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Abstract

We illustrate shape mode analysis as a simple, yet powerful technique to concisely

describe complex biological shapes and their dynamics. We characterize

undulatory bending waves of beating flagella and reconstruct a limit cycle of

flagellar oscillations, paying particular attention to the periodicity of angular data. As

a second example, we analyze non-convex boundary outlines of gliding flatworms,

which allows us to expose stereotypic body postures that can be related to two

different locomotion mechanisms. Further, shape mode analysis based on principal

component analysis allows to discriminate different flatworm species, despite large

motion-associated shape variability. Thus, complex shape dynamics is

characterized by a small number of shape scores that change in time. We present

this method using descriptive examples, explaining abstract mathematics in a

graphic way.

Introduction

Life presents itself in manifold morphologies. Quantifying morphology is often

the first step to relate form and function. A common task in shape

characterization amounts to finding those morphological features and geometric

quantities with maximal descriptive power. This is especially challenging when

aiming to understand shape changes of soft or flexible structures, such as beating

cilia or animals without rigid skeletons. Shape mode analysis is a standardized way

to find such quantities a posterori, after data collection, by combining a large
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access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author
and source are credited.

Data Availability: The authors confirm that all data
underlying the findings are fully available without
restriction. All relevant data are within the paper.

Funding: SW and BMF received funding from the
BMBF grant 031 A 099 (http://www.bmbf.de/en/
1398.php). The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

PLOS ONE | DOI:10.1371/journal.pone.0113083 November 21, 2014 1 / 21

Received: July 16, 2014

Accepted: October 19, 2014

Published: November 26, 2014

Copyright: � 2014 Werner et al. This is an open-

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0113083&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.bmbf.de/en/1398.php
http://www.bmbf.de/en/1398.php


number of partially redundant morphometric features into a small set of distinct

shape scores [1–5].

Shape mode analysis is a well-known technique in engineering and computer

science, e.g. for image recognition [6], yet only recently researchers began to apply

it to biological data sets. One of the earliest application of this method to

biological shape data was by Sanger et al., analyzing human arm posture [7].

Pioneered by Ryu et al., shape mode analysis has been particularly used to analyze

motility patterns of the round worm C. elegans [3,8–10].

Here, we adapt principal component analysis to analyze and quantify

movement patterns in two 2D image data sets: (i) the bend centerline of beating

flagella, and (ii) the closed boundary outline of gliding flatworms. We reconstruct

a limit cycle of flagellar oscillations using a data set from swimming bull sperm,

which allows us to study not only regular flagellar oscillations, but also noisy

deviations from perfect periodicity, thereby contributing to the characterization of

the flagellum as a noisy oscillator [11,12].

In contrast to flagella or the slender shapes of the round worm C. elegans, many

cells and organisms display morphologies that are more suitably described by their

outline contour. However, outline contours can vary dramatically in the absence

of skeletal elements, as is the case in planarian flatworms. Planarians have recently

become an important model system for regeneration and growth dynamics [13].

Their flattened and elongated body plan morphology is kept in shape by a

deformable extracellular matrix material and the contraction status of their

muscular plexus. Many species exist worldwide that often differ in body shape.

However, measuring body shape in behaving animals is challenging, because

changes in muscle tone constantly change the projected body shape and still

images therefore rarely capture the ‘‘true’’ shape of the animal. Accurate

quantification of shape in fixed specimens is similarly problematic, owing to

various contraction artifacts of the fixation methods. We therefore thought to

explore shape mode analysis with respect to its utility in extracting average shape

information from movie sequences of living animals. As a first test, we analyzed an

extensive high-precision tracking data set of gliding flatworms. Planarians display

a smooth gliding motility, resulting from the coordinated beat patterns of the cilia

in their densely ciliated ventral epithelium [14,15]. We find that a bending mode

correlates with active turning during gliding motility, showing that steering is

achieved by a bending of the long body axis. Additional modes characterize

stereotypic width changes of these worms not reported before. These width

changes are shown to become particularly pronounced during a second type of

motility behavior, inch-worming, normally associated to escape responses, but

also observed in phenotypes with impaired cilia functionality [14,15]. Our

method reveals regular lateral contraction waves with a period of about 4s in

inch-worming worms. We find that the extraction of body postures from tracked

outline contours enables accurate shape measurements of flatworms, which we

demonstrate by the ability to differentiate between different flatworm species.

Supporting the notoriously difficult taxonomy of these soft-bodied animals with
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statistical quantification of genus- or species specific body shapes represents an

interesting application of our method.

By analyzing two typical classes of biological data sets in a pedagogical setting

and by explaining the mathematics in a graphic way, we hope to provide an

accessible account of this versatile method. Here, shape mode analysis is based on

the mathematical technique of principal component analysis and allows to project

a multi-feature data set on a small set of empirical shape modes, which are directly

inferred from the data itself. Principal component analysis thus represents a

dimensionality-reduction technique, where a big data set residing in a high-

dimensional ‘feature space’, is projected from onto a convenient ‘shape space’ of

lower dimension with minimal information loss [4,5]. As a side-effect, this

method reduces measurement noise by averaging over several, partially redundant

features. The wide applicability of principal component analysis comes at the price

of a diverse terminology across different disciplines, see Table 1.

For simplicity, we focus on linear principal component analysis in the main

text. In an appendix, we discuss non-linear generalizations such as kernel methods

and show how these can be used to analyze angular data, using the sperm data set

as a descriptive example. Our analysis demonstrates how to relate organism shape

and motility patterns in a pedagogical setting using flagella and flatworms as

prototypical examples.

Results and Discussion

A minimal example

First, we discuss a minimal example to illustrate the key concept of dimensionality

reduction by principal component analysis, which forms the basis of our shape

mode analysis approach.

