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Severe trauma is the most common cause of mortality in children and is associated with a

high socioeconomic burden. The most frequently injured organs in children are the head

and thorax, followed by the extremities and by abdominal injuries. The efficient and early

assessment and management of these injuries is essential to improve patients’ outcome.

Physical examination as well as imaging techniques like ultrasound, X-ray and computer

tomography are crucial for a valid early diagnosis. Furthermore, laboratory analyses

constitute additional helpful tools for the detection and monitoring of pediatric injuries.

Specific inflammatory markers correlate with post-traumatic complications, including the

development of multiple organ failure. Other laboratory parameters, including lactate

concentration, coagulation parameters and markers of organ injury, represent further

clinical tools to identify trauma-induced disorders. In this review, we outline and evaluate

specific biomarkers for inflammation, acid-base balance, blood coagulation and organ

damage following pediatric polytrauma. The early use of relevant laboratory markers may

assist decision making on imaging tools, thus contributing to minimize radiation-induced

long-term consequences, while improving the outcome of children with multiple trauma.

Keywords: organ injury, biomarker, emergency room management, laboratory parameters, coagulation,

inflammation, acid-base balance

INTRODUCTION

Multiple trauma is the leading cause of mortality in both adolescents and pediatric patients
(1, 2). In most of the recently published studies (particularly in Germany and other high income
countries) road traffic accidents are the leading cause of injuries in children, followed by falls from
heights (3–6). Motor vehicle crashes account for 78% of severe injuries in children compared to
at least 63% in adults (3). In adults, the term “multiple trauma” describes several injuries suffered
simultaneously in different parts of the body, whereby at least one injury or the combination of
several injuries is life-threatening (7, 8). The injury severity is reflected by the Injury Severity Score
(ISS). The ISS is calculated based on the Abbreviated Injury Scale (AIS) and considers the three
most severely injured body regions (9). With regard to the ISS definition, “multiple trauma” is
defined as an ISS ≥16. This definition is also validated for pediatric polytrauma (4, 10).
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The trauma mechanism in children frequently differs from
those of adults. The small body height and weight and the special
body proportion and constitution determinate injury severity in
children. As in adults, male children are more frequently affected
by multiple trauma than females (3, 11). This distribution is
also observed in infants and toddlers (11). The injury pattern
after polytrauma in children is strongly age dependent. Up to
the age of schoolchildren, traumatic brain injury (TBI) is the
most common trauma consequence. The extremities, chest and
abdomen are more frequently affected in older children (11). In
particular, chest and brain trauma are predictive for the outcome
of pediatric polytrauma patients (12). Because the pediatric
chest is more elastic, children display an increased risk for
intrathoracic organ damage compared to adults (5). Additionally,
lung and/or cardiac contusion can be present in pediatric patients
without any external signs on the thoracic wall (6, 13, 14). The
surgical treatment strategy of extremity fractures in children
differs in comparison to those of adults. While adults are more
frequently treated following the Damage Control Orthopedic
(DCO) concept [60.3%], fractures in children are stabilized
according to the Early Total Care (ETC) principles (49.4%) (15).
The incidence of multi-organ failure (MOF) is also described
as age-dependent: Younger children less frequently develop
MOF compared with older children (16–18). In comparison to
adults, late lethality (>24 h) is higher in children, whereas no
significant differences were observed in the early phase after
trauma (3, 4).

Pediatric polytrauma patients should be treated in a
specialized trauma center with an adequate infrastructure and
experience in the management of complex injuries (16, 19).
Because of differences in anatomy and physiology, pediatric
polytrauma patients require early emergency diagnostics
adjusted to age-specific variations. Defining appropriate
reference values for laboratory tests as well as the interpretation
of imaging are needed and are still a matter of debate. Severely
injured pediatric patients are rare even in specialized trauma
centers. Therefore, physicians involved in diagnostic procedures
and management in the emergency room of severely injured
children need to be well-trained and should use laboratory
diagnostic tools like biomarkers to reliably confirm their
diagnosis, therapy or prognosis (3). Because of the longer life
expectancy of children, remaining disabilities after pediatric
trauma affect children for their entire life and need to be
absolutely avoided. Additionally, the need for further therapy as
well as for aftercare poses a high socio-economic burden (20).

