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The capillaries of the brain, owing to their small diameter and low perfusion pressure,
are vulnerable to interruptions in blood flow. These tiny occlusions can have outsized
consequences on angioarchitecture and brain function; especially when exacerbated
by disease states or accumulate with aging. A distinctive feature of the brain’s
microvasculature is the ability for active neurons to recruit local blood flow. The coupling
of neural activity to blood flow could play an important role in recanalizing obstructed
capillaries. To investigate this idea, we experimentally induced capillary obstructions in
mice by injecting fluorescent microspheres and then manipulated neural activity levels
though behavioral or pharmacologic approaches. We show that engaging adult and
aged mice with 12 h exposure to an enriched environment (group housing, novel
objects, exercise wheels) was sufficient to significantly reduce the density of obstructed
capillaries throughout the forebrain. In order to more directly manipulate neural activity,
we pharmacologically suppressed or increased neuronal activity in the somatosensory
cortex. When we suppressed cortical activity, recanalization was impaired given the
density of obstructed capillaries was significantly increased. Conversely, increasing
cortical activity improved capillary recanalization. Since systemic cardiovascular factors
(changes in heart rate, blood pressure) could explain these effects on recanalization, we
demonstrate that unilateral manipulations of neural activity through whisker trimming
or injection of muscimol, still had significant and hemisphere specific effects on
recanalization, even in mice exposed to enrichment where cardiovascular effects would
be evident in both hemispheres. In summary, our studies reveal that neural activity bi-
directionally regulates the recanalization of obstructed capillaries. Further, we show that
stimulating brain activity through behavioral engagement (i.e., environmental enrichment)
can promote vascular health throughout the lifespan.

Keywords: capillary, cerebral blood flow, neurovascular coupling, GABA, vascular dementia, environmental
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INTRODUCTION

There is growing appreciation of the unique vulnerabilities of
the cerebral blood supply. Specifically the capillary bed, which
comprises >90% of vascular length and primarily distributes
blood flow throughout the brain, is prone to spontaneous
obstructions by cells or circulating debris (Blinder et al., 2013;
Santisakultarm et al., 2014; Gould et al., 2017; Reeson et al.,
2018; Erdener and Dalkara, 2019; Bracko et al., 2020; Schager and
Brown, 2020). These obstructions can be ephemeral or persistent,
and are far more abundant in disease states (Santisakultarm
et al., 2014; Cruz Hernández et al., 2019; Bracko et al., 2020; Ali
et al., 2022). Given the fact that persistently obstructed capillaries
are eventually pruned (Reeson et al., 2018), any intervention
that promotes capillary recanalization could conceivably preserve
blood supply and buttress the vasculature’s ability to support
cognitive functions. It has been demonstrated in a variety
of species, including humans, that as we age the density of
capillaries in the brain decreases (Buchweitz-Milton and Weiss,
1987; Riddle et al., 2003; Brown and Thore, 2011; Harb et al.,
2013; van Dinther et al., 2022). This age-related loss of vessel
density correlates with impaired cognitive function, and can
be partially predicted by brain region specific vulnerability to
capillary plugging (Mann et al., 1986; Iadecola, 2013; Langdon
et al., 2018; Schager and Brown, 2020; Yoon et al., 2022).
Rodent studies have demonstrated that depleting adherent
neutrophils can improve cerebral blood flow and performance
on sensory-motor and cognitive tasks in mouse models of
Alzheimer’s disease and stroke (Cruz Hernández et al., 2019;
El Amki et al., 2020). While concerted efforts across multiple
labs (Reeson et al., 2018; Cruz Hernández et al., 2019; Erdener
et al., 2019; Yoon et al., 2022) have begun to understand the
phenomenology of capillary obstructions, there remain serious
gaps in our understanding of the mechanisms that regulate
capillary recanalization.

The majority of obstructed cortical capillaries that recanalize,
do so by extruding the obstruction back into the circulation
(Reeson et al., 2018). This suggests that changes in vascular tone
and blood flow, could be effective in enhancing recanalization
after obstruction. The dynamic regulation of cerebral blood flow
to meet the metabolic demands of active neurons is referred to
as neuro-vascular coupling (NVC) (Gordon et al., 2007; Attwell
et al., 2010; Hall et al., 2014; Hill et al., 2015; Ma et al., 2016;
Mishra et al., 2016). From a mechanistic perspective, increased
neural activity and resultant metabolic demands to restore ionic
gradients (Attwell and Laughlin, 2001), trigger the recruitment
of local blood flow through intermediate and effector cells such
as astrocytes, mural cells, and endothelium (Devor et al., 2003;
Gordon et al., 2007; Kleinfeld et al., 2011; Hall et al., 2014; Mishra
et al., 2016; Lecrux et al., 2019; Grubb et al., 2020; Hartmann et al.,
2021). However, the activity of cortical neurons is powerfully
regulated by local inhibitory interneurons that release GABA
(Uhlirova et al., 2016; Echagarruga et al., 2020). Therefore,
it stands to reason that modulating neural activity levels,
either through pharmacological or behavioral interventions such
environment enrichment, could bi-directionally regulate the
recanalization of obstructed capillaries.

