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Abstract
Chemotherapy remains a widely used cancer treatment. Acquired drug resistance may greatly reduce the efficacy of treatment 
and means to overcome it are a topic of active discussion among researchers. One of the proposed solutions is to shift the 
therapeutic paradigm from complete eradication of cancer to maintenance, i.e., to treat it as a chronic disease. A concept of 
metronomic therapy (low chemotherapy doses applied continuously) emerged in early 2000s and was henceforth shown to 
offer a number of benefits, including targeting endothelial cells and reducing acquired drug resistance. Using mathematical 
modeling and optimal control techniques, we investigate the hypothesis that lower doses of chemotherapy are beneficial 
for patients. Our analysis of a mathematical model of tumor growth under angiogenic signaling proposed by Hahnfeldt 
et al. adapted to heterogeneous tumors treated by combined anti-angiogenic agent and chemotherapy offers insights into 
the effects of metronomic therapy. Firstly, assuming constant long-term drug delivery, the model suggests that the longest 
survival time is achieved for intermediate drug doses. Secondly, by formalizing the notion of the therapeutic target being 
maintenance rather than eradication, we show that in the short term, optimal chemotherapy scheduling consists mainly of 
a drug applied at a low dose. In conclusion, we suggest that metronomic therapy is an attractive alternative to maximum 
tolerated dose therapies to be investigated in experimental settings and clinical trials.

Keywords  Tumor growth · Angiogenesis · Anti-angiogenic treatment · Chemotherapy · Resistance · Optimal control · 
Mathematical modeling

Mathematics Subject Classification  49K15 · 92C50 · 37N25

Introduction

In this study, we introduce a mathematical model of tumor 
growth under angiogenic signaling and discuss how it can 
be used to support clinicians in choosing the right chemo-
therapy scheduling protocols.

Chemotherapy remains one of the treatment strategies 
most frequently used to combat cancer. As chemotherapy is 
not selective, it affects both the tumor and the host’s healthy 
cells alike and hence requires careful dosing so as not to 
induce too severe side-effects. Therefore the establishment 
of the “Maximum Tolerated Dose” (MTD) for a given drug 
is one of the aims of phase I clinical trials. Once MTD is 
established, the treatment typically consists of administering 
an MTD drug dose to kill as many cancer cells as possible, 
followed by a prolonged drug-free interval to allow the host 
enough time to recover. The main issue associated with this 
approach is that genetic instability of tumor cells, coupled 
with their high proliferation rate, often lead to development 
of resistance to chemotherapy. As a result, even though the 
initial response to treatment may be promising, subsequent 
chemotherapy cycles become less and less effective.

It has therefore been proposed that it may be beneficial 
to administer a drug at a lower density, but continuously 
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(the so-called metronomic scheduling), thus treating can-
cer as a chronic disease and shifting the therapeutic para-
digm from total eradication to maintenance (Scharovsky 
et al. 2009; Fidler and Ellis 2000; Afrasiabi et al. 2020). 
Metronomic therapy has been reported to have a number of 
benefits: immune system boosting, inducing anti-angiogenic 
effects (Hanahan et al. 2000; Pasquier et al. 2010), and pre-
venting acquired drug resistance (Kareva et al. 2015). In this 
study, we focus on the latter two aspects of metronomic, low-
dose therapies. In particular we use mathematical modeling 
to provide insights into the following hypothesis: appropri-
ate chemotherapy dosing could prolong patient survival by 
maintaining tumor size at lower, non-life-threatening levels. 
Furthermore, this is achieved by targeting blood vessels and 
delaying the onset of drug resistance.

The drug dosing is therefore essential to successful treat-
ment. Given the quantitative nature of this issue, it seems 
intuitive that mathematical techniques could be employed to 
support clinicians in their decision-making process (Gatenby 
and Maini 2003; Michor and Beal 2015). The main motiva-
tion behind modeling is that an experimental oncologist, 
equipped with an appropriate mathematical model, could 
run computer simulations to preliminary assess different 
treatment protocols. This process, combined with experi-
ence and intuition of the researcher, could lead to an identi-
fication of the most promising treatment schemes to be then 
tested experimentally. Similarly, a clinician having to decide 
which chemotherapeutic schedule to use to treat a patient 
could make a better-informed decision based on additional 
inputs from mathematical simulations which predict tumor 
responses to different types of treatment. If a model was 
particularly well supported by experiments and had enough 
data, it could even be used to propose optimal treatment 
schedules at an individual level. Hence, our work fits into the 
general trend of usage of mathematical modeling as a tool 
in personalized therapies: see, e.g., Komarova and Boland 
(2013); Agur et al. (2020), or Ottesen et al. (2020) for a more 
mechanistic approach.

Mathematical models of tumor growth have existed in 
the literature for a long time. Historically, notable examples 
include the early works by Laird (1964) in the 1960s where 
a simple, Gompertzian model was fitted to experimental data 
from mouse, rat, and rabbit tumors. In 1999, Hahnfeldt et al. 
(1999) developed a now classic model of tumor angiogen-
esis, adapted in many other studies (this one being no excep-
tion). More recently, noteworthy are the works by Gatenby 
et al. (2009) on adaptive therapy schedules which employed 
mathematical modeling techniques.

The mathematical framework we employ in this study to 
numerically compute optimal treatment is optimal control 
theory. The very first question which needs addressing is 
what do we mean by “optimal”. Historically mathemati-
cians attempted to minimize the objective functional which 

is a sum of overall tumor burden, which can be thought as 
an area below a curve describing the tumor cell density 
(or, in case of compartmental models, weighted density 
across compartments with the resistant component receiv-
ing a higher penalty), and the tumor size at the end of the 
treatment  (Ledzewicz and Schättler 2014, 2014, 2002; 
Świerniak et al. 2016; Świerniak and Śmieja 2001; Śmieja 
and Świerniak 2003). Usually, an additional penalty on over-
all administered drug amount is imposed to penalize toxic 
side-effects. While these methods have proved themselves 
to be quite successful and leading to important insights, we 
take a slightly different approach. As the goal of metronomic 
therapy is to shift the therapeutic paradigm from maximizing 
cell kill to maintaining the tumor at a non-life-threatening 
level, we decided to include an additional term in our objec-
tive functional which adds a running penalty for periods of 
time in which the tumor is in a drug-resistant state (i.e., there 
is more resistant than sensitive cells). We do this in effort 
to see if penalizing drug resistance may lead to better thera-
peutic outcomes in terms of long-term patient survival. Note 
that in this study we assume that we are treating a tumor 
whose intrinsic properties (drug resistance) make it incur-
able using cytotoxic agents, as is sometimes the case (Savage 
et al. 2009). The goal is therefore to prolong patient survival, 
rather than to actually cure the tumor.

In this study we use a mathematical model which tracks: 
the number of chemotherapy-sensitive tumor cells and the 
number of chemotherapy-resistant tumor cells, as well as a 
variable carrying capacity which is related to the size of the 
vasculature. Using a simpler model with just two tumor sub-
populations and constant carrying capacity we have already 
shown that smaller doses of chemotherapy could indeed 
yield better survival times for patients (Bajger et al. 2019). 
Here, we incorporate the ideas of Hahnfeldt et al. (1999) to 
be able to include the anti-angiogenic effects of metronomic 
therapy, as well as the potential effects of anti-angiogenic 
treatment.

The original Hahnfeldt’s model was validated using 
experimental data from mice under anti-angiogenic treat-
ment. Hahnfeldt and collegues assumed that the evolution 
of a vascular network that supplies nutrients and oxygen to 
tumor cells strictly controls the tumor growth. They intro-
duced the concept of carrying capacity of the vasculature 
and provided a framework to account the effects of anti-
angiogenic therapies. The size of the vasculature controls 
the limiting size of the tumor, while the growth of the vas-
culature is controlled by the tumor cells secreting pro- and 
anti-angiogenic factors.