Although pediatric polytrauma is an important focus in
clinical and experimental research, the limited number of
patients and the many ethical hurdles of prospective studies in
children has resulted in a lack of systematic studies of multiple
injured pediatric patients. Therefore, this review aims to present
an overview on the state of the art of the role of laboratory
biomarkers in the management of pediatric polytrauma and
highlights areas of future research. By the early examination of
specific systemic parameters and biomarkers for organ injury,
the affected organs could be precisely identified after severe
pediatric polytrauma. This early estimation of injury severity
and localization of affected organs might encourage the usage

of specific diagnostic imaging tools, including whole-body
computed tomography (CT), X-ray and ultrasound imaging. As
a result, the clinical course of the pediatric patient is improved
and at the same time, long-term radiation-induced consequences
are limited.

Acute Systemic Inflammatory Markers
Severe tissue damage after trauma triggers the immediate
activation of the innate immune system, resulting in an enhanced
systemic inflammatory response (21). The extent of systemic
inflammation correlates with the injury severity (22, 23). In the
clinical setting, it is useful to apply these inflammatory mediators
as prognostic surrogates and to define high-risk groups as well as
to identify a risk-adapted therapy.

Currently, various inflammatory systemic mediators are
clinically used for the early emergency diagnostics of pediatric
trauma. The C-reactive protein (CRP) and the number of
leukocytes are clinically relevant systemic inflammatory markers,
which are commonly used in pediatric patients. Interestingly, a
correlation between initial CRP (first 3 hospital days) and the
injury severity was described (24). Furthermore, a correlation
between the CRP, blood glucose level and mortality rate of
children with severe injuries was presented in this retrospective
study of 42 trauma patients (mean age 8.0) Remarkably, these
parameters were further associated with a prolonged hospital
stay (24). Therefore, CRP might be a useful diagnostic biomarker
which should be considered for early emergency diagnostics
after pediatric trauma. Besides the prognostic value of CRP after
trauma, increased CRP levels in febrile children in the emergency
department should also initiate further infection diagnostics such
as blood culture and smear tests. Furthermore, the Pediatric Early
Warning Score (PEWS) and National Institute for Health and
Care Excellence (NICE) or the Liverpool quick Sequential Organ
Failure Assessment (LqSOFA) (25) are applied in children with
acute febrile illness in the pediatric emergency department in
order to identify life-threatening infection.

Moreover, in the early inflammatory phase, interleukin (IL)-
6 and IL-8 are also used in pediatric trauma care. Compared to
adults, the innate immune system is not fully matured in children
and the pro-inflammatory cytokine production is, therefore, less
pronounced (26, 27). The complexity of the pediatric immune
reaction is represented by the fact that a strong release of pro-
inflammatory cytokines from macrophages is accompanied by a
high production of anti-inflammatory cytokines, including IL-10
(28, 29). Other studies demonstrated an increase of IL-6 and IL-8
in the early post-traumatic phase (30, 31). While the prognostic
benefit of IL-6 is well-known in adults (32, 33), the discussion is
still ongoing in the case of children. Andruszkow et al. described
in 2014 a significant correlation between increased IL-6 during
the first 2 days after trauma and MOF development (34). By
contrast, our group recently observed no correlation between
IL-6 and organ failure in 88 polytraumatized pediatric patients
(4). Ozturk et al. observed a significant difference only in the
survival of severely injured children (forty-seven children (37
boys, 10 girls) presenting with blunt trauma),with regard to IL-8,
whereas IL-6 and the early cytokines tumor necrosis factor (TNF)
and IL-1β displayed no association with the survival rate (35).
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FIGURE 1 | Summary box acute systemic inflammatory markers.

Consequently, the early evaluation of systemic inflammatory
cytokines after pediatric trauma might be a useful tool in
emergency diagnostics for the adequate estimation of systemic
inflammation. However, the complexity of the pediatric immune
reaction should be carefully considered and the analysis of further
inflammatory parameters like IL-1β and IL-12p70might promote
the adequate assessment of trauma-induced inflammation in
pediatric patients.

Another possible valid indicator for pediatric trauma is
procalcitonin (PCT), because a strong correlation between PCT
and the injury severity was shown in adults. Moreover, PCT
correlated with the development of post-traumatic sepsis (36–38)
and might be a strong predictor for the development of MOF
after trauma. Therefore, PCT appeared to be a reliable prognostic
marker after trauma in adults. In children, there are also studies
describing PCT as an independent predictor for the development
of sepsis and of the systemic inflammatory response syndrome
(SIRS) after trauma. Moreover, a correlation of plasma PCT and
the injury severity in children was observed. Therefore, blood
samples of 30 children with acute trauma were investigated, in
which 23% developed sepsis and the PCT peaked at day 2. PCT at
day 2 was an independent predictor of the development of sepsis
in children (39, 40).