Assume we are given a data set that comprises m geometrical features measured

for each of n individuals, say the distribution of length and height in a shoal of n
fish such that m~2, see Fig. 1A. To mimic the partial redundancy of geometrical

features commonly observed in real data, we further assume that these two

features are strongly correlated, see Fig. 1B.

Table 1. Principal component analysis is used across different disciplines, giving rise to a diverse terminology,
which is summarized here.

Vi Bi Di Ref.

coefficients, loadings principal components eigenvalues [4]

characteristic vectors, eigenvectors z-scores characteristic roots, latent roots [5]

eigenvectors amplitudes eigenvalues [8]

coefficients, loadings scores latents, eigenvalues MATLAB [43]

doi:10.1371/journal.pone.0113083.t001
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Principal component analysis now defines a unique change of coordinate

system such that the new axes (blue) point along the principal directions of

feature-feature covariance: in the new coordinate system, the shape coordinates

become linearly uncorrelated. In the context of shape mode analysis, the new axes

are called ‘shape modes’ vi, while the corresponding coordinates will be referred to

as ‘shape scores’ Bi. The first shape mode v1 points into the direction of maximal

variation in the data. In this example, the shape score B1 corresponding to this

first shape mode provides a robust measure of size that combines length and

height measurements. The remaining second shape mode v2 points along the

direction of least covariance. The corresponding shape score B2 can be interpreted

as an aspect ratio in this example. As this second shape score B2 displays only little

variation, the data set is well described by just the first shape score B1, which

represents an effective dimensionality reduction from m~2 to one dimension.

We emphasize that the concept of an n|m measurement-feature matrix is

rather generic and is encountered in many other contexts, such as measurements

of dynamic flagellar centerline shapes or flatworm outlines as discussed next.

Characterizing the flagellar beat as a biological oscillator

Sperm cells are propelled in a liquid by regular bending waves of their flagellum, a

slender cell appendage of 30{100mm length [16]. The flagellar beat is powered by

ten-thousands of dynein molecular motors inside the flagellum that constantly

convert chemical energy into mechanical work [17]. The regular shape changes of

Figure 1. Illustration of principal component analysis. A. As a minimal example, we consider a hypothetical data set of length and height measurements
for a collection of n individuals, i.e. there are just m~2 geometric features measured here. B. In this example, length and height are assumed to be strongly
correlated, thus mimicking the partial redundancy of geometrical features commonly observed in real data. Principal component analysis now defines a
change of coordinate system from the original (length,height)-axes (shown in a black) to a new set of axes (blue) that represent the principal axes of the
feature-feature covariance matrix of the data. Briefly, the first new axis v1 points in the direction of maximal data variability, while the second new axis v2

points in the direction of minimal data variability. The change of coordinate system is indicated by a rotation V~½v1,v2� around the center of the point cloud
representing the data. By projecting the data on those axes that correspond to maximal feature-feature covariance, in this example the first axis, one can
reduce the dimensionality of the data space, while retaining most of the variability of the data. In the context of morphology analysis, we will refer to these
new axes as ‘shape modes’ vi, which represent specific combinations of features. The new coordinates are referred to as ‘shape scores’ Bi.

doi:10.1371/journal.pone.0113083.g001
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the flagellum determine speed and direction of sperm swimming [18,19].

Eukaryotic flagella propel also many other microswimmers including green algae

and ciliated Protozoans, or participate in fluid transport inside multicellular

animals [20]. Here, we analyze a data set of flagellar swimming of bull sperm [21]

using shape mode analysis. Methods are described in [21]; the frame-rate was

250 Hz.

Tangent angles characterize flagellar waves

In these experiments, sperm cells swam parallel to a boundary surface with an

approximately planar flagellar beat. This effective confinement to two space

dimension greatly facilitates tracking of flagellar shapes and their analysis. The

(projected) shape of a bent flagellum at a time t is described by the position vector

r(s,t) of points along the centerline of the flagellum for 0ƒsƒL, where s is the

arclength along the flagellar centerline and L<58:3mm the total flagellar length,

see Fig. 2A. To characterize shapes, we need a description that is independent of the

actual position and orientation of the cell in space. To this end, we introduce a

material frame of the sperm head consisting of the head center position r(t) and a unit

vector e1(t) pointing along the long axis of the prolate sperm head. The length of this

long axis is 2r1<10mm, such that r{r1e1 corresponds to the proximal tip of the

flagellum. Additionally, we introduce a second unit vector e2(t), which is obtained by

rotating e1(t) in the plane of swimming by an angle of p=2 in a counter-clockwise

fashion. With respect to this material frame, the tracked flagellar shape is

characterized by a tangent angle y(s,t) as [19,21]

r(s,t)~r(t){r1e1{

ðs

0
ds’( cos y(s’,t)e1(t)z sin y(s’,t)e2(t)): ð1Þ

This tangent angle measures the angle between the vector e1 and the local tangent

of the flagellum at position r(s,t). Importantly, this tangent angle representation

characterizes flagellar shape independent of cell position and orientation.

Tracking a high-speed recording with n~1024 frames corresponding to time-

points t1, . . . ,tn and using m~41 control points sj~jL=m along the flagellum, we

obtain an n|m measurement matrix y for the tangent angle with yij~y(sj,ti).

This matrix y represents a kymograph of the flagellar beat; an example is shown

in Fig. 2B. The apparent stripe pattern reflects the periodicity of the flagellar beat.

The slope of the stripes is directly related to the wave velocity of traveling bending

waves that pass down the flagellum from its proximal to its distal end. On a more

abstract level, the matrix y comprises n~1024 independent measurements (time

points) of m~41 geometric features (tangent angle at the m control points).