Despite the initial high hopes associated with anti-angi-
ogenic treatment, it became apparent that anti-angiogenic 
therapy does not yield a significant improvement in long-
term patient survival (Jain 2005). We therefore consider it 
combined with more classical, chemotherapeutic treatment, 
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although we take a rather simplistic approach. In general, the 
interplay between the two therapies is quite subtle. Contrary 
to our intuition, anti-angiogenic agents may have a “normal-
izing” effect on abnormal tumor vasculature, thus leading to 
an improved flow and hence improved chemotherapy deliv-
ery mechanism (Goel et al. 2012). To make the best use of 
this mechanism a careful dosing schedule has to be chosen. 
We do not model this phenomenon explicitly in this study 
and focus more on acquired drug resistance (ADR), while 
noting that this is a possible extension of our model. For 
works on mathematical modeling in which vessel normaliza-
tion is taken into account, we refer the reader to Poleszczuk 
and Skrzypczak (2011) and Alarcón et al. (2006).

To model ADR, we subdivide the population of tumor 
cells into two subpopulations: one sensitive to chemotherapy 
and the other completely resistant. In addition, we include a 
flow between the two cellular compartments due to genetic 
mutations which may be important in particular for long-
time horizon analysis. This extended model can be used 
to model both the effects of chemotherapy (and how drug 
resistance emerges) and the anti-angiogenic treatment. To 
gain some initial intuition about the behavior of the system, 
we first consider its behavior when the chemotherapy dose 
is constant in time. This is meant to be an approximation of 
a continuous, indefinite long-term chemotherapeutic treat-
ment. We then consider an optimal control problem, i.e., we 
allow the chemotherapeutic drug dose to vary over time. 
Finally, we consider more clinically realistic approximations 
to the optimal controls and show that they give near-optimal 
results.

The paper is organized as follows: in Sect. 3, we present 
the main conclusions of our study obtained using numerical 
simulations of our model. In Sect. 3.1, as a first and sim-
plest approximation of an actual therapeutic protocol, we 
consider anti-angiogenic and chemotherapy doses as con-
stant in time and optimize patient survival time. It gives us 
basic insights into the dynamics of the considered model. 
In Sect. 3.2, we consider 14-day therapeutic protocols that 
minimizes the tumor volume and penalizes drug resistance. 
We use optimal control framework to numerically compute 
optimal treatment protocols. It may have significant impact 
on the optimal or suboptimal solution. In Sect. 4, we discuss 
the obtained results.

The remaining sections are devoted to a more theoretical 
description of the model. In Sect. 2, we list the assump-
tions under which the model described in Sect. 2.1 was build 
and list the nominal parameter values. In 2.2, we formally 
introduce our objective functional constructed to target the 
problem of drug resistance. In Sect. 2.3, we describe the 
numerical methods that were used throughout the paper. 
Finally, Sect. 5 contains conclusions.

Formal, mathematical analysis of the model is confined 
to the Appendices. In Appendix A.1, we formulate basic 

properties of the mathematical model, and in Sect. A.2, we 
investigate the existence of stationary states and formulate 
conditions for their stability.

Methods

In this section, we describe a mathematical model which we 
used during our study and numerical methods allowing for 
illustrate presented results. Below we list the assumptions 
under which the model described in Sect. 2.1 was built. 

1.	 Tumor cell population is subdivided into two subpopu-
lations: drug-sensitive and drug-resistant. We have 
analyzed subdividing the population into more com-
partments with gradually increasing resistance and con-
cluded that the benefit is small relative to an increase in 
model complexity.

2.	 Each tumor subpopulation, in the absence of the other 
one, follows the Gompertz growth model. See discus-
sion in Bodnar and Foryś (2007) on other growth models 
(e.g., logistic).

3.	 Carrying capacity of the environment is tied to the avail-
ability of the vasculature. The process of angiogenesis 
(i.e., new blood vessels sprouting) is modeled according 
to the equations proposed by Hahnfeldt et al. (1999).

4.	 It is assumed that a constant dose of anti-angiogenic 
agent is supplied throughout the treatment. Rather than 
optimizing for both chemotherapy and the anti-angio-
genic drug dose, we focus on a slightly different ques-
tion: Given an anti-angiogenic agent constant dose, what 
is the optimal chemotherapy schedule?

5.	 Chemotherapy-sensitive cells are killed by the drug 
according to the log-kill hypothesis, i.e., a death rate is 
proportional to the number of cells and the concentra-
tion of the drug. It is assumed that the drug has no effect 
on the resistant subpopulation, and that we can control 
the drug concentration at all times. Drug metabolism is 
ignored for simplicity.

6.	 The flow between resistant and sensitive compartments 
is modeled by assuming constant mutation rates propor-
tional to cell densities. This assumption is motivated by 
works of Luria and Delbrück (1943). For a detailed dis-
cussion of different modeling approaches, see Foo and 
Michor (2014).

Mathematical model formulation

In the original Hahnfeldt et al.’s model (Hahnfeldt et al. 
1999), two variables have been introduced. The first one, 
V, reflects the tumor volume, while the second one, K, 
is the “carrying capacity”, which is related to the size of 
the vasculature that can supply tumors of that volume. 
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Hahnfeldt et al. assumed that the tumor population follows 
the Gompertzian-type of growth. Thus, the tumor dynamics 
is described by the equation

where � reflects maximal growth rate of the tumor.
On the basis of the hypothesis that the tumor growth is 

precisely dependent on the development of the vasculature, 
the fixed carrying capacity of the Gompertzian growth was 
replaced by the time-dependent variable K(t). Note that 
the tumor growth described by the above equation will be 
bounded only if the tumor vasculature tends to a limited 
maximum, i.e.,  if K(t) were exponentially growing, V(t) 
would exhibit an asymptotic exponential growth with the 
same constant rate. Developing the equation for K, Hahnfeldt 
and colleges have taken into account both stimulatory and 
inhibitory factors, as well as natural loss rate of vessels and 
the possible anti-angiogenic action of administrated drugs. 
Thus, the equation for K, which includes those four factors is

where � is the natural death rate of the endothelial cells, b 
is the rate at which the vasculature growth is stimulated by 
the cancer cells, d is a measure of how strongly the cancer 
cells inhibit the vasculature, and � is a sensitivity rate of 
the vasculature to the therapy with v(t) being the concentra-
tion of the drug. For the unperturbed growth, the negative 
term dV2∕3K determines the saturating behavior of the tumor 
growth.

The model proposed by Hahnfeldt et  al. (1999)  is 
derived assuming the tumor population is homogeneous. 
In this paper, we propose an extension of the Hahnfeldt 
et al.’s model encompassing chemotherapy resistance. Sche-
matic representation of our model is presented in Fig. 1. We 
consider the tumor population as a heterogeneous one and 
subdivide the malignant cell population into two compart-
ments that differ in their sensitivity to chemotherapy: sen-
sitive ( N1 ) and resistant ( N2 ). As the underlying reason of 
ADR is due to genetic instability of cancer cells and errors 
occurring during replication (Gottesman 2002), constant 
mutation rates between the compartments are also included 

V̇ = −𝜆V ln
V

K

K̇ = −𝜇K + bV − dV2∕3K − 𝛾Kv(t),

in the model. The effect of the chemotherapeutic drug on the 
sensitive cells is proportional to the potency of the chemo-
therapeutic, the concentration of the drug at time t and the 
number of cells, and hence, the model is in accordance with 
the log-kill hypothesis (Skipper 1986). The above assump-
tions lead to the following system of differential equations:

Here: u(t) and v(t) are the chemotherapy and anti-angiogenic 
treatment doses at time t, respectively; �1 is the rate of muta-
tions of sensitive cells to resistance and �2 is the rate of back 
mutation from resistance to sensitivity; � and � are sensi-
tivity rates of the vasculature to the chemotherapeutic and 
anti-angiogenic agents, respectively. We assumed that the 
mutation affects only drug resistance. It means that there is 
no difference between secretion rates of pro-angiogenic and 
anti-angiogenic factors of both types of cancer cells. Details 
on the derivation of the equation for K and descriptions of 
the remaining parameters can be found in the original article 
(Hahnfeldt et al. 1999). For a brief description of param-
eters’ roles and nominal values, see Table 1.