Thermal injuries are major causes of morbidity and mortality.
Patients frequently suffer burns combined with trauma, which
is also described as “two-hit” phenomena of injury, resulting
in a higher morbidity of the affected patients because of
synergistic detrimental effects (41, 42). Burn injuries are severe
concomitants after explosions or motor vehicle crashes, affecting
both adults and children (43). Burn injuries are associated
with a massive inflammatory response, which appeared to be
similar between adults and children. Worthy of note is that
IL-6 and IL-10 blood plasma levels were significantly reduced
early after burn injury in children. In this study 25 adults and
24 children were enrolled who survived a flame burn covering
more than 20% of total body surface area and cytokine levels
were measured within the first week after trauma (44). These
parameters and their ratio were associated with a poor outcome
in pediatric trauma patients (22, 23). However, the role of

age in the post-traumatic inflammatory response in children
remains unknown. Following pediatric burn injury, neither CRP
nor PCT necessarily correlated with an increased mortality
(45). Consequently, further studies investigating the systemic
inflammatory profile after burn injury combined with severe
trauma in children are necessary. Markers for acute systemic
inflammation are summarized in Figure 1.

Acid-Base Balance
The acid-base balance is important for the clinical management
of severely injured children. It is monitored by conducting a
blood gas analysis (BGA), which is routinely performed. One
prognostic marker for an imbalanced acid-base equilibrium
is lactate. Lactate is produced during anaerobic metabolism
and is an established marker for tissue hypoxia. However, the
prognostic validity of lactate for pediatric trauma is ambiguous
and it is currently unclear how lactate production in children
differs from adults after severe trauma (46). A systematic
review of Lawton et al. showed a strong correlation between
initial high lactate levels and mortality after multiple trauma in
adults (46). In another study, post-traumatic lactate levels were
measured in more than 210 injured children (47). In this study, a
correlation between high lactate levels and the injury severity was
demonstrated, which was further confirmed by other studies (48).
Our group recently described high levels of lactate in severely
injured children, but no correlation with the injury severity (4).
Interestingly, Fu et al. reported a high prognostic importance of
lactate in the case of pediatric TBI investigated in 213 with an
GCS < 13 (49). Nevertheless, the base deficit as a prognostic
marker for pediatric trauma is strongly debated. Some studies
propose the base deficit as a prognostic marker of the injury
severity and mortality (50, 51), but Levy et al. indicated an only
weak predictive value of the base deficit (52). Parameters for
blood gas analysis are summarized in Figure 2.

Coagulation Tests
Acute trauma-induced coagulopathy (ATIC) is a severe
consequence in multiple injured patients as well as in children
resulting in a high mortality rate after trauma (53, 54).
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FIGURE 2 | Summary box parameters of blood gas analysis.

The incidence of ATIC after severe trauma varies between
20–70%, which might be due to different international ATIC
definitions (53–56). Additionally, post-traumatic consumption of
coagulation factors and hypercoagulation with microthrombosis
frequently occur in children after severe trauma (57, 58).

The hemostasis system of children significantly differs from
that of adults, whereby the clinical interpretation of laboratory
routine parameters might be challenging (59, 60). Additionally,
there is a clear lack of systematic studies investigating ATIC in
children, which are needed to estimate its prognostic role as
well as to define diagnostic and therapeutic strategies for ATIC
treatment. Currently, the evaluation of the classical coagulation
parameters represents an important tool for the diagnosis of
severely injured children.

Most relevant parameters for the detection of ATIC are
the prothrombin time, the partial thromboplastin time (pPTT)
as a marker of the plasmatic coagulation, the fibrinogen, the
fibrin cleavage products and the thrombocytes as parameter
of the cellular coagulation. The advantages of these markers
are their ubiquitous availability as well as the relatively reliable
interpretation. Nevertheless, the coagulation system is strongly
dependent on patient age. Particularly newborns and toddlers
present a lack of vitamin K dependent coagulation factors, less
fibrinogen and reduced thrombocytes, displaying a higher risk
for coagulopathy compared to older children and adults (59).
The international normalized ratio (INR, >1.2–1.5) is frequently
used to define coagulopathy in severely injured children. An
increase of the INR is likewise associated with an increased
mortality investigated in a cohort analysis of 744 patients
with an age < 18 years (early coagulopathy was observed in
27%) (54, 55). Furthermore, an increased aPTT and a reduced
platelet count on hospital admission also correlate with increased
mortality in a cohort of 91 injured children [33 children
showed coagulopathy at admission, seven did not survive
(21%)] (61).