PCA decomposition of flagellar bending waves

We will now show how a set of principal shape modes can be extracted from this

representation. First, we define a mean shape of the flagellum by averaging each

column of the matrix y, i.e. we average over the n measurements [21]. The

resultant mean tangent angle y0(s) and corresponding flagellar shape is shown
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Figure 2. Principal shape modes of sperm flagellar beating. A. High-precision tracking of planar flagellar centerline shapes (r(s,t), red) are characterized
by their tangent angle y(s,t) as a function of arc-length s along the flagellum. B. The time-evolution of this flagellar tangent angle is shown as a kymograph.
The periodicity of the flagellar beat is reflected by the regular stripe patterns in this kymograph; the slope of these stripes is related to the propagation of
bending waves along the flagellum from base to tip. By averaging over the time-dimension, we define a mean flagellar shape characterized by a tangent
angle profile y0. For illustration, this mean flagellar shape is shown in black superimposed to n~1024 tracked flagellar shapes (grey). C.We define a feature-
feature covariance matrix C from the centered tangent angle data matrix as explained in the text. The negative correlation at arc-length distance l=2 reflects
the half-wavelength of the flagellar bending waves. D. The normalized eigenvalue spectrum of the covariance matrix C sharply drops after the second
eigenvalue, implying that the eigenvectors corresponding to the first two eigenvalues together account for 97% of the observed variance in the tangent angle
data. E. Using principal component analysis, we define two principal shape modes (blue, red), which correspond precisely to the two maximal eigenvalues of
the covariance matrix C in panel C. The lower plot shows the reconstruction of a tracked flagellar shape (black) by a superposition of the mean flagellar
shape and these two principal shape modes (magenta). In addition to tangent angle profiles, respective flagellar shapes are shown on the right. F. Each
tracked flagellar shape can now be assigned a pair of shape scores B1 and B2, indicating the relative weight of the two principal shape modes in
reconstruction this shape. This defines a two-dimensional abstract shape space. A sequence of shapes corresponds to a point cloud in this shape space.
We find that these point form a closed loop, reflecting the periodicity of the flagellar beat. We can define a shape limit cycle by fitting a curve to the point
cloud. By projecting the shape points on this shape limit cycle, we can assign a unique flagellar phase ½Q�modulo 2p to each shape. This procedure amounts
to a binning of flagellar shapes according to shape similarity. G. By requiring that the phase variable Q should change continuously, we obtain a
representation of the beating flagellum as a phase oscillator. The flagellar phase increases at a rate equal to the frequency of the flagellar beat and rectifies
the progression through subsequent beat cycles by increasing by 2p. H. Amplitude fluctuations of flagellar beating as a function of flagellar phase. An
instantaneous amplitude of the flagellar beat is defined as the radial distance r(t) of a point in the (B1,B2)-shape space, normalized by the radial distance
�r(Q(t)) of the corresponding point on the limit cycle of same phase. A phase-dependent standard deviation was fitted to the data (black solid line). Also
shown are fits for 6 additional cells (gray; the position of Q~0 was defined using a common set of shape modes). J. Swimming path of the head center during
one beat cycle computed for the flagellar wave given by the shape limit cycle (panel F) using resistive force theory [18] as described previously [19]. The
path is characterized by a wiggling motion of the head superimposed to net propulsion. For a ‘standing wave’ beat pattern characterized by the oscillation of
only one shape mode, net propulsion vanishes.

doi:10.1371/journal.pone.0113083.g002
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in Fig. 2B. We note that taking a linear mean of angular data is admissible here,

since angles stay in a bounded interval and do not jump by 2p; a general

procedure that can cope also with jumps of 2p is discussed in the appendix. The

mean tangent angle y0(s) is non-zero, which relates to an intrinsic asymmetry of

the flagellar bending waves. Asymmetric flagellar beating implies swimming along

curved paths [19,22]. Cellular signaling can change this flagellar asymmetry [23]

and has been assigned a crucial role in non-mammalian sperm chemotaxis [24].

Here, we are interested in flagellar shape changes, i.e. deviations from the mean

shape. Thus, we devise an n|m-matrix y0~½y0; . . . ; y0� all of which rows are

equal to the mean tangent angle y0~½y0(s1), . . . ,y0(sm)�. We can now compute

the m|m feature-feature covariance matrix as

C~(y{y0)T(y{y0), ð2Þ

see Fig. 2C. We find strong positive correlation along the main diagonal of this

covariance matrix (dashed line), which implies that tangent angle measurements

at nearby control points are correlated. This short-range correlation relates to the

bending stiffness of the flagellum. It implies partial redundancy among the

measurements corresponding to nearby control points along the flagellum. More

interestingly, we find negative correlation between the respective tangent angles

that are an arclength distance l=2 apart. What does this mean? The flagellar beat

can be approximated as a traveling bending wave with a certain wave length l.

This wavelength manifests itself as a ‘‘long-range correlation’’ in the covariance

matrix C.

We will now employ an eigenvalue decomposition of the m|m covariance

matrix C, yielding eigenvalues d1, . . . ,dn and eigenvectors v1, . . . ,vn such that

Cvi~divi. In analogy to the minimal example above, we refer to the eigenvectors

vi as shape modes. The shape modes vi correspond to axes of a new coordinate

system of feature space; in this coordinate system, the variations of the data along

each axis are linearly uncorrelated and have respective variance di for axis vi,

i~1, . . . ,n. We can assume without loss of generality that the eigenvalues

d1§ . . . §dn of C are sorted in descending order, see Fig. 2D. For the sperm data,

we observe that the eigenvalue spectrum sharply drops after d2; in fact, the first

two shape modes v1 and v2 together account for 95% of the variance of the data.

We now choose to deliberately chop the eigenvalue spectrum after d2 and project

the data set on the reduced ‘‘shape space’’ spanned by the shape modes v1 and v2.

Generally, the mode-number cutoff will be application specific and requires

supervision. Formal criteria to chose the optimal cutoff have been discussed in the

literature, see e.g. [2] and references therein.