Let us denote the initial tumor size at time t = 0 by Ninit 
and by Nsat the maximal (saturating) tumor size potentially 
sustainable by the vasculature. The doubling time T can be 
calculated using the formula

where � is the population growth rate. Note that the denomi-
nator in the expression above is defined as the instantaneous 
growth rate of the tumor at the start of the simulation. Initiat-
ing the simulations with N1(0) = 280 mm3 , N2(0) = 20 mm3 
and K(0) = 650 mm3 and taking Nsat = 17,000 mm3 , we can 
calculate numerically the doubling time as 31 h.

It should be noted that by non-dimensionalizing with 
respect to time, any change of the proliferation rate is equiv-
alent to changing the units of time. Assuming drug admin-
istration duration is also scaled, the overall dynamics is oth-
erwise unchanged. Hence, our conclusions can be applied 
for a family of values of the proliferation rate. For example, 
making a suitable rescaling of time, if we were use the 96 h 
doubling time of colorectal cancer (Rew and Wilson 2000), 
we would get the reduced value of �1 and the conclusion is 
unchanged. Similarly, making an appropriate scaling of the 
initial condition or fatal volume of the tumor, our conclu-
sions hold for a family of initial or fatal tumor volumes.

(1)

Ṅ1 = −𝜆1N1 ln
N1 + N2

K
− 𝜏1N1 + 𝜏2N2 − 𝛽1N1u(t),

Ṅ2 = −𝜆2N2 ln
N1 + N2

K
+ 𝜏1N1 − 𝜏2N2,

K̇ = −𝜇K + b
(
N1 + N2

)
− d

(
N1 + N2

)2∕3
K − 𝛽Ku(t) − 𝛾Kv(t).

T =
ln 2

�
(
lnNsat − lnNinit

) ,

Fig. 1   Scheme of a mathematical model described by Eq. (1)
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Mathematical properties of the model described by 
Eq. (1) are presented in Appendix. Here, we only present 
exemplary dynamics of the model under the assumption 
that both drugs are applied with constant rates. In should 
be noted that for biologically relevant values of u and v, the 
system always has a positive steady state which is attractive. 
However, as we see in Fig. 2, this steady state represents 

resistant tumor; moreover, the tumor size at this state is far 
too large to be safe for the patient.

Optimal control problem

In our earlier paper (Bajger et al. 2019), we have proposed 
an objective functional constructed to target the issue of 

Table 1   Nominal parameter values

Parameters marked with ∗ are varied between simulations (see text)

Name Value Unit Role Reference

�
1

1.92 ×10−1 1/day Proliferation rate of sensitive cells Hahnfeldt et al. (1999)
�
2

0.96 ×10−1 1/day Proliferation rate of resistant cells
∗�

1
2.00 ×10−5 1/day Mutation rate toward the resistant phenotype

∗�
2

1.00 ×10−5 1/day Mutation rate toward the sensitive phenotype
� 0.00 1/day Natural death rate of endothelial cells Hahnfeldt et al. (1999)
b 5.85 1/day Vascular growth rate stimulated by cancer cells Hahnfeldt et al. (1999)
d 8.73 ×10−3 day−1vol−2∕3 Vascular inhibition rate by cancer cells Hahnfeldt et al. (1999)
∗�

1
0.3 day−1conc−1 Sensitivity rate of sensitive cells to the chemotherapy agent

∗� 0.1 day−1conc−1 Sensitivity rate of the vasculature to the chemotherapy agent
� 2 day−1conc−1 Sensitivity rate of the vasculature to the anti-angiogenic agent
u(t) [0, 1] Concentration of chemotherapy
v(t) [0, 1] Concentration of anti-angiogenic agent
N
init

300 mm3 Initial volume of the tumor
N
sat

17,000 mm3 Saturating volume of the tumor in the absence of therapy
N
crit

8000 mm3 Critical (fatal) volume of the tumor
T
S

day Survival time
N
1 mm3 Sensitive population

N
2 mm3 Resistant population

K mm3 Carrying capacity

(a) (b)

Fig. 2   a Phase portrait and b numerical solution for system (1). The chemotherapy dose is u = 0.25 and the anti-angiogenic agent dose is 
v = 0.5 . In b, the initial condition is chosen as [280, 20, 650]
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drug resistance, which penalizes resistant populations. Com-
paring to objective functionals present in the literature, in 
our functional, apart from the standard terms which penal-
ize the tumor size during the treatment and at the end of 
the treatment, a non-standard term penalizing time period 
during which the tumor is resistant is introduced. The fol-
lowing term

represents a general explicit running penalty for resistance. It 
may be thought of as a “smoothed-out” Heaviside-type func-
tion which jumps between 0 and � depending on whether the 
majority of tumor cells are sensitive or resistant. The role of 
� ( 0 < 𝜖 ≪ 1 ) is to control the steepness of the slope.

Thus, the optimal control problem can be formulated as 
follows: find a measurable function u ∶ [0, T] → [0, 1] for a 
given fixed terminal time T, which minimizes the functional

under the dynamics of System (1). Here, all parameters �1 , 
�2 , �1 , �2 , � , � are non-negative weights. The terms involv-
ing � and � penalize the size of the whole population at the 
end and during chemotherapy, respectively. The term �u(t) 
is included to minimize side-effects of the chemotherapy.

It should be noted that for much simpler model analyzed 
by us in our earlier work we partially know the structure of 
optimal control (Bajger et al. 2019). We were able to prove 
that the optimal dosage ends with MTD. Moreover, we have 
shown numerically that for the simpler model the optimal 
control is of the form: MTD—intermediate dose—MTD. We 
therefore expect that an intermediate dosage will become 
part of the optimal solution in the more complex model ana-
lyzed in this study as well.

Numerical methods

We choose the numerical approach “First Discretize then 
Optimize” to solve optimal control problem. To model 
the optimal control problem, a Python-based open-source 
optimization modeling language Pyomo with its algebraic 
equation extension Pyomo.DAE is used. We use the for-
ward Euler method with regularly spaced grid of 400 points 
to discretize the problem. We have found that increasing 
the number of points beyond 400 has no effect on the 
solution. The discretization of the control problem on a 
fine grid leads to a large-scale non-linear programming 
problem. To find the optimal control numerically, we use 

f (N1,N2) =
�

2

(
1 + tanh

(
N2 − N1

�

))

J(u(⋅)) = �1N1(T) + �2N2(T)

+ ∫
T

0

(
N1(t) + �2N2(t) +

�

2

(
1 + tanh

(
N2(t) − N1(t)

�

))
+ �u(t)

)
dt,

underlying non-linear optimization algorithms like IPOPT, 
which is an implementation of primal-dual interior point 
method. IPOPT can be used to robustly solve constrained 
non-linear programming problems. It implements an inte-
rior point line search filter method to find a locally optimal 
solution for the problem. Choosing the error tolerance 10−12 
in IPOPT, we can expect that the state variables are correct 
up to 7–9 decimal digits. To solve system (1) numerically, 
we use the standard MATLAB solver ode45 with error tol-
erance equal to 10−6.

Results

We present results of our study performed on the basis of 
the mathematical model introduced and described in more 
details in Sect. 2. Our main goal is to extend survival time 
for patients by means of preventing drug resistance.