The international society of thrombosis and hemostasis
(ISTH) developed a score, which summarizes the INR, plasma
fibrinogen, d-dimer/fibrin cleavage products and the amount
of thrombocytes to diagnose a disseminated intravascular
coagulopathy (DIC) (62). This score was also validated in
pediatric patients with sepsis and/or circulatory shock correlating

with the mortality of these children (58, 63). Therefore, this
DIC-score of the ISTH may be a helpful tool in the diagnostic
of ATIC in severely injured children.

Currently, the so-called “viscoelastic measurement”
thromboelastography (ROTEM R©) is considered a rather
reliable point-of-care monitoring of acute coagulopathies in
the emergency room and intensive care unit (ICU). In addition
to the assessment of initial coagulation, it is also a suitable
tool to immediately evaluate therapeutic success. Although
a wide range of studies exists in adults, there remains a lack
of literature about the usefulness of thromboelastography in
children. In one case report of a 7-year-old boy, the successful
use of thromboelastography as a monitoring tool of the
fibrinogen concentration was described (64). Thromboelastic
measurements were also described as controlling the transfusion
of fresh frozen plasma in severely injured patients more
adequately than the INR (65). The future role of thromboelastic
measurements in the case of ATIC children is still unclear and
requires further investigation. Coagulation tests are summarized
in Figure 3.

Markers for Organ Injury
Severe trauma frequently affects the musculoskeletal system as
well as the internal organs. On the one hand, there are direct
blunt or penetrating injuries, particularly of the abdomen or
chest. These injuries directly damage the contained organs.
On the other hand, the early inflammatory response after
trauma may induce a secondary damage of the organs. In
severely injured children, organ damage is primarily assessed
by various imaging methods, including ultrasound, X-ray,
CT and MRI. Additionally, organ damage after trauma is
further characterized by the systemic elevation of organ-
specific biomarkers. Particularly damage of the heart, kidney
and liver are reflected by various well-established laboratory
biomarkers. By contrast, brain, lung and spleen damage is more
frequently diagnosed by advanced imaging techniques rather
than by the assessment of systemic biomarkers. However, the
additional evaluation of specific biomarkers for respective organ
damage might support and facilitate the early diagnosis in
pediatric trauma.
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FIGURE 3 | Summary box coagulation tests.

Markers for Cardiac Injury
Cardiac injuries are frequently recorded after severe multiple
trauma and are associated with dysrhythmias, ventricular
fibrillation, impaired cardiac function, sudden cardiac arrest and
a prolonged ventilation interval as well as by a longer hospital stay
of the patients (66–69). Cardiac troponin I is a reliable biomarker
for cardiac damage, which is routinely used in clinics for the
diagnosis of heart failure in adults (70). Moreover, the elevation
of systemic cardiac troponin I is also used in the emergency
room diagnostics for the early assessment of myocardial damage
after severe trauma in adults. In multiple injured patients, a
significant systemic increase of troponin indicates post-traumatic
cardiac damage, which is further associated with an increased
mortality as well as with an enhanced demand for catecholamines
(32). The diagnostic and prognostic value of systemic troponin
in 88 severely injured children was recently described by our
group (4). In this study, we measured enhanced systemic levels of
troponin in children at hospital admission, which correlated with
systemic IL-6 and creatine kinase levels. Children with an initial
troponin >14 ng/ml required significantly longer intensive care.
In addition, the young patients who were diagnosed with lung
contusion or MOF or who died after multiple trauma presented
significantly higher initial systemic troponin concentrations
compared to those without post-traumatic complications. With
regard to these observations, systemic cardiac troponin might
also be a reliable prognostic marker for cardiac damage in
severely injured children (4). Nevertheless, the age of the
children should be carefully considered when analyzing systemic
troponin levels: Preterm infants have tenfold higher baseline
TnT levels compared to newborns (71). Interestingly, myocardial
contusion or any macroscopic tissue damage of the heart was
not regularly observed in an autoptic study of 282 pediatric
polytrauma patients (age < 16 years) (72). This finding is in
accordance with an experimental model of multiple trauma and
hemorrhagic shock in mice which did not present localized
tissue damage of the heart, although a significant increase
of troponin was described (73). These observations might
indicate functional, subcellular damage of the cardiomyocytes,

which is not detectable in advanced imaging. How troponin
is released from morphologically intact cardiomyocytes after
trauma remains unknown (74). Furthermore, it remains unclear
whether and to what extent cardiomyocytes are able to
regenerate. For example, complete recovery of cardiac function
in newborns after myocardial infarction was observed (75).
Furthermore, in rodents, cardiac regeneration after myocardial
injury was described up to the first 7 days post-birth by
hyperplastic growth (76).

