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ABSTRACT: The discovery of new drug candidates to inhibit an
intended target is a complex and resource-consuming process. A
machine learning (ML) method for predicting drug—target
interactions (DTT) is a potential solution to improve the efficiency.
However, traditional ML approaches have limitations in accuracy.
In this study, we developed a novel ensemble model CoGT for
DTI prediction using multilayer perceptron (MLP), which
integrated graph-based models to extract non-Euclidean molecular
structures and large pretrained models, specifically chemBERT?4, to
process simplified molecular input line entry systems (SMILES).
The performance of CoGT was evaluated using compounds
inhibiting four Janus kinases (JAKs). Results showed that the large
pretrained model, chemBERTa, was better than other conventional
ML models in predicting DTI across multiple evaluation metrics, while the graph neural network (GNN) was effective for prediction
on imbalanced data sets. To take full advantage of the strengths of these different models, we developed an ensemble model, CoGT,
which outperformed other individual ML models in predicting compounds’ inhibition on different isoforms of JAKs. Our data
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suggest that the ensemble model CoGT has the potential to accelerate the process of drug discovery.

Bl INTRODUCTION

Janus kinases (JAKs) are a family of enzymes that play a crucial
role in the intracellular signaling of cytokine receptors,’ which
are involved in many biological processes such as cell
proliferation, apoptosis, and immune regulation.”* Dysregula-
tion of JAKs and JAK-related pathways leads to malignancies
and autoimmune disorders such as myelofibrosis, rheumatoid
arthritis, inflammatory bowel diseases, multiple sclerosis, and
psoriasis.” Accordingly, several JAK inhibitors have been
approved for the treatment of these diseases.

However, all approved JAK inhibitors have commonly
observed side effects, which may be due to their pan-inhibition
of different JAK isoforms.” The JAK families, JAK1, JAK2, JAK3,
and TYK2, have seven homology domains (JH), where JH1
serves as the kinase domain that phosphorylates downstream
signaling proteins.”* Most JAK inhibitors are designed to
compete with adenosine triphosphate (ATP) for the binding site
in the JHI1 kinase domain. However, the JHI is a highly
evolutionarily conserved domain,* which makes it difficult to
develop isoform-selective inhibitors. Thus, an a priori tool to
predict JAK selectivity of designed molecules will be of valuable
help to develop more isoform-specific inhibitors to reduce their
side effects. Machine learning can significantly improve the
efficiency and accuracy of these processes.

To develop an isoform-specific inhibitor, high-throughput
screening and lead compound optimization are usually
performed, which are time-consuming and not economically
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efficient. On the other hand, machine learning methods, such as
random forest (RF),” support vector machine (SVM),° K
nearest neighbors (KNN),” and extreme gradient boosting
(XGBoost),” could be applied to accelerate these processes. For
instance, XGBoost has shown promising prediction on JAK2
inhibitors, using fingerprint as drug molecule representation.” In
our study, we also explored the abilities of graph neural network
(GNN) models, which directly used a molecule graph as input.
In addition, we attempted to experiment with a transformer-
based model on JAK inhibition prediction using simplified
molecular input line entry systems (SMILES) as input. By
integrating different aspects of the ML methods, we developed
an ensemble model CoGT (conventional ML models + graph-
based models + transformer-based models), aiming to leverage
the predicting ability for drug—target interactions (DTT). This
novel method could be further applied and validated on drug

development of other molecular targets.
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B MATERIALS AND METHODS

Data Preparation. This data set was extracted from
ChEMBL,'*" BindingDB,12 PubChem,"*'* and Liu et al.'®
We removed duplicated drugs or drugs with controversial labels
(e.g., one drug with both active and inactive labels) in the data
set based on compound ID (CID) or compounds’ SMILES
strings. More than 2,130,000 compounds were extracted from
ChEMBL without a label and used to pretrain neural network
structured models mentioned later. For four types of JAKs and
the number of compounds collected are summarized in Table 1.

Table 1. Number of Molecules Collected in Each JAK
Category

molecule number JAK1 JAK2 JAK3 TYK2
total 7373 10161 7722 2424
active (label 1) 5606 6846 5250 1627
inactive (label 0) 1767 3315 2472 797

The threshold of active drugs is those with ICs, inhibition, ECsy,
and K; to a certain JAK below 10 M. For model training, the
data sets were randomly split into training, validation, and test
sets in 8:1:1 ratio. To make sure the training, validation, and test
set are the same when training all categories of models, we set the
random state seed at 42. Therefore, during all of our training
processes including later comodel training, compound informa-
tion from the test set did not leak.