A major challenge that limits the mechanistic study of
capillary recanalization, is the relatively low prevalence of long
lasting obstructions (Santisakultarm et al., 2014; Reeson et al.,
2018; Erdener et al., 2019), and the inherent difficulties in
detecting/visualizing obstructions. One approach to circumvent
these issues has been to induce capillary obstructions through
intravenous injection of fluorescent microspheres (Reeson
et al., 2018; Schager and Brown, 2020). While not necessarily
“naturalistic,” this approach allows one to easily identify
capillaries that are prone to stalling. Critically this approach
enables the experimenter to control the timing of obstructions,
and thus isolate different epochs of recanalization. Previously we
have shown that fluorescent microspheres not only recapitulate
key characteristics of natural obstructions, they also do not
lead to micro-infarcts or systematic cardiovascular changes
which could confound results (Reeson et al., 2018). Here we
used experimentally induced obstructions to test whether
simply enriching a mouse’s home cage for just 12 h could
facilitate recanalization. We further disambiguated systematic
cardiovascular effects from local neuronal activation through
targeted sensory deprivation and pharmacological approaches.
Our experiments reveal that neural activity bi-directionally
regulates the recanalization of obstructed capillaries in
adult and aged mice.

MATERIALS AND METHODS

Animals
Experiments involved male and female adult and aged mice (3–4
vs. 16–19 months old) on a C57/BL6J or FVB/NJ background (Jax
Strain #003658). Experimental cohorts consisted of littermates
matched for age and sex and when possible. Due to limited
availability and therefore sampling in aged mice, we did not
explicitly test for an effect of sex and therefore data was pooled
across sex. All mice were housed under a 12 h light/dark cycle
with ad libitum access to water and standard laboratory diet.
All experiments were conducted according to the guidelines set
by the Canadian Council of Animal Care and approved by the
University of Victoria Animal Care Committee.

Experimental Treatments
For blood plasma labeling, lysine fixable FITC dextran or Texas
Red (100 µL; 2% w/v in 0.9% saline; ThermoFisher, molecular
weight 40 kDa, D1845) was intravenously injected into isoflurane
anesthetized mice (1.5% mixed in medical air) and allowed to
circulate for 5–8 min prior to decapitation. For inducing capillary
obstructions, 20 µL of fluorescent microspheres (4 µm diameter;
2% solids; Life Technologies FluoSpheres sulfate, F8858) were
mixed with 100 µL of saline and injected into the tail vein
or retro-orbitally in aged mice due to it’s higher success rate.
A master solution of microspheres was first made, sonicated in
Elmasonic S10H (3 min) and then aliquoted into separate 20 µL
injection doses which were then assigned to mice randomly. To
minimize variability between and within groups, control and
experimental mice were run in parallel and received injections
from the same stock of microspheres. Twenty minutes after
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microsphere injections, mice were assigned to one of 3 sets of
experiments to test the effect of: (a) environmental enrichment,
(b) pharmacological modulation, or (c) whisker trimming on
capillary recanalization. We waited 20 min after microspheres
injection since there would be very few microspheres still freely
circulating (Reeson et al., 2018), given the single pass circulation
time in a mouse is ∼15 s, therefore ∼80 cycles of filtration by
liver and other organs (Welsher et al., 2011). Enriched cages were
approximately three times larger than standard cages (∼600 vs.
1750 cm2), housed 2–3 mice, contained extra nesting, hutches, an
exercise wheel, novel objects and buried food (see Figure 1A).
The standard cage contained a hutch and mice were housed
singly. For whisker trimming experiments, all facial whiskers on
the left side of the face were trimmed to ∼1–2 mm in length.
Lastly, for local manipulation of neural activity, a small hole
was drilled through the skull above the right and left forelimb
primary somatosensory (FLS1) cortex. In one hemisphere a glass
pipette (tip diameter ∼25 µm) was lowered 500 µm below the
cortical surface and 0.4 µL of vehicle with lysine fixable FITC
dextran (2% w/v in 0.9% saline; ThermoFisher, molecular weight
70 kDa) was pressure injected. The contralateral hemisphere
was then similarly injected with either vehicle, GABAA agonist
muscimol (50 mM) or inverse agonist L-655,708 (100 µM)
dissolved in lysine fixable Texas Red dextran (2% w/v in 0.9%
saline; ThermoFisher, molecular weight 70 kDa). The burr holes
were sealed with bone wax (F.S.T. 19009-00) and the scalp
sutured. Mice quickly recovered under a heat lamp and were
housed in standard or enriched cages until euthanasia.