In addition to troponin, the early biomarker heart fatty acid
binding protein (HFABP) is currently used in the preclinic to
detect early myocardial damage after trauma (77). In newborn
pigs that suffered from asphyxia, hemorrhage and underwent
cardiopulmonary resuscitation, a systemic increase of troponin
I as well as of HFABP was observed 4 h after trauma. In children
with congenital heart failure, ischemia or kidney injuries, HFABP
is described as a reliable biomarker during pediatric age (78–
80). To answer the question whether HFABP should be included
in the laboratory diagnostic of pediatric polytrauma patients,
further studies are necessary.

Apart from direct mechanical cardiac damage, the
development of post-traumatic cardiomyopathy is one example
for secondary organ damage, which is well-described during
sepsis as well as after trauma (81–83). Secondary cardiac damage
after trauma, including functional and structural alterations,
was linked to pro-inflammatory cytokines (84, 85), local
damaging reactive oxygen species (ROS) (86) as well as danger-
associated molecular patterns (DAMPs) (87, 88). Furthermore,
local changes in the complement receptor expression of
cardiomyocytes as well as alterations of the electromechanical
signaling via gap junction endocytosis were observed after
trauma and were further associated with the development of
post-traumatic cardiomyopathy (73, 77, 89, 90). Markers for
cardiac injury are summarized in Figure 4.

Markers for Kidney Injury
In children, 10% of blunt abdominal trauma events demonstrated
a kidney lesion (91). Children are more susceptible to
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FIGURE 4 | Summary box markers for cardiac injury.

kidney-associated trauma consequences because of the small
proportion of retroperitoneal and abdominal fat tissue, the
kidney size, the weak expression of muscles, the elastic ribs
as well as the kidney localization (92, 93). Moreover, children
more frequently display some anatomical anomalies, including
ureteropelvic junction obstruction and a horseshoe kidney. These
anomalies are responsible for an increased susceptibility for
traumatic kidney lesions (93, 94). Acute trauma-related kidney
injury was associated with increasedmortality in 88 children with
an age between 0 and 20 years (95). Currently, the diagnostic
method of choice for the examination of traumatic kidney injury
in children is ultrasound. In case of severe injury, the application
of contrast agents and imaging via CT scan could be considered.
MRI could also be used for diagnosis in young children (93,
96). An apparent warning signal for traumatic kidney injury
is macrohematuria, which needs to be controlled via advanced
imaging (97). Furthermore, micro-hematuria following pediatric
blunt trauma which occurred in 19% of 1059 children with blunt
abdominal trauma did not impact the management in 78% (98).
However, a retrospective review of 655 children aged 0-16 years
withmotor vehicle accident revealed a positive predictive value of
39% and a negative predictive value of 87%. In this report micro-
hematuria was further associated with increased hospital stay,
surgical interventions and admission to intensive care unit (99).
Accordingly, the diagnostic role of a screening urine dipstick
has low sensitivity and specificity but is a useful and inexpensive
screening tool.

Of note, severe tissue injury can also result in development
of remote trauma-related acute kidney injury (TRAKI) (100)
even in absence of any primary kidney injury. Direct and
indirect kidney damage could be assessed by specific biomarkers.
A classical systemic kidney marker is creatinine. However,
this laboratory parameter appears to be unreliable in the
emergency diagnosis of traumatic kidney injury, because changes
in creatinine concentrations occurs only when kidney function
is reduced to more than 50% (101, 102). Furthermore, the
creatinine concentration is significantly influenced by a skeletal
muscle trauma. Additional biomarkers have been recently
discussed as markers for traumatic kidney injury, including
neutrophil gelatinase associated lipocalin (NGAL), kidney injury

molecule-1 (KIM-1), cystatin C, IL-18 and liver fatty-acid
binding protein (L-FABP) (102). NGAL appeared to be a
promising biomarker for traumatic kidney injury in multiple
injured patients, with it being a well-established marker for the
development of post-traumatic kidney dysfunction (103, 104).
The diagnostic role of NGAL after pediatric trauma is currently
not described. However, after pediatric burn injury, NGAL serum
concentrations as well as its urine levels correlated with the
development of acute kidney injury. Twenty-two children were
enrolled and six (27%) of them developed AKI within the first
48 h after injury. Moreover, NGAL correlated with CRP and PCT
as well as with the urine albumin and creatinine concentrations
after burn injury in children (105). Nevertheless, NGAL is not
frequently available in the emergency routine diagnostic and its
prognostic role in the emergency case after pediatric trauma
remains unknown. Markers for kidney injury are summarized
in Figure 5.