Long‑time horizon treatment

For the purpose of this section, we assume a theoretical sce-
nario in which we are able to apply constant doses of both 
anti-angiogenic and chemotherapy for a long time in a con-
tinuous manner, that is, u (chemotherapy dose) and v (anti-
angiogenic agent dose) are constant. Here, the drug doses 
are expressed as a fraction of MTD, so both u and v range 
between 0 and 1. This is of course oversimplification, but 
we would like to check which dose of chemotherapy leads 
to longest survival in such theoretical treatment scheme. As 
noted in Introduction, we define the survival time (denoted 
by Ts ) as the time needed for the tumor to reach the critical 
(fatal) tumor volume (denoted by Ncrit ) which we assume to 
be the volume reflecting maximal possible size.

Figure 3 shows the survival time plotted against chemo-
therapy dose u and fixed anti-angiogenic agent dose v = 0.5 . 
Simulations were performed for different chemotherapy 
doses and the time needed for the tumor to reach a criti-
cal size Ncrit was recorded in each case. Local maximum is 
clearly visible, which means that an intermediate (less than 
25% of MTD) value of chemotherapy is predicted to be opti-
mal and prolong the survival time the most. Plots 3b, 3c and 
3d, respectively, show the cell population dynamics for three 
values of chemotherapy dose u, which are depicted by A, B, 
and C in Fig. 3a. Analysis for a similar model which did not 
include the process of angiogenesis was conducted in Monro 
and Gaffney (2009). In scenario A, where the chemotherapy 
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dose is lower than the optimal, u = 0.1732 , the tumor con-
sists almost exclusively of sensitive cells. The chosen dose 
is too small to effectively inhibit the tumor growth and the 
survival time is shorter. In scenario B, the dose is enough 
to maintain the tumor volume below the fatal for 120 days. 
As it is expected, an increase in the chemotherapy dose pro-
motes the growth of the resistant subpopulation. When the 
administrated dose is too large (here u = 0.3704 ), a quick 
outburst of resistant subpopulation is present and it domi-
nates over the sensitive one, which causes the survival time 
is shorter again. This observation supports the hypothesis 
(Scharovsky et al. 2009) that the longest survival time occurs 
when non-trivial competition between cellular subpopula-
tions is present. It also suggests that there is a specific bal-
ance between killing sensitive cells by the drug and pro-
moting the production of resistant cells that prolongs the 
survival time the most.

Figure 4 shows the dependence of the survival time on 
the chemotherapy and anti-angiogenic agent doses. It should 
be noted that for intermediate doses of chemotherapy, a 
small change in the anti-angiogenic agent dose may have a 
significant impact on the survival time. On the other hand, 
survival time is much less dependent on the anti-angiogenic 
agent dose when the chemotherapy dose is either very small, 
or very large. What is more, for particular values of u and 
v, the critical volume Ncrit may not be reached. It means 
that for a specific combination of doses, in this theoretical 
scenario, the treatment is effective enough to maintain the 
tumor below the critical size indefinitely.

Although it is widely agreed that the emergence of ADR 
is due to mutations, the exact numerical values of the rel-
evant parameters associated with this process are hard, 
if not impossible, to estimate. We denote by �1 and �2 the 
mutation rates from sensitivity to resistance and reverse, 
respectively. The rate of mutations per cell cycle has been 
estimated in Goldie and Coldman (1998) to be of the order 
of O(10−7 − 10−4) . As the values of mutation rates strongly 
depend on the aggressiveness of the tumor, a set of simu-
lations were performed for different values of mutation 
rates and the time needed for the tumor to reach a criti-
cal size together with the corresponding optimal dose was 
then recorded (see Fig. 5). Simulations were performed for 
mutation rates �1, �2 ∈

[
10−5, 10−2

]
 . One can see that the 

smaller the value of �1 (the mutation towards resistance) is, 
the longer survival time becomes and the lower dosage must 
be applied. The influence of the value �2 (mutation from 
resistance) on the optimal dose is opposite, but less severe.

Short‑time horizon optimization

Minimizing tumor volume while imposing some constraints 
on the drug dosage are standard goals used in mathemati-
cal modeling. We postulate that to better reflect the aims 

of the “maintenance” therapeutic paradigm, we should also 
add a penalty for drug resistance. We will call the tumor 
“resistant” if it consists of more resistant cells than sensitive 
ones. Note that even if increasing the chemotherapy dose 
decreases the tumor volume in a short term, it may cause an 
increase in the resistant cell subpopulation and contribute to 
a switch to resistance. This leads to the subsequent iterations 
of therapy being inefficient (see Fig. 8). On the other hand, 
anti-angiogenic therapy is considered to be “resistant to drug 
resistance”, and thus, we assume that a small constant supply 
of anti-angiogenic agent is applied during the therapy. In the 
context of optimal treatment, it would be ideal to find a good 
balance between the two conflicting objectives: minimize 
the tumor’s volume and ensure that no switch to the resistant 
phenotype occurs.

In this subsection, we present results of theoretical 
optimization of the treatment using optimal control and 
our model which is based on the Hahnfeldt et al.’s model 
(cf. Methods for details related to the optimal control prob-
lem). First, we assume that there is a prescribed treatment 
that lasts assumed time consisting of constant anti-angi-
ogenic agent supply combined with chemotherapy which 
is applied according to the optimal control leading to both 
minimizing the whole tumor size as well as preventing the 
tumor from becoming resistant. Nominal parameter values 
for which calculations have been performed are summarized 
in Tables 1 and 2. Treatment doses are counted as a percent-
age of MTD.

Figure 6a shows tumor response for two 14-day thera-
peutic windows. Blue curve depicts the total tumor volume 
during therapeutic schedules based on our optimization goal, 

Table 2   Nominal parameter values

Name Value Unit Role

�
1

5.00 Weight for a final number of
sensitive cells in the objective 

functional
�
2

2.50 ×101 Weight for a final number of
resistant cells in the objective 

functional
�
1

1.00 Weight for a running number of
sensitive cells in the objective 

functional
�
1

5.00 Weight for a running number of
resistant cells in the objective 

functional
� 1.00 ×103 Weight for a resistance penalty in the

objective functional
� 1.00 ×101 The “margin” parameter in the

resistance penalty function
� 0.00 1/conc Running drug dose penalty in the

objective functional
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which focuses on preventing drug resistance. Red one is a 
corresponding optimal dosage. The same trajectory com-
pared to three other trajectories is depicted in Fig. 6b. The 
black curve represents a therapeutic schedule based on MTD 
protocol, which is a result of engaging the objective func-
tional that minimizes the tumor volume during and at the 
end of therapy. The blue–black curve depicts the protocol 
that is based on preventing drug resistance during first 14 
days and for the next 14 days applies MTD protocol, and 
the green curve reflects the average-optimal dose during 28 
days. One can see that the total tumor volume at the end 
of the first part of therapy (day 14) is the smallest when 
the MTD protocol is applied, as the initially drug-sensitive 
tumor responses very good for treatment. Although in the 
middle of the therapy, the tumor is the smallest one, it is 

almost entirely composed of cells resistant to treatment 
(here, it consists of 99.72% drug-resistant cells), and thus, 
the repeated therapy has no effects and tumor at the end of 
therapy is finally the greatest (here, the tumor is almost 20% 
bigger than in optimal scenario). In the optimal therapeutic 
schedule, the drug dose is applied both as the MTD dose and 
singular, which prevent the tumor-resistant cell domination 
and results that the tumor response for treatment is better. 
Note that, in optimal scenario, both MTD and singular pro-
tocols are applied, but the mean dose during the first 14 days 
is 21.45% of MTD and during the whole 28-day therapy 
is 42.69%. For singular-MTD scheme, the mean dose is 
60.72% of MTD.