Tissue Processing, Imaging, and
Analysis
Twelve hours after microsphere injections, brains were extracted
from deeply anesthetized mice and fixed in 4% paraformaldehyde
(PFA) in 0.1M phosphate buffered saline (PBS) overnight at 4◦C.
Brains were sectioned in the coronal plane at 100 µm thick using
a Leica vibratome (T1000). Every third section was mounted
on a gelatin-coated slide, and coverslipped with Fluoromount
G (ThermoFisher, 00-4958-02). Fluorescently filled vessels with
microsphere obstructions were imaged using an Olympus
confocal microscope with a 10× objective (NA 0.40). Confocal
image stacks were collected in 4 µm z-steps at a pixel resolution
of 1.242 µm/pixel. In order to quantify the density of microsphere
obstructions across the forebrain, coronal brain sections were
imaged on a widefield Olympus BX51 microscope with a 4×
UPlanFLN objective (NA = 0.13, 0.72 µm/pixel, 1.15× 0.87 mm)
and an Olympus DP73 digital camera using CellSens software.
Images were taken of every 3rd section, sampled from +1.70
to -2.70 mm relative to bregma (Franklin, 2008). Using ImageJ
software (Schindelin et al., 2012), an experimenter blinded to
condition counted the number of microspheres within cortical
regions of interest (e.g., S1BF cortex or dextran labeled cortex) to
estimate microsphere density (microsphere obstructions/mm3).
Since not all experiments could be run at the same time, we
ran cohorts where the density of microsphere obstructions in
an experimental group was normalized to the average density
of that cohort’s control animals. Normalized ratios were then

averaged across cohorts (typically each experiment consisted
of 2–4 cohorts).

Validating Effects of GABAA Agonist and
Inverse Agonist on Cortical Activity
in vivo
Mice were lightly anesthetized with 15% urethane dissolved
in water (1.25 g/kg). Once tail pinch reflexes were lost, mice
were secured into a surgical plate with body temperature
maintained at 37◦C. A hole was drilled through the skull above
the right forelimb somatosensory cortex (FLS1) so a 1–2 M�
glass micropipette filled with HEPES-buffered Artificial Cerebral-
Spinal Fluid (ACSF) could be inserted into the brain 200–300 µm
below the cortical surface. Evoked potentials were amplified
(1000×) and filtered between 1 and 1000 Hz with a differential
amplifier (A-M Systems). A single 5 ms deflection of the forelimb
with a piezoelectric wafer (∼300 µm deflection) was used to
evoke cortical field potentials every 10 s and averaged over
45 trials. Cortical responses were collected for up to 60 min
after topical application of 50 mM GABAA agonist muscimol or
100 µM of the inverse agonist L-655,708.

Statistics
All statistical analyses were performed using GraphPad Prism
8 using an alpha value of 0.05. Post hoc comparisons were
performed using unpaired or paired t-tests for within cohort
or within animal comparisons. Repeated measures ANOVA
was used to test for region-related differences in microsphere
clearance rates. Data are presented as median ± quartile
and maximum and minimum values (violin or box and
whisker plots).