Markers for Liver Injury
In pediatric trauma, the kidneys and the liver are the most
commonly injured abdominal organs. Particularly hemodynamic
relevant bleeding is responsible for a high mortality after
traumatic liver injuries (106, 107). In total, 4% of pediatric trauma
cases display a detectable liver injury (108). Traffic accidents are a
common mechanism of traumatic liver damage followed by falls
from a height (109). Currently, trauma-induced liver injury in
pediatric patients is mainly diagnosed by imaging methods. The
diagnosis of traumatic liver injury is commonly based on CT
scans, which, however, should be considered carefully in pediatric
age. Therefore, the first step to diagnose liver damage in severely
injured children is the performance of an ultrasound.When there
are any suspicious findings in the initial ultrasound assessment,
a CT scan should be considered. The radiological extent of
liver injury does not correlate directly with the urgency for an
emergency operation (110). A useful tool in the emergency room
for diagnostic of abdominal bleeding and organ injury is the
so-called FAST-ultrasound technique (Focused Assessment with
Sonography for Trauma). Nevertheless, this commonly applied
screening should be always combined with a careful clinical
examination (111, 112).
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FIGURE 5 | Summary box markers for kidney injury.

In addition to imaging techniques, traumatic liver injury could
be further detected by specific systemic biomarkers. In adults
with severe liver trauma, aspartate aminotransferase (AST),
alanine aminotransferase (ALT) lactate dehydrogenase (LDH),
high INR values and low fibrinogen levels at hospital admission
are associated with a high mortality. (113). As in adults, the
systemic increase of ALT after pediatric abdominal trauma
represents a predictive value of a clinically relevant liver injury. In
a study with 205 pediatric trauma patients, 87 children displayed
a significant elevation of one or both transaminases (43% AST,
35% ALT). Nevertheless, only transaminases of >400 U/l were
associated with a degree of liver injury identifiable by abdominal
imaging. In total, 67% of the children with AST levels over 400
U/l and 78% with ALT levels >400 U/l were found to have a
gradable liver injury (108). Additionally, an extremely rapid and
high rise of ALT levels were associated with severe liver injuries
in adults (114). A negative initial ALT in hemodynamically stable
children does not justify diagnostics via a CT scan (115). In
a survey report of Swiss surgeons, 58% were convinced that
pediatric patients do not require a CT scan despite anomalies in
the initial examination or ultrasound. Interestingly, they decided
to conduct further imaging when the results of the ultrasound
were suspicious but did not base their decision on laboratory
liver function tests (114).Markers for lung injury are summarized
in Figure 6.

Markers for Traumatic Brain Injury
TBI is the leading cause of mortality among adolescents and
children (116). Children surviving TBI sustain moderate to
severe injuries and frequently suffer from long-term disabilities
(117). Falls, sports- and recreation-related blunt force trauma and
motor vehicle accidents are the leading causes of pediatric TBI.
Worthy of note is also that child abuse can be the underlying
cause of severe TBI. Acceleration-deceleration injuries can result
in diffuse axonal injury (DAI) (117). DAI refers to extensive
structural damage of neuronal tissue because of abrupt stretching,
twisting and/or shearing of axons induced by mechanical blows
to the head (118). Particularly in children, TBI has detrimental
long-term consequences, including the development of critical

neurobehavioral functions. Moreover, the recovery from TBI in
the developing brain differs greatly from that of the mature adult
brain (119). For the management of pediatric TBI, neuroimaging
is commonly used to improve clinical care and management
of children (120). For an adequate estimation of brain injury,
CT is applied post trauma for the immediate detection of
extra-axial hemorrhage, acute hydrocephalus, fractures and
other intracranial lesions (121). Moreover, MRI is a very
sensitive technique for the detection of intra-parenchymal
lesions. Advanced MRI techniques have been established during
recent decades for the identification of sequelae as well as for
management decisions of pediatric TBI (122).