Each recorded flagellar shape, that is each row yi of the data matrix

y~½y1; . . . ; yn� can now be uniquely expressed as a linear combination of the

shape modes vk

Shape Mode Analysis for Flatworms and Flagella

PLOS ONE | DOI:10.1371/journal.pone.0113083 November 21, 2014 7 / 21



yi~y0z
Xn

k~1

Bk(ti)vk<y0zB1(ti)v1zB2(ti)v2: ð3Þ

The shape scores Bk can be computed by a linear least-square fit. Fig. 2E

displays the principal shape modes v1 and v2 as well as the superposition of a

typical flagellar shape into these two modes. Using this procedure, the entire

n|m data set y gets projected onto an abstract shape space with just two axes

representing the shape scores B1 and B2.

Limit cycle reconstruction

Inspecting Fig. 2F, we find that the shape point cloud in shape space forms a

closed loop: During each beat cycle, the shape points corresponding to subsequent

flagellar shapes follow this shape circle to make one full turn. Thus, the shape

space representation reflects the periodicity of the flagellar beat [25]. As a next

step, we can fit a closed curve to this point cloud, which defines a ‘‘shape limit

cycle’’. We can then project each point of the cloud onto this limit cycle; this

assignment is indicated as color-code in Fig. 2F. We parameterize the shape limit

cycle by a phase angle Q that advances by 2p after completing a full cycle.

Furthermore, one can always assume that this phase angle increases uniformly

along the curve [26]. This procedure assigns a unique phase to each tracked

flagellar shape and is equivalent to a binning of flagellar shapes according to shape

similarity. We have thus arrived at a description of periodic flagellar beating in

terms of a single phase variable that increases continuously

dQ=dt<v0, ð4Þ

where v0 is the angular frequency of flagellar beating, see Fig. 2G. Eq. (4) is a

phase oscillator equation, which is a popular theoretical description for generic

oscillators. This minimal description represents a starting point for more

elaborate descriptions. For example, external forces have been shown to speed up

or slow down the flagellar beat, which can be described by a single extra term in

equation (4) [25]. Further, the scatter of the shape point cloud around the limit

cycle of perfectly periodic flagellar beating reflects active fluctuations of the

flagellar beat, which can be analyzed in a similar manner [11].

As an application of the shape-space representation, we follow [11] to define an

instantaneous amplitude of the flagellar beat as the radial distance

r(t)~½B1(t)2zB2(t)2�1=2
of a point in the (B1,B2)-shape space, normalized by the

radial distance �r of the corresponding point on the limit cycle of same phase. We find

that the fluctuations of this amplitude r=�r are phase-dependent, attaining minimal

values during bend initiation at the proximal part of the flagellum, see Fig. 2H. We

argue that these amplitude fluctuations represent active fluctuations stemming from

the active motor dynamics inside the flagellum that drives flagellar waves. As a test for

the contribution from measurement noise, we added random perturbations to the
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tracking data, using known accuracies of tracking [21]. Phases and amplitudes

computed for perturbed and unperturbed data were strongly correlated.

In conclusion, the reduction of the full data set y comprising m feature

dimensions to just a single phase variable involved a linear dimension reduction

using principal component analysis to identify a shape limit cycle, followed by a

problem-specific non-linear dimensionality reduction, the projection onto this

limit cycle, to define phase and amplitude. In future work, the shape space

representation of the flagellar beat developed here can be used to quantify

responses of the flagellar beat to mechanical or chemical stimuli.

Undulatory swimming with two shape modes

We will close this section by relating the results of our shape analysis to the

hydrodynamics of flagellar swimming. For simplicity, we neglect variations of the

flagellar beat and consider a perfect flagellar bending wave characterized by a

‘‘shape point’’ circling along the ‘‘shape limit cycle’’. At the length scale of a sperm

cell, inertia is negligible and the hydrodynamics of sperm swimming is governed

by a low Reynolds number, which implies peculiar symmetries of the governing

hydrodynamic equation (the Stokes equation) [27]. In particular, the net

displacement of the cell after one beat cycle will be independent of how fast the

‘‘shape limit cycle’’ is transversed. Further, playing the swimming stroke

backwards in time would result exactly in a reversal of the motion. This implies

that no net propulsion is possible for a reciprocal swimming stroke that looks

alike when played forward or backward [28]. The periodic modulation of just one

shape mode is an example of such a reciprocal swimming stroke. In fact, the

periodic modulation of one shape mode represents a standing wave, which does

not allow for net propulsion, but implies that the sperm cells transverses a closed

loop during a beat cycle, see Fig. 2J. The superposition of two shape modes,

however, represents a minimal system for swimming: the superposition of two

standing waves results in a traveling wave that breaks time-reversal symmetry and

thus allows for net propulsion. The relation between standing and traveling waves

can be illustrated by a minimal example of a trigonometric identity, which

decomposes a traveling wave on the l.h.s. into two, periodically modulated shape

modes of sinusoidal shape

cos (v0t{2ps=l)~ cos (v0t) cos (2ps=l)z sin (v0t) sin (2ps=l): ð5Þ

In this minimal example, the shape modes would be given by sinusoidal standing

wave profiles v1(s)~ cos (2ps=l) and v2(s)~ sin (2ps=l) with oscillating shape

scores given by B1(t)~ cos (v0t) and B2(t)~ sin (v0t). Here, l corresponds to the

wave-length of the waves. In the limit of small beat amplitudes, it can be formally

shown that the net swimming speed of the cell is proportional to the area enclosed

by the shape limit circle [29].
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Shape and motility analysis of flatworms