Molecular Fingerprints Calculation. A fingerprint of a
molecule is a list of binary bits, which contains information on
drug substructure. For instance, each bit of the fingerprint list
could be a Boolean determination of certain element presence,
ring structure, or atom pairing.16 In our work, all molecules were
represented by MACCS fingerprints (166 bits). Those finger-
prints were calculated based on a compound’s SMILES using the
RDKit package.

Model Building. SVM. This defines a margin or decision
plane to separate data from different classes. Here, we used

(AUC) results are shown in Figure S1. We found that SVM poly
performed best overall on 4 JAKs, while the SVM sigmoid
showed the worst performance (nearly random guessing). Thus,
we chose SVM poly for model comparison and later comodel
building.

Random Forest. RF consists of individual decision trees, and
each tree is trained on a subversion of the data set. We used
fingerprints as features, and the number of trees was optimized
for each JAK category. The n_estimator for JAK1, JAK2, JAK3,
and TYK2 is 53, 91, 48, and 13, respectively.

Extreme Gradient Boosting. XGBoost'” is a scalable
machine learning system for tree boosting. Compared with
RF, XGBoost has a range of adjustable parameters to optimize
for each JAK category. We did a grid search on parameters listed
in Table S2 for each JAK and built the final XGBoost model
using the determined optimal parameters.

Graph Model. To leverage the natural structure of chemicals,
we attempted to solve the problem by using graph neural
networks'*"*" because of their performance and interpret-
ability.”" For each chemical molecule, we built one graph by
taking atoms as nodes and chemical bonds as edges. For each
node, we used 6 attributes of the atom: (1) atomic number, (2)
atom degree, (3) formal charge, (4) hybridization, (S) aromatic,
(6) chiral tag. We removed all hydrogen atoms so the related
nodes, edges, and atom degrees would not be included in the
graph construction. The architecture figure of our graph model
is shown in Figure 1A.

Apart from basic connection information between atoms,
bond types (single, double, triple, and aromatic) are employed
as edge relations between two nodes to supply more edge
information for the constructed graphs, and a relational graph
convolutional network (RGCN) is applied to adapt this data
structure. The node embedding is initialized by an embedding
layer, and the RGCN convoluton layers update the node
embedding using the neighbors and relation information:

MACCS fingerprints as features. We tried different SVM (k+1) _ 1 (). (k) ®
methods: linear, poly, rbf, and sigmoid. Model evaluations for h; =0 Z Z | N(i)lwr b + Woh;
SVM are summarized in Table S1, and area under the curve reR JEN) 7T (1)
A B
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Figure 1. (A) Graph model, where the encoder is a RGCN that maps the drug to latent space Z, and the decoder is implemented by 6(ZZ%). (B)

ChemBERTa model.
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where h{¥) is the node embedding of the ith node after the kth
layer, R is the relation set, and N.(i) denotes the neighbor set
that has r relation of the ith node.

A two-layer RGCN™” is used to experiment with embedding
dimension 4 (embedding layer), hidden dimension 64 (the first
RGCN convolutional layer), and output dimension 128 (the
second RGCN convolutional layer).

Variational autoencoder (VAE)> is considered as a
pretraining tool to eliminate the effect of unbalanced data and
train a more robust model. We modified variational graph
autoencoders (VGAE)™* as relation-employed graph autoen-
coders (GraphVAE). The RGCN is the simple inference model,
i.e., encoder. The generative model is given by an inner product
between latent variables to learn the adjacency matrix. We
optimize the variational bound on negative log likelihood:

L = [Ex[_[EZNq”(zlx)log<A|z) + DKL(qH(zlx), N(0, 1))]
(2)

where gy is the encoder distribution, z represents the drug
representation on latent space, and A denotes the adjacency
matrix of a drug graph.

