance between protumor and antitumor effects (Fontanil
et al., 2017). SNCA is the hub gene and is involved in promoting
tumor invasion in breast cancer (Serra-Musach et al., 2012; Dang
et al., 2016). Besides, molecules in module 2 like the lncRNAs
(HCG11) (Liu et al., 2016) and mir-195 (Singh et al., 2015; Wang
et al., 2016c) have also been reported to play roles in breast
cancer. We also performed key driver analysis (KDA) (Bin
Zhang , 2013) to identify key drivers in our network, and all of
the miRNAs from our two modules were identified as key
drivers. All of these results imply the important roles and vital
functions of these two modules in breast cancer biology.
DISCUSSION

Breast cancer is a leading type of cancer in women worldwide
(Stewart and Wild, 2014). Many improvements have been made
in diagnostic techniques, surgical skills, and medical treatments
relating to breast cancer in the past decades. However, it still
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caused 522,000 deaths in 2012 (Stewart and Wild, 2014). It is
imperative to improve the diagnosis and treatment of breast
cancer further. Therefore, the identification of cancer-related
molecules and the exact regulatory mechanism of breast cancer
initiation and development are attracting increasing attention.

It has been reported that lncRNAs and miRNAs play
important roles in breast cancer, as do protein-coding genes
(Cizkova et al., 2013; Li et al., 2014b; Kim et al., 2015; Yang et al.,
2018b). Here we integrated the expression data of lncRNA,
miRNA, and protein-coding genes based on ~1200 invasive
breast carcinoma and normal samples from TCGA. A total of
4269 differentially expressed protein-coding genes, 3057
differentially expressed lncRNAs, and 367 differentially
expressed miRNAs were identified. Based on unsupervised
hierarchical clustering and PCA, the samples from invasive
breast cancer were distinguished from the normal samples. To
construct a dysregulated network, we predicted miRNA targets
using an algorithm from miRanda (Betel et al., 2010) with the
default parameters. As mature miRNA is part of an active RNA-
induced silencing complex (RISC) (Rana, 2007) and the Ago
family is central to RISC function (Tang, 2005), AGO CLIP-Seq
data were applied to achieve highly convincing miRNA targets.
Based on the differentially expressed lncRNAs, miRNAs, and
protein-coding genes, an initial dysregulated lncRNA-miRNA-
mRNA network was built. After three-step filtering, the final
network was constructed, consisting of 876 interactions and 539
differentially expressed molecules.

Next, we analyzed this network through different aspects—
the distribution of degree, shortest path, and closeness centrality
—which showed that the dysregulated network is a scale-free,
small-world network and a meaningful biological network. To
further understand the function of the dysregulated network,
functional enrichment analysis was performed. The top-10 GO
terms showed housekeeping functions in our network.
Furthermore, terms related to cancer hallmarks were also
found, based on a previous study (Salem et al., 2016).
Enrichment analysis with three different pathway databases
supported the housekeeping and cancer-related functions in
our dysregulated network. Based on two previous studies, 716
potential cancer genes were obtained, and further analysis
showed enrichment in these cancer-related genes. Furthermore,
we found that breast cancer was the most enriched term based on
GAD, suggesting the important role of our dysregulated network
in cancer biology.