In Fig. 7, we present results of optimization for nomi-
nal parameter values with v = 0.5 and v = 1 . We see that 

(a) (b)

(c) (d)

Fig. 3   a Survival times for different chemotherapy doses in our 
model. Red point B depicts the maximum survival time; here, 
Ts = 120 days correspond to u = 0.2192 . Points A and C are cho-
sen to represent different behaviors of the tumor cells population for 
u = 0.1732 ( Ts = 80 days) and u = 0.3704 ( Ts = 96 days), respec-
tively. b–d Evolution of the volumes of sensitive and resistant sub-

populations, carrying capacity and total volume of the tumor for three 
different values of chemotherapy u corresponding to the points A, B, 
and C in a. The dotted lines mark the point at which the tumor vol-
ume reaches the critical level N

crit
 . The initial condition is chosen as 

[280, 20, 650]
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the optimal drug dosage starts and ends with MTD; how-
ever, during around two-thirds of the whole treatment time 
much less doses are applied, not exceeding 30% of MTD for 
v = 0.5 and 20% of MTD for v = 1 . It seems obvious that 
the treatment should start with MTD to decrease the whole 
tumor size. Then, much smaller doses could be applied to 
control the growth of both subpopulations and to prevent the 
tumor to become resistant (see Fig. 9). However, at the end, 
when the whole tumor size is again large, MTD is applied 
again. This is the result one could obtain for one cycle of 
the therapy.

It should be noted that the proposed optimal treatment has 
a part during which the chemotherapy dose changes continu-
ously in time. Such protocols are of course impossible to 
realize in practice. Therefore, following the ideas presented 
in Ledzewicz and Schättler (2008), we propose suboptimal 
protocols which consist of partially constant treatment. Fig-
ure 8 presents examples of suboptimal solutions correspond-
ing to numerically optimal ones depicted in Fig. 7, where 
time-dependent controls u are approximated by piecewise-
constant functions. In both examples, suboptimal protocol 
consist of, after initial full dose, two mean doses and full 
dose again at the end. In Fig. 8a, where anti-angiogenic dose 
is v = 0.5 , switching times are: t1 = 4.24 days, t2 = 9.49 days 
and t3 = 13.59 days. The average dose is 52.72% of MTD 
and is 0.4% larger comparing to the optimal scenario, and 
both the suboptimal solution and final resistance are close 
to numerically optimal, lying within ±0.2%. For v = 1 (see 
Fig. 8b), switching times are: t1 = 3.68 days, t2 = 10.86 days 
and t3 = 13.48 days, and the suboptimal trajectory and final 
resistance are just as close to the corresponding optimal 
solution.

In Fig. 9, resistant cells are plotted against sensitive ones 
for two protocols. Dotted lines represent MTD parts of con-
trol, while solid line depicts singular part. For this particular 
example, initially, the optimal control is given at full dosage 
until the singular curve is reached (at t1 = 3.68 days). Then, 
the administration follows the time-varying singular control 
in one scenario, or remains MTD in the latter. The effect of 
preventing against drug resistance is than clearly visible. 
Singular control keeps the trajectories below the diagonal, 
while for the MTD, the tumor becomes almost completely 
resistant. Finally, optimal control is again realized along the 
trajectory for full dose, which results in the maximum tumor 
reduction.

We also consider possible changes of the therapeutic 
schemes on the parameters reflecting mutation rates. As the 
values of mutation rates are hard or impossible to determine, 
or the degree of uncertainty regarding the estimation is high, 
we drew 400 different random pairs of these parameters for 
two values of the anti-angiogenic agent dose v = 0.5 and 
v = 1 , and for two different pairs of chemotherapy sensitiv-
ity parameters: �1 = 0.3 , � = 0.1 and �1 = 0.6 , � = 0.2 . This 
was to assess how the results may change depending on how 
strongly the anti-angiogenic therapy and chemotherapy are 
able to suppress vasculature and tumor growth.

For  a  f ixed t ime t ∈ [0, T] ,  we may view 
uopt  as a random var iable def ined on the set 
{(�1, �2) ∶ �1, �2 ∈ [0.00001, 0.05]} . Figure 10 shows differ-
ent percentiles of the distribution of uopt along the interval 
[0, T], while Figure 11 shows the distribution of the aver-
age dose. One can see that although the shape of the curve 
reflecting the optimal dosage is always the same, however, 

Fig. 4   Dependence of the survival time on the chemotherapy and 
anti-angiogenic agent doses. The range “infinity” on the heatmap 
denotes such doses u and v for which the fatal volume N

crit
 is not 

reached. The initial condition is chosen as [280, 20, 650]

Fig. 5   Dependence of the maximum survival time on the mutation 
rates �

1
, �

2
∈
[
10−5, 10−2

]
 . Color represents the chemotherapy dose 

which yields the maximum survival time. The initial condition is cho-
sen as [280, 20, 650] and the anti-angiogenic agent dose as v = 0.5
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the portion of MTD applied differs for different mutation 
parameters.

Based on our numerical results, one can see that two 
kinds of optimal solutions are possible. Either uopt consists 
of a full-dose interval, followed by an intermediate singu-
lar dose and a very short full-dose interval at the end, or it 
was optimal to apply full-dose throughout the entirety of the 
treatment window.

As visible in Figs. 11a and 11b, when the chemother-
apy sensitivity parameters are large enough, the average-
optimal dosage is always intermediate and almost never 
exceeds 40–50% of MTD. When the chemotherapy sensi-
tivity parameters are smaller, the average dose is larger the 

smaller is the anti-angiogenic agent dose, see Figs. 11c and 
11d. Nonetheless, on the (log10 �1, log10 �2)-plane, it can be 
noticed that there is a clearly outlined region for which an 
intermediate dose is optimal (see Fig. 12c and 12d).

To identify whether a distinction between the full-dose 
and intermediate-dose protocols can be made in the param-
eter space, we classified the protocols into the two categories 
defined above. We consider a protocol as full-dose protocol 
when the average dose exceeds 90% of MTD. The rest we 
classify as intermediate-dose protocols. Figure 12 shows the 
classified protocols projected on two-dimensional parame-
ters subspace (�1, �2) , for different anti-angiogenic agent dos-
ages and chemotherapy sensitivity parameters. For relatively 

(a) (b)

Fig. 6   a Optimal protocol for 28-day treatment consisting of two 
14-day therapy windows. Blue curve represents trajectory for opti-
mal protocol penalizing drug resistance in both 14-day treatment 
windows. Red curve reflects the corresponding optimal dosage. 
b A comparison of the optimal trajectory (blue) with trajectories 

for MTD protocol (black), mean dose, which is equal to the aver-
age dose for the optimal control (green) and trajectory correspond-
ing to 14-day optimization against drug resistance and 14-day 
MTD protocol (blue–black). For each protocol, initial condition is 
[5900, 2000, 10,000] mm3 , just below critical volume

(a) (b)

Fig. 7   Sample solution to our control problem and corresponding 
optimal chemotherapy dose u for anti-angiogenic doses: a v = 0.5 and 
b v = 1 . In a, the average dose is 52.51% of MTD, while the average 

singular dose is 29.64% of MTD, whereas in b, they are 43.90% and 
19.96%, respectively
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large values of sensitivity parameters, the mutation rates 
have no effect whether the optimal dose is full or intermedi-
ate, but for smaller values, however, it can be seen that small 
values of �1 result in full-dose protocols being optimal.

Discussion

In this study, we presented the results from a mathemati-
cal model of tumor growth under angiogenic signaling. The 
model tracks the number of chemotherapy-sensitive cells, 
the number of chemotherapy-resistant cells, and a variable 
carrying capacity related to the size of the vasculature. 

We use the proposed model to support the hypothesis that 
smaller doses of chemotherapy could lead to better results 
and to maximization of patient survival.