RESULTS

We first tested if increased behavioral engagement and sensory
stimulation (running, nesting, novel objects, littermates,
exploration) could affect the recanalization of cortical capillaries.
Mice were reared and housed in standard cages up until the start
of the experiment and then were assigned to standard or enriched
environment (see Figure 1A). Previous work from our lab has
shown that intravenous injection of fluorescent microspheres
(4 µm diameter) can be used as a high throughput approach
to quantitatively assess mechanisms of capillary recanalization
in the brain (Figures 1A,B) without impairing cardiovascular
function (Reeson et al., 2018). We focused on the 12 h post-
injection period during the dark phase of the light cycle, when
the majority of capillaries would recanalize (Reeson et al., 2018).
A subset of mice were also injected (i.v.) with a fluorescent
dextran to confirm obstructions were restricted to capillaries
(Figure 1A, right panel). Our analysis in adults (3–4 months old)
indicated that the density of cerebral microsphere obstructions in
mice given standard housing was 74.7 ± 21.6 obstructions/mm3,
or a normalized density of 1.0± 0.2 (Figure 1C). In comparison,
adult mice exposed to enriched cages had a significantly lower
average density of obstructions [49.9 ± 24.9 obstructions/mm3,
normalized 0.66 ± 0.2, ratio paired t-test of absolute density
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FIGURE 1 | Environmental enrichment enhances capillary recanalization in the cortex of young adult and aged mice. (A) Images show standard and enriched cages
and timeline of experiments. Far right panel shows ex vivo confocal images of a microsphere lodged within the lumen of a capillary. (B) Representative images of
microspheres distributed across cortical and subcortical regions 12 h after injection in aged mice exposed to standard or enriched environment (microspheres
pseudocolored in green, magenta represents DAPI labeling). (C) Normalized cortical microsphere density for young adult mice housed in standard or enriched cages
[n = 7 and 8 mice, respectively; unpaired t test t(13) = 3.31, p = 0.006]. (D) Microsphere obstruction density in 16–19 month old male (8) and female (4) mice placed
in either standard (n = 5) or enriched (n = 7) cage for 12 h. Data was normalized to the mean cortical obstruction density of standard housed mice for each
independent cohort. Aged mice exposed to enrichment had a significant reduction in cortical obstructions [0.56 ± 0.28, t(10) = 3.51 p = 0.006]. **p < 0.01. Scale
bars = 20 µm (A) or 1 mm (B).
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t(6) = 3.53 p = 0.01, t-test of normalized densities t(13) = 3.31
p = 0.006, Figure 1C]. Since obstructions to capillary flow
can profoundly alter cognitive or sensory-motor function in
neurological diseases associated with aging [e.g., Alzheimer’s
disease, ischemia, (Taylor et al., 2016; Cruz Hernández et al.,
2019; Faulhaber et al., 2022)], a critical question is whether the
benefits of enrichment extend to aged animals. Our analysis
revealed that aged mice (16–19 months of age) exposed to an
enriched cage had dramatically lower obstruction densities when
compared to the age matched mice exposed to standard cages
(mean 0.56 ± 0.28; Figures 1B,D). While one aged mouse (out
of seven) received no boost in recanalization from enrichment
(normalized obstruction density 1.03), all other enriched aged
mice showed a significant reduction in obstructions ranging
from 0.67 to 0.17 of their control littermates [t(10) = 3.51
p = 0.006]. These experiments demonstrate that behavioral
engagement by way of environmental enrichment, significantly
enhanced the recanalization of cerebral capillaries in both young
adult and aged mice.

Although our results clearly show that environmental
enrichment improves capillary recanalization in the cortex, it was
unclear if this benefit would be more evident in specific cortical
areas or extend to subcortical regions. Therefore, in aged mice

we further measured obstruction densities within specific cortical
and subcortical areas aligned to a standard mouse brain atlas,
and normalized densities within each region to standard housed
controls (Figure 2A). Our analysis revealed that the effects of
enrichment on capillary obstruction density were evident across
all regions examined [Figure 2B, 2-way ANOVA main effect
of Enrichment, F(1,48) = 54.40, p < 0.0001] Although most
regions showed a significant reduction in obstruction density
with enrichment, a few regions had higher levels of variability
and thus did not achieve statistical significance (Cingulate Cortex
p = 0.11, Retrospenial Cortex p = 0.26, and Striatum p = 0.10).
Collectively, these results suggest a forebrain-wide benefit of
enrichment on capillary recanalization.

Given the widespread effects of enrichment on recanalization,
both changes in neuronal activity and/or the cardiovascular
system (such as elevated heart rate) could account for these
benefits. In order to more directly test the role of neural activity
in capillary recanalization, we employed a pharmacological
approach. To decrease or increase cortical activity, we used either
the GABA-A agonist muscimol or inverse agonist L-655,708,
respectively. We first validated the effect of each drug on cortical
activity in vivo by recording sensory evoked field potentials in the
somatosensory cortex before and 60 min after topical application.