It was known that RBPs play a central role in the regulation of
gene expression, and dysregulated expression of RBPs has been
related to the development of cancers (Galante et al., 2009; Bebee
et al., 2014; Wang et al., 2015; Correa et al., 2016). In the present
study, we identified 58 RBPs in our dysregulated network, and
these were confirmed by GO BP analysis. These RBPs are
involved in biological processes that are essential to
maintaining cell survival. Based on STRING, we found that
these RBPs had more interactions among themselves than
what would be expected, indicating that they are at least
partially biologically connected. Interestingly, GAD enrichment
analysis again showed that breast cancer was the most enriched
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term. In addition, 10 RBPs were found to be associated with the
overall survival of invasive breast carcinoma patients, which
suggested that they might be associated with tumor
progression, invasion, and aggressiveness. Indeed, some have
been reported to play roles in breast cancer. TP63 is a sequence-
specific DNA binding transcriptional activator or repressor
(Zhou et al., 2016b). In breast cancer, high expression of TP63
coupled with STAT6 has been shown to be associated with longer
metastasis-free survival, indicating that TP63 could be involved
in inhibiting the migration of breast cancer cells (Papageorgis
et al., 2015). By silencing TP63 expression, breast cancer cells
acquired increasing resistance to cisplatin, suggesting its role in
drug reaction (Mendoza-Rodriguez et al., 2019). SORBS1 is an
adaptor protein, and its overexpression inhibits the invasive
capacity of tumor cells in breast cancer patients. Silencing
SORBS1 promoted EMT and weakened chemotherapy
sensitivity (Song et al., 2017). DCAF13, located in chromosome
8q22.3, has been shown to be amplified in breast cancer.
Overexpression of DCAF13 was associated with worse
prognosis and might be involved in regulating cell cycle
progression (Chin et al., 2007; Cao et al., 2017). By targeting
DNMT3b, miR-221 became involved in tumorigenicity through
regulating the stemness of breast cancer cells (Roscigno et al.,
2016). Additionally, DNMT3B helped maintain the CAF
function of promoting breast cancer malignance (Tang et al.,
2019). RBPs are important in tumor development, and their role
still needs to be explored more.

Using CytoCluster (Li et al., 2017), we identified modules that
were significantly related to the overall survival time. These two
modules had significantly different expression patterns in cancer
and in normal samples. Moreover, the literature mining revealed
that some molecules in each module play important roles in
breast cancer. In module 1, there were 25 nodes, including eight
miRNAs, two lncRNAs, and 15 mRNAs. It had been reported
that the upregulation of mir-497 inhibited cell proliferation,
migration, and invasion in breast cancer (Han et al., 2016;
Wang et al., 2016a; Wu et al., 2016b) and that mir-195
inhibited tumor growth, invasion, and metastasis by targeting
other RNAs in breast cancer (Singh et al., 2015; Wang et al.,
2016c). Importantly, mir-497 and mir-195 were the hub nodes in
this module, indicating their essential role in the module.
However, these two miRNAs were down-regulated in breast
cancer, which means that the inhibition was lost, contributing
to the development of breast cancer. Consistent with the tumor-
suppressive role of these two miRNAs, TGFBR3 was reported to
suppress breast cancer progression through TGF-beta signaling
(Lee et al., 2010), and RBMS3 and PTPN14 were also shown to
play roles in inhibiting metastasis (Belle et al., 2015; Zhu et al.,
2019a). These data imply that the function of module 1 may be to
inhibit cancer progress and metastasis and that these functional
miRNAs may affect breast cancer through TGFBR3, RBMS3, and
PTPN14. Additionally, LIPE-AS1 (lncRNA), RP11-66B24.4
(lncRNA), and CCDC50 (mRNA) have not been reported in
BRCA, but LIPE-AS1 interacted with miRNA-497 and slightly
correlated with overall survival (p = 0.075) and both RP11-
66B24.4 and CCDC50 are regulated by the two hub miRNAs,
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which suggested that they might act as main or auxiliary
regulators in the progression and metastasis of BRCA. In
module 2, mRNA ADAMTS5 was reported to play roles
during migration and invasion in breast cancer (Fontanil et al.,
2017). It also functions as a tumor suppressor by inhibiting
migration, invasion, and angiogenesis in human gastric cancer
(Huang et al., 2019). Besides, two other studies have shown that
the upregulation of ADAMTS5 promotes progression in
colorectal cancer and drives metastasis in colon and non-small
cell lung cancer (Gu et al., 2016; Yu et al., 2016). Another mRNA,
SNCA, was also reported to be involved in tumor development
by inhibiting invasion and inducing apoptosis (Li et al., 2018c;
Yan et al., 2018). Thus, the function of module 2 might relate to
cancer progression and survival. Previous studies have shown
that miRNAs may function as tumor suppressors or oncogenes
in tumor development, invasion, and metastasis. In module 2,
mir-377 is the hub node and may be the core molecule involved
in breast cancer due to its interactions with other molecules.
Moreover, mir-377 has been reported to inhibit proliferation and
metastasis in gastric cancer and pancreatic cancer (Chang et al.,
2016; Wang et al., 2017). mir-195 was also important in BRCA,
as it was shown that mir-195 could inhibit the invasion and
metastasis of breast cancer (Singh et al., 2015; Wang et al.,
2016c). lncRNA CECR7 interacts with mir-377 and had been
reported to play a role in hepatocellular carcinoma (Zhang et al.,
2015). In addition to the molecules reported to play roles in
breast cancer, some novel candidate biomarkers, which may also
be important to breast cancer, were found, but more evidence is
needed in future.