We now apply shape mode analysis to time-lapse imaging data of the flatworm

Schmidtea mediterranea (Fig. 3A). This animal is a popular model organism for

studies on regeneration and growth [13]. Flatworms (greek: Platyhelminthes)

represent some of the simplest organisms with bilateral body plan. Yet, they

possess a distinct brain with two lobes, setting them apart from simpler worms

like C. elegans. Flatworms can steer their path in response to light, chemical

stimuli, and temperature. Even a limited ability for learning has been proposed,

Figure 3. Three shape modes characterize projected flatworm body shape dynamics. A. Our custom-made MATLAB software tracks worms in movies
and extracts worm boundary outline (red) and centerline (blue). B. The radial distance r(s) between the boundary points and midpoint of the centerline (r0,
red dot) is calculated as a parameterization of worm shape. We normalize the radial distance profile of each worm by the mean radius �r. C. The second
symmetry axis (dotted line) of the covariance matrix corresponds to statistically symmetric behavior of the worm with respect to its midline. D. The three
shape modes with the largest eigenvalues account for 94% of the shape variations. The first shape mode characterizes bending of the worm and alone
accounts for 61% of the observed shape variance. On the top, we show its normalized radial profile on the left as well as the boundary outline corresponding
to the superposition of the mean worm shape and this first shape mode (solid red: B1~1, dashed red: B1~{1, black: mean shape with B1~0). The second
shape mode describe lateral thinning (B2~0:3), while the third shape mode corresponds unlike deformations of head and tail (B3~0:8), giving the worm a
wedge-shaped appearance. E. The first shape mode with score B1 describing worm bending strongly correlates with the instantaneous turning rate of worm
midpoint trajectories. F. We manually selected 30 movies where worms clearly show inch-worming and 50 movies with no inch-worming behavior. The
variance of score B2 and B3 increases for the inch-worming worms. G. The autocorrelation of mode B3 and the crosscorrelation between mode B2 and mode
B3 reveals an inch-worming frequency of approximately 1=4Hz, hinting at generic behavioral patterns.

doi:10.1371/journal.pone.0113083.g003
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including habituation and Pavlovian conditioning [30]. Hence, flatworms posses a

sufficiently rich behavioral repertoire, whose control mechanisms are unknown to

date. Flatworms are found in virtually all parts of the world, living in both salt-

and freshwater, and include parasitic species like the cause of bilharzia. A subset of

non-parasitic species, commonly referred to as ‘planarians’, with Schmidtea

mediterranea as a prominent member, is now entering the stage of modern model

organisms to study regeneration, growth, and associated motility phenotypes

[13,31].

Unlike the roundworm C. elegans, planarians do not move by undulatory body

motion. Instead, planarians glide over the substratum, being propelled by the

beating of numerous short flagella (or cilia) that project from their multi-ciliated

ventral epithelium. Planaria lack a rigid body wall and thus possess comparably

soft bodies that can deform significantly by muscle contractions. Thus, a

continuous challenge in the field is the development of a reliable method to

quantify shape variations of these soft-bodies animals. Below, we characterize

their pronounced shape plasticity using shape mode analysis to characterize the

outline of two-dimensional projections of their flat body. Similar characterization

of outlines as closed curves are likely to be encountered in other contexts, such as

the shape analysis of adherent or crawling cells [32].

Worm handling and tracking

In the experiments, we use a clonal line of an asexual strain of Schmidtea

mediterranea [33,34]. Worms were maintained at 20 C̊ as described in [35] and

were starved for at least one week prior to imaging. To monitor the 2D-projection

of the worm body as in Fig. 3A, we used a Nikon macroscope (AZ 100M, 0.5x

objective) and a Nikon camera set-up (DS-Fi1, frame rate 3 Hz, total observation

period 15 s, resolution 12806960 pixel). The flatworms were placed one at a time

into a plastic petri dish (90 mm), clean petri dishes were used for each

experimental series (comprising 2{3 movies of 20{30 worms). After being

exposed to light, worms displayed a typical flight response. Movies were analyzed

off-line using custom-made MATLAB software. A first shape proxy was

determined from background-corrected movie frames via edge detection using a

canny-filter, followed by a dilation-erosion cycle. In a subsequent refinement step,

the worm perimeter was adjusted by finding the steepest drop in intensity along

directions transverse to the perimeter proxy. As a result we were able to

automatically track the boundary outline (red) as well as the centerline (blue) of

worms with sub-pixel accuracy in a very robust manner, see Fig. 3A.

Radial profiles characterize non-convex outlines

In analyzing the tracked outline shapes, we face the challenge of characterizing the

shape of closed, planar curves. For non-convex shapes, this can be non-trivial. We

describe a closed curve by a position vector r(s) as a function of arc-length s along

its circumference, see Fig. 3B. We use the tip of the worm tail as a distinguished

reference point r1 that specifies the position of s~0. We further specify a center

point r0, using the midpoint of the tracked centerline of the worms. The profile of
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radial distances r(s)~jr(s){r0j measured with respect to the center point r0

characterizes outline shape, even for non-convex outlines. Shapes of convex

curves might also be characterized by a profile of radial distances r(Q) as a

function of a polar angle Q. However, this definition does not generalize to non-

convex curves (or, more precisely, to curves that are not radially convex with

respect to r0). To adjust for different worm sizes, we normalize the radial distance

profiles by the mean radius �r~hr(s)i as r̂~r(s)=�r and plot it as a function of

normalized arc-length ŝ~s=L, where L is the total length of the circumference. As

a mathematical side-note, we remark that using the signed curvature

k(s)~(d2r(s)=ds2):(dr(s)=ds) along the circumference, instead of the radial

distance profile r(s), would amount to a significant disadvantage: The property

that a certain curvature profile actually corresponds to a closed curve imposes a

non-trivial constraint on the set of admissible curvature profiles. For the

normalized radial distance profiles, however, there is a continuous range of

distance profiles that correspond to closed curves, making this choice of definition

more suitable for applying linear decomposition techniques such as shape mode

analysis. In fact, given a particular normalized radial distance profile, the

corresponding circumference length L=�r is reconstructed self-consistently by the

requirement that the associated curve must close on itself.