After the GraphVAE training process, the pretrained encoder
followed by a global attention pool layer and a linear layer is fine-
tuned as a JAK classifier.

chemBERTa. Large pretrained neural networks, especially
transformer-based, have made breakthroughs in many domains
like language,” vision,”® as well as protein prediction.””
However, the progress of chemical property prediction using
large transformers is not significant compared to these domains.
Previous work did not fully take advantage of the capacity of
large transformer models as they were either pretrained on
smaller language models like recurrent neural networks or tuned
on smaller data sets and narrow applications like reaction
predictions,”® which may cause the overfitting of models and be
unable to generalize to other tasks. In recent years, a new
chemical transformer called chemBERTa”> makes one of the
first attempts to systematically evaluate large transformers on
molecular property prediction tasks. As shown in Figure 1B, the
chemBERTa is originally pretrained on 77 million unique
SMILES of chemicals from PubChem on RoBERTa*’ with a
SMILE-based tokenizer’' to predict corresponding Morgan
fingerprints and is then applied to several downstream
properties’ prediction tasks. The SMILE-based tokenizer, first
designed for another pretrained transformer model,”" tokenizes
SMILES strings more reasonably than regular hard tokenization,
which turns SMILES into single letters but may lose information
when two or more consecutive letters should stay in the
integrity. The backbone model, RoBERTa, shares a similar
architecture with BERT*® but shows more robust performances
specifically on classification tasks under different training
strategies from BERT. The natural of RoBERTa can be a good
fit for the chemical property predictions which are usually
classifications.

Here, we fine-tuned a chemBERTa with additional two
million SMILES, as mentioned in Data Preparation above,
where the inputs to the chemBERTa were SMILES of chemicals
and the targets were MACCS fingerprints. Even though the
original chemBERTa was pretrained to predict Morgan
fingerprints, we believe the transformation from a MACCS
fingerprint to a Morgan fingerprint can be handled easily by deep
neural net models. Also, to be consistent and able to easily
ensemble with other methods we explored in this paper, we need

to use MACCS fingerprints in the downstream JAK
classification task, so we decided to also use MACCS
fingerprints in the pretraining stages. In this stage, the model
was pretrained in 30 epochs as the loss starts to converge. The
optimizer was AdamW>> with 1e~* learning rate and 1e~* weight
decay. We added a linear layer on top of the pretrained model to
fine-tune and cross-validate the JAK classification data set. In the
stage of tuning for the JAK prediction task, the model was
trained in 20 epochs and the learning rate is le”>, while other
settings remain the same as pretraining. For both stages, the
batch size was 16 and a 0.5 dropout was applied before the final
linear layer.

Convolutional Neural Network. To compare with the large
pretrained model, we implemented a convolutional neural
network (CNN) as a neural baseline model. The CNN model
was also pretrained on the same set of data as the chemBERTa
and then fine-tuned on the JAK data set. In the CNN
architecture, we had 3 convolution kernels with kernel sizes of
1, 2, and 3 as unigram, bigram, and trigram filters, respectively,
which is analogous to common settings in language tasks. The
output of 3 kernels after max-pooling was concatenated together
to be fed into a final linear prediction layer. The embedding
dimension of each character is 256. The output size of all 3
convolution layers is 128. The activation function is LeakyReLu,
and the dropout rate is 0.25. In pretraining, the model was
trained in 20 epochs, and the optimizer was a stochastic gradient
descent with 0.9 learning rate and 1e™> weight decay. In the stage
of tuning for JAK prediction task, the learning rate was 0.1 while
other settings remain the same as pretraining. For both stages,
the batch size was 1024.

Baseline Model. In this study, we chose K nearest neighbor
(KNN) to evaluate data set as a simple base model. By utilizing a
simple model, one could examine the data set and validation
with rapid feedback. We would use the base model’s
performance to contrast with other models.”> We used the
MACCS fingerprints as inputs for fingerprint-based non-neural
classification models.

CoGT. To fully utilize the advantages of conventional ML
models, graph-based models and transformer-based models, we
built a comodel CoGT using simplified multilayer perceptron
(MLP). In detail, predicted probabilities of compounds
calculated by SVM, RF, XGBoost, GraphVAE, and chemBERTa
were taken as input, and probability calculated by sigmoid
function was the output by using the SGD optimizer to minimize
the weighted BCE loss.

Model Evaluation. All models listed above were evaluated
on test sets. Model performance was evaluated based on
accuracy, active recall (or sensitivity, SE), negative recall (or
specificity, SP), weighted accuracy (average of SE and SP),
Matthew’s correlation coefficient (MCC), F1 score, AUC, and
average precision (AP). The equations to calculate each metric
are listed below, in which TP is true positive, TN is true negative,
FP is false positive, and FN is false negative. In the AP formula,
R, and P, denote the precision and recall at the nth threshold,
respectively.