FIGURE 2 | Environmental enrichment generally improves recanalization across different brain regions. (A) Confocal images showing different brain regions outlined
for analysis. (B) Box plot shows the obstruction density across different brain regions in aged mice exposed to standard or enriched cages. Note that striatum,
thalamus, and hippocampus comprised the “All Subcortical” group. n.s. = not significant, ∗p < 0.5, ∗∗p < 0.01. Scale bar = 1 mm.
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As shown in Figure 3A, the inverse agonist L-655,708 (100 µM)
rapidly increased the amplitude of sensory evoked cortical
responses (relative to baseline denoted with black line) which
persisted for at least 1 h after injection. Conversely, muscimol
(50 mM) suppressed cortical responses during this time period.
To test the effects of these drugs on recanalization, we first
injected microspheres (i.v.) and then 20 min later micro-injected
muscimol or L-655,708 into the right somatosensory cortex and
vehicle in the opposite hemisphere (Figure 3B). Fluorescent
dextrans (2% 70 kDa FITC or Texas Red) were included in
solutions to estimate drug diffusion and estimate cortical regions
with altered neural activity. Mice were housed in standard cages
and then 12 h later, brains were extracted and we compared the
density of obstructions in the experimental hemisphere relative

to the control (vehicle injected) hemisphere (see Figure 3C for
representative example). In both hemispheres we restricted our
analysis to cortical regions labeled by the diffusion of fluorescent
dextran (Figure 3C). For mice injected with vehicle in both
hemispheres, the obstruction ratio was 0.90 ± 0.19, indicating
no difference between left and right hemispheres [t(6) = 1.49
p = 0.187; Figure 3D]. Mice injected with L-655,708 had a
lower mean obstruction ratio of 0.66 ± 0.18, indicating capillary
recanalization was significantly improved by increasing neural
activity [t(13) = 2.52 p = 0.03]. Additionally, the obstruction
ratio in mice injected with muscimol was significantly increased
[Figure 3D; 1.84 ± 0.43; t(9) = 5.161 p = 0.0006]. These results
show that capillary recanalization is bi-directionally modulated
by neural activity levels.

FIGURE 3 | Pharmacological modulation of neuronal excitability reveals bi-directional regulation of cortical capillary recanalization. (A) Field potentials were recorded
in the right forelimb somatosensory cortex (FLS1) in response to a single 5 ms deflection of the contralateral forelimb either at baseline (black trace) or after topical
application of 100 µM L-655,708 (left panel) or 50 mM muscimol (right panel). Each trace represents the average of 90 stimulation trials delivered over 15 min
epochs. Note the rapid and sustained increase in response amplitude after L-655,708 or decrease after muscimol. (B) Timeline of pharmacology experiments.
Twenty minutes after i.v. injection of microspheres, young adult mice received a microinjection of either L-655,708, muscimol or vehicle (with dextran tracer) into the
right somatosensory cortex and a vehicle injection in the opposite hemisphere. (C) Image montage of coronal brain sections (anterior to posterior) showing the
diffusion of fluorescent dextrans at each injection site and microspheres remaining after 12 h (inserts). (D) Comparison of normalized cortical obstruction densities
(normalized to vehicle/vehicle injection control group) in each treatment group. L-655,708 significantly reduced obstruction density compared to vehicle injected mice
[vehicle: 0.90 ± 0.19 vs. L-655,708: 0.66 ± 0.18, unpaired t test t(13) = 2.52, p = 0.03]. Conversely, muscimol significantly increased capillary obstruction density
[muscimol: 1.84 ± 0.43; t(9) = 5.161, p = 0.0006] relative to vehicle control group. Data are mean ± standard deviation. *p < 0.05, ***p < 0.001.
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While our findings suggest that enrichment or
pharmacological based stimulation of neural activity can
improve capillary recanalization, we still could not rule out
systematic cardiovascular effects (such as heart rate or blood
pressure) as playing a primary role, especially in enriched mice.
To address this question, we modulated neural activity in one
hemisphere by unilateral trimming all whiskers on the left
side of the face. We reasoned that this manipulation would
increase or bias sensory driven neural activity in the intact
hemisphere relative to the deprived, especially if mice were
placed in an enriched environment. Importantly, both cerebral
hemispheres in enriched mice would be subjected to systemic
cardiovascular effects (increased heart rate or blood pressure)
associated with exercise or social engagement. Therefore,
two predictions emerge: (i) relative to standard environment,
enrichment should enhance the bias in neural activity toward the
intact hemisphere, and presumably improve recanalization, (ii)
if systemic cardiovascular effects are more important than neural
activity, then there should be no differences between intact vs.
deprived hemisphere in enriched mice. Our analysis revealed
that the obstruction density in the primary barrel-field (S1BF)
cortex in mice housed in standard cages was not significantly
different between intact versus deprived S1BF cortex [Figure 4A;
42.17 ± 20.3 vs. 58.48 ± 31.4 obstructions/mm3, paired t-test
t(4) = 0.082 p = 0.5]. For mice exposed to enriched cages, the
density of obstructions was significantly reduced in the intact
S1BF relative to the deprived region [Figure 4A; 44.42 ± 15.2 vs.
27.22 ± 7.6 obstructions/mm3 in Deprived and intact regions,
respectively; t(6) = 2.66 p = 0.03]. These findings argue that the
effects of enrichment on recanalization are likely conferred by
changes in local neural activity rather than global cardiovascular
effects. And finally, given the profound inhibitory effect of