A bending mode and two width-changing modes

We extracted n~29 993 worm outlines from a total of 745 analyzed movies. We

computed normalized radial distance profiles as described above, each profile

being represented by m~200 radii, resulting in a large n|m data matrix. From

the average of all radial profiles, we define a mean worm shape that averages out

shape variations, see Fig. 3D (right inset,black). Next, we computed the covariance

matrix C between the individual radial profiles, using the centered (mean-

corrected) data matrix, Fig. 3C. The symmetry of the covariance matrix along the

dotted diagonal shows that shape variations are statistically symmetric with

respect to the worm midline. Again, the eigenvectors corresponding to the largest

eigenvalues of this matrix are those with maximal descriptive power for shape

variance. Fig. 3D shows the first three shape modes, which together account for

94% of the observed shape variance. We find that the dominant shape mode v1 is

anti-symmetric, describing an overall bending of the worm. In contrast, the

second and third mode describe symmetric width changes of the worm: The

second shape mode v2 characterizes a lateral thinning of the worm associated with

a pointy head and tail. Correspondingly, a negative contribution of the second

shape mode with B2v0 describes lateral thickening of the worm (with slightly

more roundish head and tail). The third shape mode v3, finally, is also symmetric

and is associated with unlike deformations of head and tail, giving the worm a

wedge-like appearance. Superpositions of these three shape modes describe in-

plane bending of the worms, and a complex width dynamics of head and tail.
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The bending mode characterizes turning

Next, we investigated the relationship between flatworm shape and motility.

Flatworms employ numerous beating cilia on their ventral epithelium to glide on

surfaces. We observe that worms actively regulate their gliding speed over a

considerable range of 0:3{1:7 mm=s, in quantitative agreement with earlier work

[36]. Yet, we did not observe pronounced correlations between shape dynamics

and gliding speed (not shown). This is consistent with the notion that muscle

contractions play a minor role in the generation of normal gliding motility.

However, we find that shape changes control the direction of gliding motility and

thus steer the worm’s path: Fig. 3E displays a significant correlation between the

rate of turning along the worm trajectory and the first shape score B1, which

characterizes bending of the worm. The sign and magnitude of this ‘‘bending

score’’ directly relates to the direction and rate of turning. For simplicity, we had

restricted the analysis to a medium size range of 8–10 mm length, analogous

results are found for other size ranges.

The second and third modes characterize inch-worming

In addition to cilia-driven gliding motility, flatworms employ a second, cilia-

independent motility pattern known as inch-worming, which provides a back-up

motility system in case of dysfunctional cilia [14] or as an escape response. To test

whether modes two and three might relate to this second motility pattern, we

analyzed movies of small worms known to engage more frequently in this kind of

behaviour.

We therefore manually classified 80 movies of worms smaller than 0:9 mm that

have been starved for 10 weeks, yielding a number 30 inch-worming and 50 non-

inch-worming worms for a differentiated motility analysis (cases of ambiguity

were not included). We find that the second and third shape mode, which

characterize dynamic variations in body width, are indeed more pronounced in

inch-worming worms, see Fig. 3F. Next, we computed the temporal auto-

correlation of time series of the second shape mode B3, see Fig. 3G (solid blue).

We observe stereotypical shape oscillations with a characteristic frequency of

0.26 Hz. From the cross-correlation between B3 and B2 in Fig. 3G (dashed black),

we find that both shape scores oscillate with a common frequency and relative

phase lag of {0:6p (where B2 lags behind). Thus, both shape modes act together

in an orchestrated manner to faciliate inch-worming, hinting at coordinated

muscle movements and periodic neuronal activity patterns.

In conclusion, we identified different shape modes that can characterize

different fundamental types of motility in a quantitative manner. The

characteristic periodic shape dynamics associated with inch-worming posses the

question about underlying generic patterns of neuronal and muscular activity.

PCA discriminates flatworm species

Having developed tools to measure shape changes of the same animal over time,

we next explored the utility of shape mode analysis in shape comparisons between

different animals. The model species Schmidtea mediterranea is but one of many
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hundred flatworm species existing worldwide [37]. The taxonomic identification

of planarian species is challenging, relying largely on the time-consuming

mapping of internal characters. The availability of quantitative bodyplan

morphological parameters would be of interest in this context. Having available a

large live collection of planarian species, we choose four species representing the

genera Girardia, Phagocata, Schmidtea and Polycelis. Besides potentially size-

dependent variations in aspect ratio, the four species differ by their characteristic

head shapes, see Fig. 4A. Accordingly, we restricted shape analysis to the head

region only (defined as the most anterior 20% of the worm body). We

characterized each head shape by a vector of distances from the midpoint of the

head (red dot, 10% of the worm length from the tip of the head) to the outline

r(s) of the head region and proceeded as above. We found that the first two

eigenmodes captured 88% of head shape variability within this multi-species data

set. Fig. 4B shows species-specific mean shapes for each of the four species in a

combined head shape space, as well as ellipses of variance covering 68% (dark

color) and 95% (light color) of motility-associated shape variability, respectively.

This comparison of flatworm species representing four genera illustrates linear

dimensionality reduction as a simple means to map morphological differences

across species.