In addition to neuroimaging techniques, plasma biomarkers
might be a reliable tool for the clinical assessment of pediatric

TBI. Angiopoietin-2 (AP-2), endothelin-1 (ET-1) and endocan-
2 (EC-2) were described to be elevated after TBI in children
(28 children hospitalized with mild, moderate, and severe TBI),

correlating with both their GCS and ISS (123). Moreover,
the neuronal cell body injury markers neuron specific enolase
(NSE) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) are
systemically elevated after pediatric TBI and are considered as
predictors for a poor outcome after TBI, which was analyzed
by a meta-analysis including 10 studies (124, 125). Noteworthy,
UCH-L1 is regarded as a highly sensitive marker for intracranial
lesions. It predicts undetected microstructural injuries even in
pediatric patients with a normal CT. Moreover, it was shown
that UCH-L1 is released together with the astroglial marker glial
fibrillary acidic protein (GFAP) after pediatric TBI, correlating
with a poor outcome of the children. This study investigated
a cohort of 45 children with the clinical diagnosis of TBI
(GCS 3-15) compared to 40 healthy patients (125). Another
astroglial marker is the S100B protein, which is also released
after pediatric TBI, and correlates with TBI severity (126, 127).
For TBI diagnosis, the combination of CT with systemic S100B
protein levels has also been suggested (127). Additionally, the
myelin basic protein (MBP) is systemically increased after TBI
in 100 children compared to 64 healthy controls (128). Early
hyperglycemia predicts in-hospital mortality in children with
moderate to severe TBI (129). Serum lactate is a by-product of
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FIGURE 6 | Summary box markers for liver injury.

anaerobic metabolism and correlates with the injury severity in
adult patients after trauma (130). Similarly, the serum lactate
levels also correlate with increased in-hospital mortality of
children with moderate to severe TBI, as also shown in adults
(49). Osteopontin (OPN) is a phosphoprotein which is secreted
by macrophages and activated microglia. OPN was found to
be systemically enhanced in pediatric TBI, correlating with TBI
severity, intracranial lesions and mortality of the children (three
to 9 years of age, n = 66, GCS</= 8) (131). Interestingly,
serum albumin levels could also be considered as predictors
for mortality of children (n = 213, GCS </=13, 45 died in
hospital) with moderate to severe TBI (132). Pediatric TBI
is associated with a massive systemic release of inflammatory
mediators. Similarly, IL-6 is considered to be a reliable prognostic
biomarker for pediatric TBI (123). The administration of 20-
hydroxyeicosatetraenoic acid improved the functional outcomes
of rats in an experimental pediatric TBI model by decreasing
the gene expression of TNF and IL-1β (133). Moreover,
microglia/macrophages might also play an important role in
the injury mechanisms following pediatric TBI (134). The high
mobility group box 1 protein (HMGB1) is a key mediator
of neuroinflammation and neurodegeneration in TBI. It was
previously shown that HMGB1 is systemically released after
experimental pediatric TBI in mice and the inhibition of HMGB1
reduced brain edema and improved short-term spatial memory
andmotor behavior. However, HMGB1 inhibition did not reduce
the severity of evoked seizures or cortical tissue loss in this animal
model (135). By contrast little is known about the role of different
inflammatory mediators and DAMPs during neuroinflammation
following pediatric TBI. Markers for traumatic brain injury are
summarized in Figure 7.

Markers for Lung Injury
A pediatric chest trauma, particularly in combination with other
organ damage, including TBI and abdominal lesion, results
in an increasing overall mortality after multiple trauma (12).
The organs of the thorax are more sensitive to damaging
influences in children compared to adults because of the pending
ossification of the ribs and the more flexible ribcage (5). In
addition to the heart, the lungs are also frequently affected