muscimol on recanalization, we then asked whether this effect
would persist even when systemic cardiovascular parameters are
altered during enriched housing (Note: our previous muscimol
experiments shown in Figure 3 were conducted using standard
cages). As shown in Figure 4B, the effects of muscimol on
capillary obstruction density persist even when mice were
exposed to an enriched environment [paired t-test for vehicle
and muscimol treated hemispheres: t(3) = 3.23 p = 0.04]. In
conclusion, if systemic cardiovascular changes were the primary
driver of recanalization, we would expect the differences between
vehicle and muscimol injected hemispheres to disappear, and
clearly, they do not.

DISCUSSION

In the present study, we asked whether the coupling of blood
flow to neural activity could be leveraged to improve capillary
recanalization following the intravenous injection of fluorescent
microspheres. To non-invasively increase neural activity for 12 h,
we used environmental enrichment, which encourages sensory
and motor exploration, and has a range of established effects on
the rodent brain (He et al., 2017). We focused on the 20 min
period after injection (when all circulating microspheres are
either lodged or cleared) to 12 h later, which previous research
has shown was a critical window for capillaries to recanalize
(Reeson et al., 2018). We found that environmental enrichment
was alone sufficient to improve recanalization rates across cortical
and subcortical regions. Importantly, the effects of enrichment
extended to aged mice. We further explored the influence of
neural activity on recanalization rates with pharmacological
approaches. Either increasing cortical excitability or silencing the

FIGURE 4 | Hemisphere specific changes in neural activity drive recanalization. (A) Whisker box plots show the density of microsphere obstructions in the sensory
deprived and intact S1BF cortex in young adult mice subjected to unilateral whisker trimming. There was no significant difference between deprived and intact S1BF
(somatosensory barrel field) in mice housed in standard cages [intact: 42.17 ± 20.37 obstructions/mm3 vs. deprived S1BF: 42.17 ± 20.37 obstructions/mm3,
paired t test, t(4) = 0.818, p = 0.46, n = 5 mice/group]. However, mice exposed to an enriched environment showed a significant reduction in the intact S1BF
(27.22 ± 7.63 obstructions/mm3) compared to the deprived S1BF [44.42 ± 15.25 obstructions/mm3, paired t test t(6) = 2.66, p = 0.03; n = 7 mice/group]. (B) Plots
show the density of microsphere obstructions in vehicle or muscimol injected hemisphere of young adult mice exposed to an enriched environment. Data are
mean ± standard deviation. *p < 0.05.
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cortex was sufficient to drive recanalization rates up or down,
respectively. And finally, to disambiguate the role of neural
activity versus global cardiovascular effects (such as increased
heart rate, blood pressure), we unilaterally augmented cortical
activity through whisker trimming and exposed mice to a
standard or enriched cage. While the intact and deprived barrel
cortex was indistinguishable in standard housed mice, they were
significantly different in mice from enriched cages, despite only
varying in the degree of sensory driven activity. Collectively, these
findings implicate neural activity based changes in capillary blood
flow as a primary driver of embolus recanalization in both young
adult and aged mice.