Figure 4. Distinguishing head morphologies of four different flatworm species. A. Application of our
method to parametrize head morphology of four different flatworm species. For each species, time-lapse
sequences of 4 different worms were recorded as two independent runs of duration 16 frames. The head is
defined as most anterior 20% of the worm body. Radial distances r(s) are computed with respect to the
midpoint of the head (red dot at 10% of the worm length from the tip of the head). B. By applying PCA to this
multi-species data set, we obtain two shape modes, which together account for 88% of the shape variability.
Deformations of the mean shape with respect to the the two modes are shown (black: mean shape, red:
superposition of mean shape and first mode with B1~+0:4 and second mode with B2~+0:2, respectively).
We represent head morphology of the four species in a combined shape space of these two modes. Average
head shapes for each species are indicated by crosses, with ellipses of variance including 68% (dark color)
and 95% (light color) of motility-associated shape variability, respectively.

doi:10.1371/journal.pone.0113083.g004
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Conclusion

Using two biological examples, swimming sperm and gliding flatworms, we

demonstrated shape mode analysis as a versatile tool to characterize morpholo-

gical shapes and its dynamical changes. In both cases, we obtained a low-

dimensional description of organism shape. Our observation that complex shapes

dynamics can be concisely described by just a few shape scores corroborates the

high coordination of molecular motor activity in the sperm flagellum, as well as

contraction of muscles in flatworms during both gliding and inch-worming

motility, respectively.

In the case of a beating flagellum, shape mode analysis revealed a limit cycle

that characterizes the periodicity of the beat. This limit cycle allowed the

definition of a flagellar phase that rectifies the progression through a periodic

sequence of shapes as well as the quantification of noisy deviations from perfectly

periodic shape dynamics. In the appendix, we comment on the challenges to deal

with the periodicity of angular data.

In the case of flatworms, shape mode analysis concisely characterizes a

behavioral repertoire and the associated body shape dynamics. It is known that

flatworms employ two distinct motility mechanisms: (i) gliding motility, relying

on beating of their ventral cilia with occasional turns, and, (ii) inch-worming,

which is driven by muscle contractions [14,15]. We find that bending and turning

maneuvers are strongly correlated, revealing a generic mechanism for steering.

Furthermore, we quantitatively analyzed the motility mechanisms of inch-

worming, which is evoked in case of dysfunctional cilia [14,15] or as an escape

response. We observe a concerted shape dynamics of lateral thinning of head and

tail with a characteristic period of about 4s. Our analysis can serve as basis for

future studies of generic behavioral responses in planarians and underlying

patterns of neuronal and muscular activity, irrespective of their higher level of

complexity [3,8] compared to other model organisms such as C. elegans. Previous

studies of planarian motility had focused on coarse-grained motility parameters

such as net speed or the mean-squared-displacement of worm tracks [36]. To the

best of our knowledge, our study represents the first application of shape mode

analysis to flatworm motility, linking shape and motion in a quantitative manner,

thus enabling the characterization of motility phenotypes.

Additionally, our method presents a simple means to compare and distinguish

different flatworm species. Further refinements of the method that take into

account the whole body shape could generate a useful supplement of taxonomic

traits to help in the classification of new planarian species. Further, the ability to

precisely quantify differences in head shape now enable the dissection of the

underlying molecular pathways that control morphogenesis. Based on the

principal components defining head shape, it is conceivable that planarian head

morphogenesis is mainly controlled by two molecular networks: One controlling

maximal head width at the position of the auricles and a second one determining

the posterior displacement of the point of maximal head width. The availability of

transcriptome sequence information for these species (Liu et al, in preparation)
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will now allow testing of this hypothesis, e.g., by RNAi screens with shape mode

analysis as read-out or systematic expression level comparisons in head

transcriptomes of species with different head morphologies. Similar inter-species

comparisons of beak morphology in Darwin finches could be correlated with the

ecological niche of the animals [38]. The corners of the observed shape set

corresponded to archetypical species that are highly specialized to a narrow

environmental niche, while species corresponding to interior points of the shape

set represent generalists, whose fitness is optimized simultaneously for several

traits. It will be interesting to test similar hypotheses for flatworm species, some of

which inhabit extreme environments.

Mathematical appendix: PCA for angular data and kernel methods

We discuss an extension of principal component analysis using a distance kernel,

which is particularly suited for the analysis of angular data. Linear operations on

angular data can be problematic, e.g. if angles jump by 2p. We define a n|n
feature-feature similarity matrix that accounts for the 2p-ambiguity of angle data

Cij~
X

k

cos½y(si,tk){y(sj,tk)�: ð6Þ

Rows and columns of this matrix do not automatically average to zero, so kernel

centering [39] has to be applied,

Figure 5. Principal component analysis for angular data using kernel PCA. A. Centered feature-feature
similarity matrix C0 according to eq. (6) for the sperm tangent angle data. B. First shape mode for the kernel
method (green) compared to the first shape mode as obtained by linear PCA (blue dashed). C. Corresponding
shape scores B1(t) as a function of measurement time for both the kernel method (green) and for linear PCA
(blue dashed).

doi:10.1371/journal.pone.0113083.g005
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C0
ij~Cij{

1
n

Xn

l~1

Cil{
1
n

Xn

k~1

Ckjz
1
n2

Xn

k,l~1

Ckl:

We can now proceed as below eq. (2), obtaining shape modes vk from the

eigenvectors of the matrix C0. (Without kernel centering, the resultant shape

modes would comprise a contribution from the non-zero average of all the

measurements [40].) Shape scores Bk(tj) can be defined by maximizing the

similarity measure

Xn

i~1

cos½y(si,tj){y0(si){B1(tj)v1(si){B2(tj)v2(si)�:

Here, the ‘mean flagellar shape’ y0(si) is defined using the circular mean

y0(sl)~arg
Pm

j~1 exp½iy(sl,tj)�. Fig. 5 compares the first shape mode and its scores

for this kernel PCA and linear PCA as considered in the main text.