TP + TN
accuracy =
TN + TP + FP + FN (3)
. TP
recision = —m
P TP + FP (4)

https://doi.org/10.1021/acsomega.3c00160
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Figure 2. Data visualization based on MACCS fingerprint with PCA and t-SNE. PCA for (A) JAK], (B) JAK2, (C) JAK3, and (D) TYK2; t-SNE for
(E) JAK], (F) JAK2, (G) JAK3, and (H) TYK2. Blue and red dots represent noninhibitors and inhibitors, respectively.
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data sets; Tanimoto similarity for (E) JAK1, (F) JAK2, (G) JAK3, and (H) TYK2 inhibitors.
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Table 2. Results of Test Sets in JAK1, JAK2, JAK3, and TYK2 (Best Performances of Each Metric Are Shown in Bold)

target model acc weighted acc precision recall SP F1 AUC MCC AP
JAK1 KNN 0.942 0.920 0.965 0.960 0.881 0.962 0.920 0.835 0.957
SVM 0.958 0.939 0.972 0.974 0.905 0.973 0.974 0.880 0.990
RF 0.954 0.932 0.969 0.972 0.893 0.970 0.986 0.868 0.996
XGBoost 0.955 0.937 0.972 0.970 0.905 0.971 0.989 0.873 0.997
CNN 0.744 0.720 0.887 0.765 0.674 0.821 0.765 0.392 0.888
GraphVAE 0.902 0.924 0.988 0.884 0.964 0.933 0.948 0.770 0.986
chemBERTa 0.957 0.938 0.972 0.972 0.905 0.972 0.989 0.877 0.997
CoGT 0.989 0.985 0.993 0.993 0.978 0.993 0.999 0.970 1.000
JAK2 KNN 0.908 0.877 0.947 0.933 0.821 0.940 0.877 0.743 0.935
SVM 0.923 0.893 0.952 0.947 0.839 0.950 0.943 0.782 0.981
RF 0.924 0.896 0.954 0.947 0.845 0.951 0.948 0.786 0.979
XGBoost 0.905 0.878 0.907 0.956 0.800 0.931 0.953 0.781 0.973
CNN 0.668 0.623 0.747 0.760 0.486 0.753 0.646 0.248 0.748
GraphVAE 0.901 0.900 0.948 0.902 0.899 0.924 0.965 0.783 0.981
chemBERTa 0.896 0.887 0.930 0.913 0.860 0.922 0.950 0.766 0.973
CoGT 0.975 0.974 0.986 0.977 0.971 0.981 0.996 0.943 0.998
JAK3 KNN 0.882 0.836 0.926 0.921 0.750 0.923 0.836 0.667 0914
SVM 0.879 0.836 0.927 0.916 0.756 0.921 0.912 0.662 0.972
RF 0.878 0.824 0.920 0.923 0.726 0.921 0.926 0.652 0.978
XGBoost 0.867 0.830 0.895 0.919 0.740 0.907 0.926 0.673 0.965
CNN 0.696 0.500 0.696 1.000 0.000 0.821 0.503 N/A 0.699
GraphVAE 0.894 0.889 0.946 0.901 0.877 0.923 0.956 0.758 0.972
chemBERTa 0.875 0.849 0.912 0.910 0.789 0911 0.943 0.698 0.976
CoGT 0.970 0.969 0.986 0.970 0.969 0.978 0.993 0.930 0.997
TYK2 KNN 0.855 0.772 0.892 0.925 0.619 0.908 0.880 0.571 0.941
SVM 0.866 0.833 0.931 0.893 0.774 0911 0.893 0.638 0.957
RF 0.882 0.808 0.907 0.944 0.673 0.925 0.923 0.651 0.967
XGBoost 0.942 0.931 0.959 0.959 0.903 0.959 0.975 0.862 0.987
CNN 0.718 0.593 0.716 0.960 0.225 0.820 0.733 0.289 0.812
GraphVAE 0.951 0.945 0.970 0.959 0.931 0.965 0.977 0.883 0.991
chemBERTa 0.926 0.891 0.923 0.977 0.806 0.949 0.981 0.819 0.993
CoGT 0.988 0.985 0.987 0.994 0.977 0.990 0.999 0.973 0.999
. _ SE + SP separated easily since some of them share similar structure and
weighted accuracy = ———— .
2 (7) properties.
In addition, we did similarity quantification for all JAKs using
MCC = TP X TN — FN X FP Tanimoto similarity.34 MACCS fingerprints of each drug in the
(TP + EP)(TP + EN)(TN + FN)(TN + EP) data set were used to calculate Tanimoto similarity index. As
(8) shown in Figure 3A—D, the similarity for all molecules is
2(precision X recall) relatively lqw in 4.JA1.<S’ s.uggesti.ng that moIeC}lles in our data set
Fl1 = have a wide distribution with rather diverse structures.
precision + recall ) Furthermore, we examined active molecules for 4 JAKs, and
the similarity is also not high overall, as shown in Figure 3E—H.
AP = z (R, = R,_})P, (10) These suggest that our data set is representative and our models
n