We based our analysis on the results and parameters 
obtained in Hahnfeldt et al. (1999). There is, however, a lot 
of uncertainty regarding the nominal values of parameters 
that are hard or impossible to estimate, such as mutation 
rates, chemotherapy sensitivity parameters, as well as the 
precise effects of the anti-angiogenic treatment. To exam-
ine how the solution depends on these parameters, we 
have performed a sensitivity analysis with respect to those 
parameters.

In Sect. 3.1, the therapeutic objective is to maximize 
patient survival time, which is defined as a time needed 
for the tumor to reach a critical level. As a first and sim-
plest approximation of therapeutic scheduling, we consider 
scenario in which we are able to apply constant doses of 
both anti-angiogenic and chemotherapy for a long time. 
This theoretical analysis shows that, in long-term scenario, 
intermediate chemotherapy doses lead to the longest sur-
vival time. In Fig. 3, the survival time is plotted against 
different chemotherapy doses. Based on the evolution of 
the volumes of sensitive and resistant subpopulations for 
three different chemotherapy doses: smaller than optimal, 
optimal and larger than optimal, we have checked that in 
the optimal scenario, both types of tumor cells are present 
in a substantial numbers. The optimal dosage, which is of 
about 20% of MTD, maintains the tumor volume below the 
fatal for 120 days. In both remaining scenarios, the survival 
time is shorter. When the dose is too small, it is not able 
to effectively inhibit the tumor growth even if the tumor 
is still sensitive to the therapy, while for too large dose, a 
quick outburst of resistant subpopulation is present. Note 
that these simulations were performed for a fixed value of 

(a) (b)

Fig. 8   Suboptimal protocols corresponding to numerically optimal 
depicted in a Fig.  7a and b Fig.  7b, which consist of partially con-
stant treatment. In both examples, a constant dosage protocol with 

rates given by the average-optimal control is an excellent suboptimal 
protocol as the suboptimal solution comes exceptionally close to the 
numerically optimal value—it lies within 0.2%

Fig. 9   Resistant cells plotted against sensitive cells. The dashed line 
reflects the diagonal where numbers of sensitive and resistant cells 
are equal. Dotted lines depict MTD doses, while solid line represents 
singular dose. Initial condition is [280, 20, 650] mm3
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anti-angiogenic agent dose. To further investigate the model 
dynamics for different combinations of these two doses, we 
have carried out a set of simulations for different values of 
chemotherapy and anti-angiogenic agent doses. It is obvious 
that the higher the anti-angiogenic agent dose is, the smaller 
the vasculature size becomes, and as a result, the smaller the 
total tumor volume is. As shown in Fig. 4, there is a specific 
combination of these doses that prolongs the survival time 
the most. It should be noted that even a slight over-optimal 
dose of the drug may significantly shorten the patient sur-
vival. When optimal drug administration is applied, the 
tumor never reaches the critical level, which corresponds 
to successful treatment. Furthermore, our simulations show 
that low values of “toward resistance” mutation rate �1 corre-
spond to longer survival time and lower chemotherapy doses 
to be applied, see Fig. 5. It also appears that mutation toward 

resistance plays more important role that the opposite direc-
tion mutation �2 , as the survival time and optimal dose are 
far less dependent on the latter.

The standard therapeutic goal is to minimize tumor vol-
ume together with imposing some constraints on the drug 
dosage. In Sect. 3.2, we optimize the therapy and dose 
scheduling, where apart from the usual goal, the aim is also 
to penalize drug resistance. We call a tumor-resistant if it 
consists of more resistant cells than sensitive ones. Such 
tumors do not respond properly to treatment, which may 
result in therapy failure. That is why, we define a new objec-
tive to target the issue of drug resistance which penalizes 
resistant populations. More details can be found in Sect. 2.2. 
Minimizing tumor volume and ensuring that no switch to the 
resistant phenotype occurs become our therapeutic goal. In 
Fig. 6, we have compared the result of two 14-day optimal 

(a) (b)

(c) (d)

Fig. 10   Selected percentiles of optimal dose uopt . Mutation param-
eters (�

1
, �

2
) are randomized with different values of anti-angiogenic 

agent doses and chemotherapy sensitivity parameters: a �
1
= 0.60 , 

� = 0.20 , v = 0.5 ; b �
1
= 0.60 , � = 0.20 , v = 1 ; c �

1
= 0.30 , 

� = 0.10 , v = 0.5 ; d �
1
= 0.30 , � = 0.10 , v = 1
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treatment schedules based on our approach with an approach 
based on an MTD protocol. Although the tumor initially 
responded very well to MTD treatment and in the middle 
of the therapy was the smallest, it consisted almost entirely 
of drug-resistant cells. This caused the regrowth to be drug 
resistant, which caused that further administration of the 
chemotherapeutic drug had no effect, and finally, at the end 
of therapy, the tumor was almost 20% bigger than in our 
optimal protocol which takes into account drug resistance. 
The results obtained based on average constant optimal dose 
are equal to 42.69% of MTD and gave a very slightly better 
result. The best result was obtained when intermediate, time-
dependent dose was administrated during the whole course 
of treatment. Ultimately, tumor response to treatment was 
improved because of preventing the domination of resistant 
cells over sensitive ones.

The presented comparison was the motivation to make 
more detailed insight into the tumor growth dynamics and 
its response to treatment based on our therapeutic goal. Fig-
ure 7 shows the therapy optimization in a 14-day therapeutic 
window. We investigated how the therapy may be used to 
delay the onset of drug resistance for two values of anti-
angiogenic agent doses. We showed that the optimal dos-
age administration should start with MTD dose, but during 
around 2/3 of the whole treatment time, the administrated 
dose should be much less, not exceeding 20%–30% of MTD. 
As the simulations show only one cycle of the therapy, the 
optimal administrating should also end with MTD dose. 
Nonetheless, the average dose during the whole therapy, 
including MTD parts, is intermediate and amounts to about 
40%–50% of MTD. The impact of the singular dose admin-
istrating on the tumor response to the treatment is clearly 

(a) (b)

(c) (d)

Fig. 11   Mean dose distribution for optimal dose uopt . Mutation 
parameters (�

1
, �

2
) are randomized with different values of anti-

angiogenic agent doses and chemotherapy sensitivity parameters: 

a �
1
= 0.60 , � = 0.20 , v = 0.5 ; b �

1
= 0.60 , � = 0.20 , v = 1 ; c 

�
1
= 0.30 , � = 0.10 , v = 0.5 ; d �

1
= 0.30 , � = 0.10 , v = 1
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visible in Fig. 9. The optimal dose is full dose until it reaches 
the singular curve. Then, the dosage should follow the time-
varying singular dose, which prevents the tumor to become 
more resistant than sensitive to the therapy. When the dose 
does not switch to singular part, the tumor reaches the state 
in which drug-resistant cells dominate.

As the numerically optimal treatment protocols consist-
ing time-varying schemes may not be practically applicable, 
we proposed suboptimal protocols consisting of partially 
constant treatment. Approximating the optimal control by 
piecewise-constant functions, we proposed protocols that 
consist of several mean doses, with exact switching times, 
which come exceptionally close to the numerically optimal 
values.