If one is only interested in shape scores, but not the corresponding shape

modes, an alternative approach would be to use a m|m measurement-

measurement similarity matrix

Figure 6. The mathematics behind principal component analysis (PCA). A. For illustration, we start with a
n|m measurement matrix y featuring the beat of a sperm flagellum with n~100 measurement (rows) and
tangent angles at m~41 equidistant positions along the flagellar centerline (columns). Subtracting the mean
defines the centered n|m data matrix D. The mathematical technique of singular value decomposition factors
the data matrix D into a product of a unitary n|n matrix U�, a ‘‘diagonal’’ n|m matrix S that has non-zero
entries only along its diagonal, and a unitary m|m matrix V. Singular value decomposition may be regarded
as a generalization of the usual eigensystem decomposition of symmetric square matrices to non-square
matrices. A unitary n|n matrix U generalizes the concept of a rotation matrix to n-dimensional space.; it is
defined by U�U~UU� being equal to the identity matrix. Second row: A restriction to the top-k singular values
defines sub-matrices of U�, S, V of dimensions n|k, k|k, k|m, respectively, whose product represents a
useful approximation of the full factorization that reduces m feature dimensions to only k shape modes. B. The
m|m feature-feature covariance matrix C is defined in terms of the centered data matrix D. It can be written
as a product of a diagonal matrix D~S�S, whose diagonal features the eigenvalues of C and a unitary m|m-
matrix V whose columns correspond to the respective (left) eigenvectors of C. This matrix V is exactly the
same as previously encountered in the singular value decomposition of D. C. Similarly, the m|m
measurement-measurement covariance matrix G~DD�, known as the Gram matrix, can be decomposed
using a diagonal m|m matrix SS� and a unitary matrix U. Importantly, the rows of V comprise just the m shape
modes of the data matrix D as defined by linear PCA, while the columns of the matrix B~U�S yield the
corresponding shape scores.

doi:10.1371/journal.pone.0113083.g006
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Gij~
Xn

l~1

cos½y(sl,ti){y(sl,tj)�,

known as a Gram’s matrix [39]. The eigenvalues d1wd2w . . . and eigenvectors u1,

u2, . . . of the kernel-centered Gram matrix G0 provide a proxy for the shape scores

via Bk(tj)~
ffiffiffiffiffi
dk
p

uk,j.

A mathematical motivation for the use of such kernel methods stems from the

fact eq. (2) can be interpreted as a special case of a similarity kernel. For linear

PCA, the eigenvector decomposition of the feature-feature covariance matrix

C~D�D and that of the measurement-measurement covariance matrix G~DD�

yield analogous results as can be shown using the singular value decomposition of

the mean centered data matrix D~Y{Y0

D~U�SV: ð7Þ

Here, U and V are unitary n|n and m|m matrices, respectively, and S is a

diagonal n|m matrix. From eq. (7), we readily find C~V� DC V and

G~U� DG U, where DC~S�S and DG~SS� are diagonal matrices with the same

eigenvalues. These matrix decompositions are illustrated in Fig. 6 for linear PCA

on sperm data.

Using a nonlinear similarity measure as in eq. (6) breaks the exact

correspondence between PCA and kernel PCA based on the measurement-

measurement covariance matrix. Nevertheless, the use of kernels allows to analyze

more complicated data sets and depicts the road to nonlinear dimension

reduction methods [39]. In fact, several nonlinear dimensionality reduction

algorithms rely on kernel PCA, including the popular Isomap algorithm [41].

Such algorithms have been used for automated frame-sorting, including flagellar

video-microscopy [42]. Additionally, the concept of a Gram matrix is used in

multi-dimensional-scaling to reconstruct embeddings into a high-dimensional

feature space using only a Gram matrix of mutual distances between individual

measurements.

Supporting Online Material

A Matlab script is a available for download that illustrates the method of shape

mode analysis by principal component analysis, and the reconstruction of a limit

cycle as shown in Fig. 2.

Supporting Information

File S1. Example source code (Matlab) demonstrating the use of PCA and limit

cycle reconstruction, closely following the analysis of sperm tracking data
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shown in Fig. 2. The reader is invited to study this code interactively. First, a

pseudo data set is generated, thereby making the program independent of any

data files. Then, principal component analysis is applied and shape modes and

scores are displayed. A limit cycle is fitted to the resulting shape space dynamics,

and the uniform phase parametrization is derived. Finally, singular value

decomposition and kernel PCA are visualized.

doi:10.1371/journal.pone.0113083.s001 (M)
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25. Geyer VF, Jülicher F, Howard J, Friedrich BM (2013) Cell-body rocking is a dominant mechanism for
flagellar synchronization in a swimming alga. Proc Natl Acad Sci USA 110: 18058–63.

26. Kralemann B, Cimponeriu L, Rosenblum M, Pikovsky A, Mrowka R (2008) Phase dynamics of
coupled oscillators reconstructed from data. Phys Rev E 77: 066205.

27. Lauga E, Powers TR (2009) The hydrodynamics of swimming microorganisms. Rep Prog Phys 72:
096601.

28. Purcell EM (1977) Life at low Reynolds numbers. Am J Phys 45: 3–11.

29. Shapere A, Wilczek F (1987) Self-propulsion at low Reynolds number. Phys Rev Lett 58: 2051–2054.

30. Shomrat T, Levin M (2013) An automated training paradigm reveals long-term memory in planarians
and its persistence through head regeneration. The Journal of experimental biology 216: 3799–810.

31. Inoue T, Kumamoto H, Okamoto K, Umesono Y, Sakai M, et al. (2004) Morphological and Functional
Recovery of the Planarian Photosensing System during Head Regeneration Morphological and
Functional Recovery of the Planarian Photosensing System during Head Regeneration. Zool Sci 21:
275–283.

32. Driscoll MK, Fourkas JT, Losert W (2011) Local and global measures of shape dynamics. Physical
biology 8: 055001.

33. Sánchez Alvarado A, Newmark PA, Robb SM, Juste R (2002) The Schmidtea mediterranea database
as a molecular resource for studying platyhelminthes, stem cells and regeneration. Development
(Cambridge, England) 129: 5659–65.
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