B RESULTS AND DISCUSSION

Chemical Diversity Analysis. To visualize the chemical
diversity of our data sets, principal component analysis (PCA)
was performed on all molecules collected with the MACCS
fingerprint as input. If the features’ relationship is nonlinear,
PCA may not perform well to cluster data. Therefore, we also
performed t-distributed stochastic neighbor embedding (t-
SNE) to avoid PCA under fitting. Figure 2 shows that the
distribution of active and inactive compounds for all 4 JAKs are
still overlapped for both PCA and t-SNE, which suggests that in
the chemical space active and inactive compounds could not be

13236

have strong flexibility to identify active molecules from inactive
ones.

Performance Evaluation and Comparison of Models.
We summarized our models’ evaluation in Table 2. Due to the
imbalance of our data, we focused more on weighted accuracy
than accuracy when evaluating the performance of different
models. For all 4 types of JAKs, neural models significantly
outperformed other conventional models in more than half of all
metrics and performed comparable to the best performances on
other metrics. This implies the potential ability of transformer-
based and graph-based models to better grasp chemical structure
information and be applied to downstream chemical tasks. The
pretrained CNN model performed poorly compared with

https://doi.org/10.1021/acsomega.3c00160
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Figure 4. AUC—ROC curves of S selected models on (A) JAK], (B) JAK2, (C) JAK3, and (D) TYK? test sets.

chemBERTa and RGCN, which were also pretrained. This
suggests that CNN is small to take advantage of a large volume of
pretrained data and the lack of ability to extract helpful structural
information from SMILE inputs.

Other than the graph-based model and the transformer-based
model, traditional ML method SVM and tree-based models (RF
and XGBoost) also performed well on JAK inhibition
prediction. For instance, SVM performed well on JAK3 data
sets and XGBoost showed impressive performance on TYK2.
Compared with the base model, SVM, RF and XGBoost
achieved high weighted accuracy on all 4 JAK prediction tasks
and those 3 algorithms were chosen for later comodel training.

To fully utilize the advantages of all different models, the
ensemble models CoGT were built on all 4 JAKs with MLP as
second-level model via a stacking technique. The stacking

technique builds a two-level model: the first level contains SVM,
RF, XGBoost, GraphVAE, and chemBERTa to estimate a
probability of a drug being a JAK inhibitor as an intermediate
prediction, and the second level is a MLP which takes the
prediction of three models in the first level as input to achieve a
final prediction.” We visualized the normalized weight of the
comodel in Figure 5. Each model weight and bias for each JAK
can be found in Table S3. Our results show that CoGT performs
impressively among all 4 JAK inhibition prediction tasks, scoring
the highest for all metrics listed in Table 2. For AUC—ROC
(receiver operating characteristic) curves on test sets shown in
Figure 4, the comodel CoGT outperforms among all other
models, with an AUC score nearly equal to 1 for all 4 JAKs.
As simple machine learning methods may already achieve
similar performance compared with state-of-the-art ML
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Figure S. Normalized weights visualization for comodel CoGT.

methods,* we examined the performance of CoOCM (comodel
using conventional models only, i.e., SVM, RF, and XGBoost).
Results shown in Table 3 indicate that our comodel CoGT
exceeds the accuracy of conventional ML comodels. This
demonstrates that incorporating models which utilize different
ways of molecule representation could extract more information
than simply using fingerprint-based conventional ML models.

We also examined the structure similarity between com-
pounds that our model gave a wrong prediction. Tanimoto
similarity did not reveal a common substructure between
wrongly predicted molecules, as shown in Figure S2.