We have also solved the optimal control problem numeri-
cally for 400 random values of mutation parameters �1 and �2 
with different assumptions about the chemotherapy strength 

(parameter �1 ) and its effect on tumor vasculature ( � ), as well 
as different assumptions regarding the anti-angiogenic agent 
doses. In that way, we were able to check how the solution 
may change with changes of parameters, which numerical 
values are hard to be determined. We have obtained that for 
larger values of �1 typically, after an initial full-dose interval, 
the optimal control consists of a long period of intermediate 
dose ranging between 20% and 40% of MTD, depending on 
the anti-angiogenic agent dose, as shown in Figs. 10 and 
11. We have also shown that the choice between a full-dose 
and intermediate-dose protocols is highly dependent on 
mutation rates, in particular when the tumor is less sensi-
tive to the therapy. In such case, in general, full-dose proto-
cols are favored to be optimal. For more sensitive tumors, 
the intermediate-dose protocols are optimal, regardless of 
the anti-angiogenic agent dose; see Fig. 12a–d. This may 

Fig. 12   Classification of mean drug dose in optimal treatment 
depending on randomized mutation rates projected on the plane. 
Full-dose and intermediate-dose protocols are labeled by filled and 
empty circles, respectively. Results are shown for different pairs 

of chemotherapy sensitivity parameters and ani-angiogenic agent 
dose: a �

1
= 0.60 , � = 0.20 , v = 0.5 ; b �

1
= 0.60 , � = 0.20 , v = 1 ; c 

�
1
= 0.30 , � = 0.10 , v = 0.5 ; d �

1
= 0.30 , � = 0.10 , v = 1
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be important in the design of protocols for more and less 
aggressive tumors.

Conclusions

In this paper we proposed an extension of the Hahnfeldt 
et al.’s model for heterogeneous tumors. We have proposed a 
modified goal for therapy optimization. In addition to penal-
izing the tumor volume during and at the end of treatment 
and minimizing the dose amount, we penalize the resist-
ance of tumor cells to the therapy. Our study showed that 
penalizing tumor resistance gives better results and leads 
to intermediate-dose protocols. Our theoretical analysis 
resulted in singular controls, that start and end with full 
dose administration and relatively small doses in between. 
We have shown that such intermediate doses do not exceed 
20%–30% of MTD.

Optimal dosages are time-varying, and in fact, they 
may not be practically realizable, as they require informa-
tion generally not available in continuous time. However, 
they can still play an important role in designing practical 
protocols, serving as a benchmark for other implementa-
ble protocols. In the paper, we have proposed suboptimal 
protocols, which are based on these numerically calculated 
optimal values. By comparing with optimal protocols, we 
can design piecewise-constant intermediate protocols and 
precisely indicate switching points. Suboptimal protocols 
described in this study are actually very close to the optimal, 
giving the final results laying within ± 0.2%. Furthermore, 
theoretical results provide a tool that can be used to design 
even simpler protocols based on the average-optimal dose 
protocols. One can note that it would be extremely difficult 
to derive such good suboptimal protocols without theoreti-
cal analysis of the problem. Their implementation is simple; 
however, it still may cause the treatment gives better results.

It should be pointed out that the optimal protocol depends 
on few issues, like the initial tumor volume, the sensitivity of 
the tumor to the treatment, and aggressiveness of the tumor, 
and it was observed that in general the average-optimal dose 
was significantly less than MTD. Sensitivity analysis showed 
that the choice weather the full dose or the intermediate dose 
was the most dependent on the value of toward resistance 
mutation rate, which in turn is directly related to the aggres-
siveness of the tumor. Lower tumor sensitivity may lead to 
longer MTD interval at the beginning of therapy.

Our simulations were generally limited to one cycle 
of therapy. It is clear that in the absence of further treat-
ment, tumor follows the uncontrolled dynamics and starts 
to increase. It is also obvious that repeated administration of 
the drugs is necessary if one wants to control and maintain 
the tumor below a certain level in a long horizon of time.

The presented problem is preliminary in the sense that 
our model contains the most fundamental processes like 
mutations and sensitivity to the therapy. Our next goal is to 
extend the model to provide further insight into the mech-
anisms of action of metronomic therapy by including the 
response of the immune system. However, it leads to more 
complicated mathematical models.

Appendix: Mathematical properties 
of the model

Basic properties

Due to the realistic context of our study, we are interested 
in the existence and non-negativity of solutions of System 
(1). Let us now assume that u and v are bounded and at least 
continuous functions.

Let us define set Ω = (ℝ+)3 . In the absence of the treat-
ment, i.e., when u = v ≡ 0 , the right-hand side of System (1) 
is of class C∞ , and in the presence of the treatment, it is of 
the same class as the functions u and v, i.e., at least continu-
ous with respect to time which guarantees local existence 
and uniqueness of solutions with a given initial condition.

Proposition 1  The set Ω is positively invariant under System 
(1).

Proof  At first, note that N1 = N2 = 0 is not admissible. 
If N1 = 0 , then Ṅ1 = 𝜏2N2 , and for N1 to be negative, it is 
required that N2 ≤ 0 . Similarly, if N2 = 0 , then N2 becomes 
negative if and only if N1 becomes negative first. Thus, start-
ing with non-negative initial condition, where not both N1 
and N2 equal zero, then both N1 and N2 remain non-negative.

Assume that K(t̄) = 0 at some time moment t̄ > 0 . Then, 
K̇(t̄) = b

(
N1(t̄) + N2(t̄)

)
> 0 , so K cannot become nega-

tive. 	�  ◻

Proposition 2  For initial condition (N1(0),N2(0),K(0)) ∈ Ω , 
the solution of System (1) exists for all t ≥ 0.

Proof  By the non-negativity of N1 and N2 and positivity 
of parameters, using the inequality − ln x ≤ 1

x
− 1 , we can 

estimate

Ṅi ≤ 𝜆iNi

(
K

N1 + N2

− 1

)
+ 𝜏jNj

≤ 𝜆iK
Ni

N1 + N2

+ 𝜏jNj

≤ 𝜆iK + 𝜏jNj,

K̇ ≤ b(N1 + N2),
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for i, j = 1, 2 , i ≠ j . It follows:

where c = max{�1 + �2, �1 + b, �2 + b} . Thus

for t ≥ 0 and the solution exists for all t ≥ 0 . 	�  ◻

Analysis of the model for constant drug dosage

As a first and simplest approximation to the model dynam-
ics, we consider constant dosage of both drugs, u(t) ≡ u , 
v(t) ≡ v.

Steady states

Proposition 3  System (1) has only one positive steady 
S∗ = (N̄1, N̄2, K̄) with coordinates defined by

which exists only if

where � is defined by

Proof  We first examine the existence of steady states of Sys-
tem (1). Note that there are no semi-positive steady states as 
well as (0, 0, 0) is not an admissible point. Adding the first 
two equations, we obtain

and substituting it to the second equation, we have

At a steady state, we have both N1 > 0 and N2 > 0 . Thus, 
dividing the above equation by N2

2
 , we obtain

d

dt

(
N1 + N2 + K

) ≤ c
(
N1 + N2 + K

)
,

N1 + N2 + K ≤ O
(
ect

)

(2)

N̄
1
= K̄e

𝛼 2A

2A − B +
√
Δ
,

N̄
2
= K̄e

𝛼 −B +
√
Δ

2A − B +
√
Δ
,

K̄ =
(be𝛼 − 𝜇 − 𝛽u − 𝛾v)3∕2

d3∕2e𝛼
,

(3)be𝛼 − 𝜇 − 𝛽u − 𝛾v > 0,

(4)
� =

√
Δ−B

2A
�1 − �2

�2
,

Δ = B
2 − 4AC =

�
�2�1 − �1�2 + �1�2u

�2
+ 4�1�2�1�2,

A = �1�1, B = �2�1 − �1�2 + �1�2u, C = −�2�2.

ln

(
N1 + N2

K

)
= −

�1N1u

�1N1 + �2N2

,

�1�2uN1N2 +
(
�1N1 + �2N2

)(
�1N1 − �2N2

)
= 0.