To stimulate neural activity, we exposed adult mice to an
enriched environment that included novel objects, extra bedding,
large cage size, increased social interactions, and an exercise
wheel. Environmental enrichment is well known to enhance
brain function at any stage of life, facilitate recovery from brain
injury or promote resiliency to neurological disease (Kleim et al.,
2003; Milgram et al., 2006; Jeffers and Corbett, 2018; Trigiani
et al., 2020). With regard to cerebrovascular structure, some
studies have shown that stimulating sensory driven activity in
early postnatal life or exposing mature mice to environmental
enrichment, can increase cerebral microvascular density and
branching (Lacoste et al., 2014; He et al., 2017), although
opposite effects have been described (Whiteus et al., 2014).
Here we extend these findings to show that environmental
enrichment has a remarkable impact on capillary recanalization.
The idea that components of enrichment, such as exercise,
can augment cerebral blood flow and therefore could affect
capillary recanalization, is not new. Many rodent studies have
shown that exercise can increase capillary blood flow, tissue
oxygenation, and microvascular density in the cerebral cortex
(Swain et al., 2003; Murugesan et al., 2012; Huang et al.,
2013; Moeini et al., 2020). Indirect evidence that exercise might
improve recanalization comes from the fact that it could prevent
the inevitable consequence of recanalization failure (Reeson
et al., 2018), namely, vessel pruning and the appearance of
string vessels (Leardini-Tristão et al., 2020; Trigiani et al.,
2020). Whether the vascular benefits of exercise are mediated
by global cardiovascular changes in heart rate and blood
pressure, or by activating sensory afferents of the limbs and
engagement of motor systems, is not entirely clear. Our findings
suggest it may be mediated through the latter mechanism since
hemisphere specific effects on neural activity through whisker
trimming or muscimol, were still present in mice subjected to
environmental enrichment.

Since systemic cardiovascular factors cannot account for
our hemisphere specific effects, one would suspect that neural
activity mediated changes in blood flow or neurovascular
coupling (NVC), would be the primary mechanism behind
this phenomenon. It is well established that increased neuronal
spiking leads to local changes in blood flow, capillary tone,
and diameter (Gordon et al., 2007; Attwell et al., 2010; Drew
et al., 2011; Lecrux et al., 2019). Indeed, we support this
hypothesis by showing that direct suppression of neural
activity with a GABAA receptor agonist profoundly inhibits
recanalization, whereas an inverse agonist that increases

cortical excitability stimulates recanalization. Although we did
not attempt to directly measure blood flow following drug
injections, our results agree with a recent study showing that
intracortical muscimol injections significantly decreases basal
arteriole diameter, capillary flow velocity, and is capable of
blocking locomotion induced vasodilation (Echagarruga et al.,
2020). Since vascular endothelial cells and pericytes express
little to no transcripts for GABAA receptors (Vanlandewijck
et al., 2018), we can be reasonably confident that the bi-
directional effects of GABAA receptor modulators were
mediated through neural activity dependent changes in
blood flow, rather than a direct effect on the vasculature.
However, we concede that it is still possible that GABAA
receptor modulators could have acted directly on vascular cells
(Fergus and Lee, 1997), or perhaps initiated vascular driven
changes in neuronal activity (Kim et al., 2016). Future work
will be needed to further refine which cortical circuits are
involved although recent evidence has implicated interneurons
(Anenberg et al., 2015; Uhlirova et al., 2016), particularly those
expressing nNOS as key contributors (Lee and Dan, 2012;
Echagarruga et al., 2020).

While neural activity dependent changes in blood flow
likely underlie the effects described in our study, the fact
that enrichment broadly improved recanalization in both
cortical and subcortical regions suggest other factors, such as
neuromodulatory systems, could be involved. Norepinephrine,
serotonin and acetylcholine are released widely throughout the
forebrain where they powerfully modulate neuronal excitability
(Marder, 2012). These neuromodulatory systems permit
prolonged epochs of increased neural activity during various
behavioral activities (Lee and Dan, 2012; Thiele and Bellgrove,
2018) and are closely linked to attention, mood and social
engagement, all of which would be influenced by enriched
housing. Furthermore, norepinephrine and acetylcholine can
directly augment sensory driven functional hyperemia (Bekar
et al., 2012; Lecrux et al., 2017; Zambach et al., 2021). Thus it
is conceivable that our non-invasive approaches for promoting
capillary recanalization require a sufficiently strong signal from
both sensory inputs and neuromodulatory systems. The role
of attention, engagement and neuromodulatory factors could
explain why biasing sensory driven neuronal activity with
whisker trimming, strongly influenced recanalization when mice
were housed in enriched cages, but had no effect under standard
conditions. Future studies using pharmacology and chemo/opto-
gentic approaches for manipulating neuromodulatory systems,
will be needed to fully address this idea.