Comparison with Previous Models for JAK-Related ML
Methods. There are several works on JAK inhibitor prediction
including deep learning models and traditional learning models,
as summarized in Table 4. Previous related work used XGBoost
to predict JAK2 inhibition activity, and RF models were also
utilized to predict JAK inhibition.””° We also used XGBoost and
RF in our model building, and our data showed that both models
performed well compared with the base model, yet our comodel
CoGT showed better performance on all metrics.

Graph-based model methods have recently emerged in the
field of JAK inhibitor discovery.'*” These studies demonstrate
the promising predicting power of graph-based models on JAK
inhibitor discovery and design. As a consequence, we also
included graph-based model graphVAE in our comodel
building.

learning techniques to address JAK-related problems. However,
these endeavors either involve a combination of the afore-
mentioned methods or do not directly predict JAK types but
rather do have an effect on the exploration of JAK inhibitors.
Consequently, we did not incorporate them in our experiment
comparisons.

Overall, our comodel CoGT is the only model which tries to
incorporate different representation information from a
compound. Previous work mainly focused on using fingerprint
or graph-based representation, neglecting the possibility that
more information could be extracted through different
representation. Here, we not only include fingerprint and
graph representation but also utilize large pretrained trans-
former-based models to extract information directly from
SMILES strings.

Comodel CoGT Prediction on Approved Drugs. To
further validate our ensemble model CoGT, we used approved
drugs and drugs in clinical trials as input and predicted their JAK
inhibition. Results are summarized in Table 5. Our model
prediction aligns well with real-world JAK inhibition for most
drugs. For the four out of eight FDA-approved JAK inhibitors
(i.e., Ruxolitinib, Tofacitinib, Baricitinib, Upadacitinib), our
comodel gives accurate prediction on their inhibition profiles,
which cannot be achieved by one single model. Besides, to
further explore the phenomenon of the active cliff, which is the
phenomenon that compounds with similar structures may have
significant efficacy difference,' we examined our data set to see
whether there are similar structures with FDA-approved drugs,
and compounds highly similar to the approved drugs are shown
in Figure 6. Results show that especially for JAK1—JAK3, there
exists an active cliff in our data set, i.e., compounds highly similar

Table 3. Results of Test Sets in JAK1, JAK2, JAK3, and TYK2 on CoCM (Comodel Using Conventional Models, i.e., SVM, RF,
XGBoost) and CoGT (Comodel Using Conventional, Graph, and Transformer-Based Models, i.e., SVM, RF, XGBoost,

GraphVAE, chemBERTa)

target model acc weighted acc precision
JAK1 CoCM 0.982 0.975 0.988
CoGT 0.989 0.985 0.993
JAK2 CoCM 0.966 0.958 0.971
CoGT 0.975 0.974 0.986
JAK3 CoCM 0.949 0.949 0.977
CoGT 0.970 0.969 0.986
TYK2 CoCM 0.977 0.972 0.975
CoGT 0.988 0.985 0.987
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recall SP F1 AUC MCC AP

0.989 0.961 0.988 0.998 0.952 0.999
0.993 0.978 0.993 0.999 0.970 1.000
0.979 0.937 0.975 0.993 0.921 0.996
0.977 0.971 0.981 0.996 0.943 0.998
0.948 0.951 0.962 0.987 0.884 0.994
0.970 0.969 0.978 0.993 0.930 0.997
0.990 0.95§ 0.982 0.998 0.951 0.999
0.994 0.977 0.990 0.999 0.973 0.999
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Table S. Probability as Inhibitors Based on CoGT Prediction and Their IC;, on FDA-Approved Drugs for 4 JAKs (Drugs Existing

in the Training Sets Are Marked with ) R
ICs0(pMM)
Drug Name Structure Probability of Inhibitor
JAK1 JAK2 JAK3 TYK2
el 6.4x1073 8.8x1073  0.487  0.0301
RUXOLITINIB* NN
p S 0.931 0.896  0.885  0.834
S W 0.0151*  0.0774  0.055  0.489
TOFACITINIB*? R T
LN 0.905 0.689  0.899  0.848
g . 4x107%  6.6x10~* 0.787*  0.061
BARICITINIB*? P e
=k 0.941 0.643 0895  0.83
1oga) 0.105*  3x107*  1* 0405
FEDRATINIB# DTG e
% 0.951 0911 0103  0.841
%4@ 0.047* 012 2304  4.69
UPADACITINIB? N S T e e
C o 0.952 0.930  0.826  0.811
\ .
L 0.029 0.803 =15 125
ABROCITINIB* pAyag S et
o 0.958 0.094 0108  0.840
a 128 0023 052 005
PACRITINIB*" O J,b ————————————————————————————
~3 0.233 0.942 0704  0.850
TL o >10 >10 >10 2 x107*
DEUCRAVACITINIB*® 2 1
p 0.924 0464 0762 0.834

to approved drugs yet may have different levels of potency, and
our model provides quite accurate prediction.