Defining a new variable x = N1

N2

 , we finally obtain a quadratic 
equation in the variable x

where A, B, and C are defined in (4), with positive discrimi-
nant Δ > 0 . Using Vieta’s formula

we know that the quadratic equation has one positive and 
one negative root. By the definition of the variable x, we 
have

Substituting it to the second equation of (1), we obtain

where � is defined by (4). By determining N1 = N2

√
Δ−B

2A
 and 

substituting it to (6), we get

Finally, from the third equation of (1), we calculate

which exists only if be𝛼 − 𝜇 − 𝛽u − 𝛾v > 0 . Eventually, we 
obtain that System (1) has only one positive steady state S∗ 
with coordinates satisfying (2), existing providing that (3) 
is satisfied. 	�  ◻

Let us recall that for parameters estimated by Hahnfeldt et al. 
(1999), there is � ≈ 0 which means that S∗ always exists for 
sufficiently small u and v.

Stability analysis

Proposition 4  Let us now assume that the positive steady 
state of System (1) exists. Then, it is locally stable if

and unstable for the inverse inequality.

�1�1

(
N1

N2

)2

+
(
�2�1 − �1�2 + �1�2u

)N1

N2

− �2�2 = 0.

Ax2 + Bx + C = 0,

x1 ⋅ x2 = −
𝜆2𝜏2

𝜆1𝜏1
< 0,

(5)
N1

N2

= R, R =

√
Δ − B

2A
> 0.

(6)N1 + N2 = Ke� ,

N1 = Ke𝛼
2A

2A − B +
√
Δ

> 0, N2 = Ke𝛼

√
Δ − B

2A − B +
√
Δ

> 0.

K =
(be� − � − �u − �v)3∕2

d3∕2e�
,

(7)

b
�
K̄e𝛼 − 1

�
+

2

3
d

3
√
K̄2e−𝛼 > 0, K̄ =

(be𝛼 − 𝜇 − 𝛽u − 𝛾v)3∕2

d3∕2e𝛼
,
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Proof  The Jacobian matrix of System (1) at a point 
S = (N1,N2,K) reads

From the first equation of System (1), at a steady state, we 
have

and similarly from the second equation

while from the third equation

By the relations above and using (5) and (6), we obtain

and therefore at the steady state S∗

hence, the characteristic polynomial reads

where

J(S) =

⎛⎜⎜⎜⎜⎝

−�1 ln
�

N1+N2

K

�
− �1

N1

N1+N2

− �1 − �1u − �1
N1

N1+N2

+ �2 �1
N1

N1+N2

⋅

1

K

−�2
N2

N1+N2

+ �1 − �2 ln
�

N1+N2

K

�
− �2

N2

N1+N2

− �2 �2
N2

N1+N2

⋅

1

K

b −
2

3
dK

�
N1 + N2

�−1∕3
b −

2

3
dK

�
N1 + N2

�−1∕3
− � − d

�
N1 + N2

�2∕3
− �u − �v

⎞⎟⎟⎟⎟⎠
.

−�1 ln

(
N1 + N2

K

)
− �1

N1

N1 + N2

− �1 − �1u = −�1
N1

N1 + N2

− �2
N2

N1

,

−�2 ln

(
N1 + N2

K

)
− �2

N2

N1 + N2

− �2 = −�2
N2

N1 + N2

− �1
N1

N2

,

−� − d
(
N1 + N2

)2∕3
− �u − �v = −b

N1 + N2

K
.

𝜆
1

N̄
1

N̄
1
+ N̄

2

+ 𝜏
2

N̄
2

N̄
1

=
𝜆
1
R

1 + R
+

𝜏
2

R
, 𝜆

2

N̄
2

N̄
1
+ N̄

2

+ 𝜏
1

N̄
1

N̄
2

=
𝜆
2

1 + R
+ 𝜏

1
R, b

N̄
1
+ N̄

2

K
= be

𝛼
,

J(S∗) =

⎛⎜⎜⎜⎝

−
𝜆1R

1+R
−

𝜏2

R
−

𝜆1R

1+R
+ 𝜏2

𝜆1R

1+R
⋅

1

K̄

−
𝜆2

1+R
+ 𝜏1 −

𝜆2

1+R
− 𝜏1R

𝜆2

1+R
⋅

1

K̄

b −
2

3
d

3
√
K̄2e−𝛼 b −

2

3
d

3
√
K̄2e−𝛼 − be𝛼

⎞⎟⎟⎟⎠
;

P(�) = �3 + a2�
2 + a1� + a0,

a
2
=

𝜆
1
R

1 + R
+

𝜆
2

1 + R
+ 𝜏

1
R +

𝜏
2

R
+ be

𝛼
,

a
1
=

1

K̄

�
bK̄e

𝛼 − b +
2

3
d

3
√
K̄2e−𝛼

�
⋅

�
𝜆
1
R

1 + R
+

𝜆
2

1 + R

�

+

�
𝜆
1
𝜏
1
R +

𝜆
2
𝜏
2

R

�
+
�
𝜏
1
R +

𝜏
2

R

�
be

𝛼
,

a
0
=

1

K̄

�
bK̄e

𝛼 − b +
2

3
d

3
√
K̄2e−𝛼

�
⋅

�
𝜆
1
𝜏
1
R +

𝜆
2
𝜏
2

R

�
.

By the Routh–Hurwitz criterion, the steady state S∗ is locally 
stable if a2 , a1 , a0 > 0 , and a1a2 > a0 . It is obvious that 

a2 > 0 . The condition a0 > 0 holds only if (7) holds. Note 
that under this assumption, we have also a1 > 0 . Moreover, 
it is obvious that if a0 < 0 (i.e., the inequality inverse to (7) 
holds), then S∗ is unstable.

From the third equation of System (1), at the steady state, 
we can estimate

implying

Now, assuming (7), note that multiplying the last term from 
a2 by the second term from a1 , we obtain

 	�  ◻

Proposition 5  If

then the positive steady state S∗ of System (1) exists and is 
locally stable.

Proof  It is obvious that if (8) holds, then S∗ exists. Moreover

Hence, b
(
K̄e𝛼 − 1

)
> 0 and (7) is then satisfied. 	�  ◻

To sum up, we can state that condition (3) is necessary for 
the existence of the positive steady state and (7) is neces-
sary for its stability, while condition (8) is sufficient for both 

be𝛼 = 𝜇 + d
(
K̄e𝛼

)2∕3
+ 𝛽u + 𝛾v >

2

3
d
(
K̄e𝛼

)2∕3
,

b >
2

3
d

3
√
K̄2e−𝛼 .

a
1
a
2
> be

𝛼

�
𝜆
1
𝜏
1
R +

𝜆
2
𝜏
2

R

�

> be
𝛼

�
𝜆
1
𝜏
1
R +

𝜆
2
𝜏
2

R

�

−
�
b −

2

3
d

3
√
K̄2e−𝛼

��
𝜆
1
𝜏
1
R +

𝜆
2
𝜏
2

R

�
= a

1
.

(8)be𝛼 − 𝜇 − 𝛽u − 𝛾v > d,

K̄ =
(be𝛼 − 𝜇 − 𝛽u − 𝛾v)3∕2

d3∕2e𝛼
>

d3∕2

d3∕2e𝛼
= e−𝛼 ⟹ K̄e𝛼 > 1.
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existence and stability. As these conditions are difficult to 
interpret, we investigated the model dynamics numerically 
for fixed values of the parameters. The qualitative proper-
ties of the system are strictly determined by the values of 
therapy doses, and thus, we can treat drug dose u and anti-
angiogenic agent dose v as bifurcation parameters.

We can check numerically that for nominal values of the 
parameters, the positive steady state always exists and is 
locally stable. Ranges of parameters u and v for which neces-
sary and sufficient conditions hold are depicted in Fig. 13. 
Note that the influence of the value of the anti-angiogenic 
agent dose on the existence and stability of the steady state 
is less significant than the chemotherapy dose. To obtain a 
better insight into the bifurcation dynamics, simulations were 
performed for d = 2 . Note that the condition under which the 
positive steady state exists does not depend on this parameter.
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