after severe multiple trauma. A lung contusion could lead to
impaired oxygenation and subsequently to hypoxemia (13).
Pulmonary injury in severely injured children is a common
complication and exacerbates the clinical outcome because
pulmonary injuries impair ventilation, followed by subsequent
lung infections or by a respiratory distress syndrome (13,
136). Following pediatric trauma, lung contusion, rib fractures,
pneumothorax/hematothorax or tracheobronchial rupture occur
(137). With an occurrence of 36% in injured children, lung
contusions are the most frequent consequence of a chest trauma
followed by a pneumothorax in 12–22% of the young patients
and by rib fractures in 13% of the 33 injured children (age
< 18 years) (138, 139). Furthermore, 0.5% of children develop
acute respiratory distress syndrome (ARDS) after trauma, which
is based on the pulmonary endothelial injury and the epithelial
breakdown leading to the subsequent development of alveolar
edema (140). Pulmonary edema is associated with increased
mortality as described in the context of acute lung injury in
adults (141). ARDS-associated mortality arises in 18–35% and
occurs mostly in the first week after trauma (142–144). The
development of pediatric ARDS is associated with TBI inmultiple
injured children. ARDS was identified in 0.5% (2660/488,381)
of the analysis cohort, with an associated mortality of 18.6%
(494/2660) (142).

Currently, in the clinic, pediatric lung injury after severe
trauma is diagnosed by imaging techniques. Posterior-anterior

X-ray imaging remains one of the basic examination tools to
evaluate the consequences of a chest trauma (137). In addition to
a lower exposure to radiation, the X-ray imaging has much lower
costs compared to CT scans. However, CT should be considered
when there are abnormalities in the initial diagnosis (145, 146).
This decision should be combined with a clinical evaluation and
careful examination. In children, lung ultrasound is frequently
used as a diagnostic tool for lung contusion (147, 148). Hypoxia
is established in young children as a good predictor of thoracic
injury with lung damage, whereas the respiratory rate is only a
predictor in adults (138).

Presently, different biomarkers for lung injury are being
discussed. The cardiac-specific marker troponin is also
considered as a reliable marker of lung contusion after
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FIGURE 7 | Summary box markers for traumatic brain injury.

FIGURE 8 | Summary box markers for lung injury.

pediatric trauma (149). We recently described an initial troponin
T elevation in pediatric trauma patients with lung injury.
Furthermore, we observed in 34% of multiple injured children
the development of a lung contusion, which was diagnosed by
ultrasound and/or CT (4).

In adults, blunt chest trauma results in high serum levels
of surfactant protein D (SP-D). A correlation between the
SP-D levels and the ISS as well as the development of
complications were reported (150). An elevation in serum SP-
D-levels also correlated with the mortality of patients receiving
mechanical ventilation and was described in the context of
obstructive pulmonary disease, pneumonitis and pneumonia
(151). Recently, we observed a systemic increase of SP-D
after experimental hemorrhagic shock and cardiopulmonary
resuscitation in newborn pigs (152). It is therefore tempting to
speculate that SP-D might be a reliable biomarker for lung injury
after pediatric trauma.

Furthermore, angiopoietin 2 (AP-2) and the soluble receptor
for advanced glycation end products (sRAGE) are discussed as
biomarkers for endothelial and pulmonary epithelial damage

in pediatric ARDS. AP-2 and sRAGE were higher in survivors
compared to non-survivors of pediatric ARDS. Moreover, these
biomarkers correlate with the number of critically ill children
with non-pulmonary organ failure (153, 154). Additionally, the
inflammatory response could be relevant for prognostics in the
case of lung injury: IL-6, IL-8, IL-10, IL-18 and TNF-R2 strongly
correlated with the overall mortality and the endothelial injury
in pediatric patients. Interestingly, both IL-6 and IL-8 displayed
a strong correlation with AP-2 (155). Markers for lung injury are
summarized in Figure 8.

CONCLUSION

The severely injured child remains an interdisciplinary
challenge (19). A summary of the respective laboratory
markers and imaging tools for the management of pediatric
polytrauma are summarized in Supplemental Table 1 and
Supplemental Table 2. Although there is an increasing amount
of data, there remains a lack of prospective controlled studies to
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develop guidelines for rapid diagnostics after pediatric trauma.
One limitation of the present review is that we only included
a selection of references of this wide field. To summarize,
many laboratory markers were recently described, which might
support the early diagnosis and prognosis of severely injured
children. However, for an adequate assessment of the injuries
after pediatric trauma, the application of imaging techniques
is indispensable and is currently exclusively applied in the
clinic. However, the combination of imaging techniques and
a reliable prognostic laboratory biomarker could improve
the rapid and adequate assessment of pediatric injuries after
trauma. Furthermore, early laboratory diagnostics and follow-up
measurement could improve the overall outcome and the
further clinical process of severely injured children. Moreover,
by establishing reliable biomarkers for clinical monitoring
in future for pediatric trauma, the exposure of the children
to high amounts of radiation might be reduced, preventing
radiation-induced long-term consequences.
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