Among the remaining four approved inhibitors, the activity of
two inhibitors with similar core structures (Fedratinib and
Abrocitinib) is incorrectly predicted on JAK3 and JAK2,
respectively. Our model also predicts that Pacritinib is a JAK1
noninhibitor based on the threshold of 10 M. We can observe
that the wrong predictions all happen at the values of ~1 M.
Such discrepancy may be partially explained by the fact that
most kinase-targeting small molecules are ATP-competitive
inhibitors, and thus their measured IC;, can be greatly affected
by the concurrent ATP concentration. For example, in one
previous work elucidating the JAK2 binding sites of Fedratinib,
the authors showed that the IC, values of Fedratinib were
measured to be 4.9 and 90 nM at the corresponding ATP
concentrations of 10 and 100 M, respectively.*” Therefore,
inhibitors with weaker activity (i.e., ICs, values closer to the set
threshold) may exhibit opposing categorizations depending on
the testing conditions. Given that the conditions applied in
inhibition assays (i.e, ATP concentrations) can be slightly
different across different research groups, while the collected
ICy, values in the data sets do not necessarily include such

13239

information, a more consistent reporting format of ICs, values
will be of valuable help in eliminating such uncertainty.

The remaining inhibitor Deucravacitinib shows least
satisfactory prediction, where our model indicates it to be
inhibitor on JAK1, JAK3, and TYK2, while it only inhibits TYK2.
This discordance is most possible due to the unique
incorporation of deuterium into the compound. Such a tiny
replacement of three hydrogen atoms into isotope deuterium
may not be universally incorporated in the available data sets,
and thus the prediction accuracy suffers.*’

To further analyze the 5 wrong predictions among all 32
predictions for approved drugs, we searched for a similar
structure among wrongly predicted compounds in a separate
data set, and most similar compounds are shown in Figure 7.
Results show that there are compounds wrongly predicted
whose structures are similar to FDA-approved drugs. Especially
for the JAK1 data set, there is a compound highly similar to
Pacritinib with Tanimoto similarity as high as 0.963. Thus, our
model has difficulty giving accurate predictions for those
moieties with high structural similarities, and more labeled
compounds should be collected during the training process.
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Figure 6. Compounds with high structure similarities compared to FDA-approved drugs. Panels (A—D) each represents the grouped compounds with
high structure similarity to Ruxolitinib, Upadacitinib, Tofacitinib, and Baricitinib, respectively. Sim, Tanimoto similarity; Label, true label; Prob, model

predicting probability.
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Figure 7. Similarity visualization between wrongly predicted molecules in Table 5 and the most similar drug compound in data set.

B CONCLUSIONS

In this research, we developed an ensemble model, called CoGT,
which combined multiple machine learning models to achieve
better accuracy than any individual model in predicting DTI for
four JAK isoforms. We first compiled a comprehensive data set
for JAK inhibitors. Using this data set, we compared different
ML methods in predicting JAK inhibition, which included a
graph-based model (RGCN applied GraphVAE), a pretrained
RoBERTa model (chemBERTa), and traditional machine
learning models. Our experiments revealed that the graph
model was superior to conventional ML methods to effectively
extract structural information for all JAK inhibitors. In addition,
large pretrained transformer-based model chemBERTa could
also be effective for chemical predictions of these JAK inhibitory
structures. Traditional models such as SVM, RF, and XGBoost
performed well, despite their relatively low computational costs.
By fully leveraging the strengths of various models, our ensemble
mode CoGT performed best with prediction accuracy of DTT of
JAK inhibitors. Further improvement can be achieved by
optimizing parameters in GraphVAE model for a better
description of the bond and atom types, as well as by utilizing
the distribution of chemical fragments in the data set for the
model training,
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