There are important caveats to be considered in our
study. First, we employed a histological approach to infer
capillary recanalization rates across multiple brain regions. While
this approach has distinct advantages over in vivo 2-photon
microscopy such as increased sampling across different brain
regions (sampling hundreds of microspheres across 10 brain
regions vs. 1–3 microspheres in 1 region), as well as letting
mice freely explore in their enriched home cages between the
start and finish of the 12 h experiment, it does not directly
show recanalization in real-time. Thus, we cannot address
more mechanistic questions such as whether recanalization
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was preceded by a change in vessel tone or a bout of
neural activity. Future experiments imaging capillary diameter
changes, blood flow velocity and/or neuronal calcium transients
in awake behaving mice would be required to fully address
these questions. Another caveat with our study is the use of
microspheres to induce capillary obstructions. Although they
do not recapitulate the components an embolus, microspheres
offer many experimental benefits such as the precise timing of
induction (which was critical in the present study) and the ability
for high throughput testing of therapeutics. For example, the
microsphere model previously identified Vascular Endothelial
Growth Factor (VEGF) as a crucial factor in regulating capillary
obstruction clearance (Reeson et al., 2018), which has now
been successfully applied to improving capillary blood flow in
a mouse model of Alzheimer’s disease (Ali et al., 2022). Of
course, naturally occurring capillary obstructions arise from
many different types of blocks or plugs, from cellular debris to
a variety of circulating cells (Rapp et al., 2008; Santisakultarm
et al., 2014; Cruz Hernández et al., 2019). Thus, a limitation of
the microsphere model is the absence of biochemical interactions
found in many obstructing cells, such as leukocytes with the
vascular endothelium (Cook-Mills and Deem, 2005; Cerutti and
Ridley, 2017). While NVC could modulate cell adhesion protein
expression in endothelial cells or alter cell-cell interactions in
the capillary lumen, it is possible that some obstructions (i.e.,
white blood cells) could be resistant to the effects of NVC.
This may explain the surprising finding that leukocyte based
capillary obstructions were not improved by exercise in an
Alzheimer’s mouse model (Falkenhain et al., 2020). However,
Alzheimer’s disease is also associated with abnormal cortical
excitability and NVC (Park et al., 2020, p. 202; Li et al., 2021;
Shabir et al., 2022), therefore exercise may not have sufficiently
engaged NVC signaling pathways to overcome capillary stalling.
Nonetheless, whether the present findings will have utility in
clearing naturally occurring obstructions in aging or disease
states where inflammatory factors are in play, remains to be
determined. At the very least, we are encouraged by the fact that
whisker stimulation in healthy adult mice can reduce capillary
stalling events (Erdener et al., 2019).

There still remains significant uncertainty regarding the extent
to which capillary obstructions impact cortical function. Despite
the fact that spontaneous stalls or obstructions are relatively
sparse at any given moment, we have shown that a single
obstruction can perturb adjacent capillary flow for weeks (Reeson
et al., 2018). Likewise others have shown that a relatively small
number of obstructed capillaries can cause compound effects,
leading to large reductions in overall blood flow (Cruz Hernández
et al., 2019). Furthermore, our previous work has suggested that
the accumulated loss of obstructed capillaries over a lifetime can
significantly reduce cortical capillary density (Reeson et al., 2018).
Interestingly, a recent paper from the Rochefort lab showed that
under food deprivation, neurons in the mouse primary visual
cortex downregulated AMPR expression to persevere energy
use associated with action potentials, at the cost of introducing
extra noise into neuronal encoding (Padamsey et al., 2022).
This work suggest a frame work where impaired blood flow,
despite being sub ischemic, leads to metabolic imbalances which

in turn perturb neuronal encoding. Despite this evidence there
remains many unanswered questions as to how, and when, these
impairments in blood flow reach a critical mass, which will be
crucial to properly evaluating the efficacy of any intervention.

There is no doubt that we are only beginning to scratch
the surface of neuro-vascular interactions that can drive or
magnify diseases of the central nervous system, like dementia
(Iadecola, 2013). This creates a pressing need to understand
how vascular changes in aging, such as reduced cerebral blood
flow and capillary density, come about and what can be
done to mollify these insidious processes. Increasing behavioral
engagement through environmental enrichment may seem
simplistic, however, it follows the sage idiom of “use it or lose
it.” This seems particularly relevant to our elderly population
who often encounter physical and social deprivation (Ong
et al., 2016; Domènech-Abella et al., 2017). Our data indicate
that simply increasing environmental richness is sufficient to
improve capillary recanalization, and thus presumably, help
maintain cerebral blood flow. Furthermore, the benefits of
enrichment were realized in aged mice, proving that aging does
not necessarily diminish one’s capacity to leverage behavioral
engagement to restore capillary patency.
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