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Introduction
Cardiovascular diseases have become a dominant factor of mortality all over the world 
[1]. Nearly 17.5 million people die of cardiovascular disease [2] and billions of dollars 
are spent every year on related healthcare [3]. Nowadays, cardiovascular research has 
become an important topic and been paid significant attention by researchers. Cardi-
ovascular system is a complex circulatory system consisting of the heart, arteries and 
veins [4]. In recent years, due to the significant improvements in computer technol-
ogy, modeling based on physical principles has become a powerful tool to simulate the 
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hemodynamic properties of cardiovascular system and has been playing an increasingly 
important role in the diagnosis of cardiovascular diseases and the development of medi-
cal devices [5–7].

Current physics-based models can be divided into two categories, high-dimensional 
models and low-dimensional models as shown in Fig.  1. High-dimensional models 
including 2D models and 3D models can give detailed descriptions of the local flow 
field of the blood. These models describe the complex hemodynamic phenomenon of 
a specific region in the cardiovascular system. 2D models are generally used to describe 
changes of the radial blood flow velocity in an axisymmetric tube [8, 9]. 3D models are 
usually applied to simulate the fluid-structure interaction between the vascular walls and 
blood [10, 11]. To establish a 3D model of the entire arterial tree, the complex geometri-
cal and mechanical information needs to be provided, which results in the enormous 
computational complexity, so that it cannot be readily implemented in practice. Conse-
quently, high dimensional models can generally be used to simulate local hemodynamics 
of specific arterial sites, instead of the whole arterial tree.

In contrast to high-dimensional models, low-dimensional models with small computa-
tional costs can readily reproduce the pulse wave propagation phenomenon and realize 
patient-specific modeling. Thus, the low-dimensional modeling can be an effective way 
to describe the hemodynamic properties of the entire arterial tree in practical applica-
tions. At present, the available low-dimensional models mainly consist of 0D models, 
1D models and tube-load models. 0D models, also called lumped parameter models, 
can describe global properties of the arterial system. The lumped parameter models are 
characterized by their pulse waveforms as a function of time only. The most well-known 
lumped parameter model is the Windkessel model [12], which includes mono-compart-
ment models and multi-compartment models [13, 14]. 1D models and tube-load mod-
els are distributed parameter models, which can represent distributed properties of the 

3D models2D models

Lumped parameter models Distributed parameter models 

High-dimensional models Low-dimensional models 
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Fig. 1  The structure diagram of physics-based models in the cardiovascular system
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arterial system. In the latter two types of models, their pulse waveforms depend on both 
time and space. In the distributed parameter models, 1D model based on the simpli-
fied Navier–Stokes equation is commonly used to reproduce pressure and flow at any 
position in the entire arterial tree [15–19]. The Windkessel model is computationally 
simple but less accurate. On the other hand, 1D model can represent the wave propaga-
tion phenomenon accurately but need a relatively large amount of computation. Tak-
ing advantage of both Windkessel models (simplicity) and 1D models (accuracy), some 
researchers developed tube-load models [20, 21]. Tube-load models can monitor mul-
tiple arterial hemodynamic parameters such as pulse transit time, arterial compliance, 
pulse wave velocity, and so on.

So far, these three types of low-dimensional models have been extensively used in 
the study of cardiovascular dynamics as shown in Table 1. Especially, applying phys-
ics-based models to estimate central aortic pressure has been paid much attention in 
recent decades [22–27]. However, to our best knowledge, there has been few review 
paper about the reconstruction of central aortic pressure using these physics-based 
models. Additionally, estimating central aortic pressure is a common application of 
these three types of models, which contributes to compare their advantages and dis-
advantages fully. Thus, this paper is to review three types of low-dimensional physics-
based models (0D models, 1D models and tube-load models) of the arterial system 
and take the application of estimating central aortic pressure as an example to com-
pare their advantages and disadvantages. To begin with, the theories and applications 
of Windkessel models including mono-compartment and multi-compartment models 
are described. Then, the theories and applications of two types of distributed parame-
ter models, namely 1D models and tube-load models, are elaborated. Next, the advan-
tages and disadvantages of these three models are discussed. Finally, future challenges 
and final conclusion are presented.