Many studies have performed integrative analyses of TCGA
breast cancer data through networks. For example, Yin et al.
(2016) focused on identifying miRNA-mRNA pairs and
constructed a miRNA target network in invasive breast
carcinoma. Li et al. (2018a) found that some of the
correlations between microRNA and target genes declined in
cancer compared to normal across multiple cancers. Wu et al.
(2016a) found two kinds of lncRNA-mRNA co-expression
patterns: 1) correlations between lncRNA-mRNA in cancer
were reversed compared to normal; 2) correlations between
lncRNA-mRNA in cancer were similar to normal. Xiao et al.
(2018) compared the differential genes between ER+ and ER-
and constructed a ceRNA network and found that some
molecules correlated with prognosis. Yang et al. (2018a)
compared the differentially expressed genes in Triple-Negative
Breast Cancer and also constructed a ceRNA network. Some
molecules correlated with prognosis were identified and
validated by qRT-PCR. Sun et al. (2019) identified eight
lncRNAs as the prognosis signature for breast cancer using a
ceRNA and WGCNA network. Gao et al. (2019) built a ceRNA
and found some prognosis-related molecules (four lncRNAs, two
miRNAs, and two mRNAs). Most studies built a ceRNA
network, which contains molecules that are not differentially
expressed. However, the integrated dysregulated network in this
study consists of differentially expressed lncRNAs, miRNAs, and
mRNAs only, and we identified RBPs and modules that can
stratify patients into high- and low-risk subgroups. Moreover,
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each module not only relates to prognosis but also contains
RNAs that have been reported to play roles in breast cancer.

It is well known that the expression of non-coding RNAs is
highly tissue- and cell-type specific, providing important clues
about their specific functions in response to contextual demands
(Mercer et al., 2008; Cabili et al., 2011; Jiang et al., 2016a). Here,
we identified patient survival-associated modules including non-
coding RNAs in invasive breast carcinoma, and this
interpretation was supported in many ways. All molecules in
the modules were differentially expressed in invasive breast
carcinoma, indicating the potential roles of these molecules.
The modules came from a scale-free biological network that
performs functions that are related to housekeeping and are
cancer hallmarks. More importantly, these two modules were
significantly correlated with overall survival. Moreover, many
papers have shown clues that molecules in our networks play
roles in the progression of breast cancer, and KDA analysis also
showed that the molecules in our networks are key drivers. Based
on these strands of evidence, our results are credible. However,
there are limitations to this study. Firstly, it is a network-based
study. Secondly, our study is only based on bioinformatics
analysis. Experiments are needed to support the identifications
of functional roles.
CONCLUSIONS

In summary, using a network-based strategy, we provided a
framework integrating miRNAs, mRNAs, and lncRNAs that
are differentially expressed in breast cancer to identify
biomarkers. Although further validation is still needed to
support the potential roles of the RBPs and two modules,
Frontiers in Genetics | www.frontiersin.org 11
many strands of evidence show the correlations between our
two modules and breast cancer. Overall, our dysregulated
network provides new insights into outcome prediction for
invasive breast cancers.
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