Table 1  Main applications of Windkessel models, 1D models and tube-load models

Model type Main applications References

Windkessel models Estimation of cardiac output [32, 94]

Estimation of total peripheral resistance [112]

Estimation of total arterial compliance [30, 33, 113]

Estimation of aortic input impedance [114, 115]

Estimation of stroke volume [116, 117]

Estimation of central aortic pressure [22, 23, 44–48]

Providing outflow boundary condition [34, 50, 60, 97]

Physiological simulation of circulatory system [118–120]

Pathological simulation of circulatory system [121–123]

1D models Simulation of pulse wave propagation dynamics [18, 34, 97, 124–127]

Wave intensity analysis [128–130]

Estimation of central aortic pressure [24, 25, 68, 69]

Assessing the performance of algorithms and indexes [131–133]

Tube-load models Estimation of pulse wave transit time/velocity [21, 81, 134, 135]

Calculation of forward and backward waves [77, 136, 137]

Estimation of artery stenosis and stiffness [134, 138]

Prediction of the change of vessel diameter [139]

Estimation of central aortic pressure [26, 27, 71–74, 90, 93]
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0D models
In 0D models (lumped parameter models), the Windkessel theory is applied to the 
modeling of the arterial system [12, 28, 29]. Windkessel models are divided into two 
classes: mono-compartment models and multi-compartment models. Theories and 
applications of two categories of models are elaborated in this part, respectively. Fur-
thermore, the comparison of different Windkessel models is made in Table 2.

Model descriptions

Mono‑compartment models

The mono-compartment model is a combination of inductance, compliance and 
resistance. According to the number of elements included, current mono-compart-
ment models are classified into four main types: two-element, three-element, four-
element and complex mono-compartment Windkessel models.

a. Two‑element Windkessel model  The two-element Windkessel model is the simplest 
mono-compartment model presented by Frank [12], which is made up of a resistor 
(R) and a capacitor (C) as shown in Fig. 2a. In this model, the resistor describes the 
resistance of small peripheral vessels and the capacitor describes the distensibility of 
large arteries. The two-element Windkessel model simply describes the pressure decay 
of the aorta in diastole. This model cannot signify the high frequency effects because 
there is merely a time constant in the model. Owing to its simplicity, this model can be 

Table 2  Comparison of different Windkessel models

Model type Mono-compartment model Multi-compartment 
model

Two-element model Three-element 
model

Four-element model

Strengths The model structure is 
simplest

The model can 
describe high fre-
quency effects

The model can 
represent all the fre-
quency effects well

The model can rep-
resent pulse wave 
propagation

Weaknesses The model cannot 
represent high 
frequency effects

There is small error at 
low frequency

Parameter estimation 
is difficult

The model structure is 
more intricate

The model cannot describe pulse wave propagation
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Fig. 2  The mono-compartment models. a Two-element Windkessel model; b three-element Windkessel 
model; c four-element Windkessel model
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used in clinical practice readily such as total arterial compliance estimation [30] and 
blood pressure estimation [31].

b. Three‑element Windkessel model  Adding a characteristic impedance ( Zc ) to the 
two-element Windkessel model, the three-element Windkessel model is formed as 
shown in Fig.  2b [15]. The characteristic impedance is equal to oscillatory pressure 
divided by oscillatory flow. Although it is found that a resistance numerically equals 
approximately a characteristic impedance, the characteristic impedance is different 
from the resistance. The characteristic impedance is merely used to signify oscillatory 
phenomena. Owing to the inclusion of the characteristic impedance, this model can 
simulate high frequency effects. Simultaneously, the introduction of the characteristic 
impedance also results in some errors at the low frequency. In contrast with the two-
element Windkessel model, the three-element Windkessel model can have a higher 
accuracy. Therefore, the three-element Windkessel model has been extensively used in 
theoretical research [32–34].

c. Four‑element Windkessel model  Taking the inertance of blood flow into consideration 
on the basis of the three-element Windkessel model, Stergiopulos et al. [35] proposed a 
four-element Windkessel model as shown in Fig. 2c. Due to the addition of the inertance, 
this model can represent middle frequency effects. In other words, the four-element 
Windkessel model can simulate all frequency effects. It has been validated that the four-
element model can give a better description of the impedance characteristics [36]. Some 
nonlinear regression analysis methods are applied to the estimation of the four-element 
model parameters. Compared with the two-element and three-element Windkessel mod-
els, it is more difficult to identify the model parameters of the four-element Windkessel 
model. Consequently, only a few researchers make use of this model [23, 37, 38].

d. Complex mono‑compartment models  For the sake of the further improvement 
of the arterial model, a few researchers developed more complex Windkessel models 
in which more resistive, inductive and capacitive components were introduced [39, 
40]. By including more resistive and inductive elements, the laminar oscillatory flow 
impedance can be simulated. Owing to the high complexity of these models, there has 
been no further development by other investigators.

These models described above focus on simulating the pressure and flow character-
istics of the arterial vessels without considering the effect of the venous vessels. In fact, 
with regard to the coronary and pulmonary circulation, the pressure and flow of the 
veins have a significant impact on the global hemodynamics [41]. Under this circum-
stance, the venous side cannot be ignored. In order to describe the characteristics of the 
veins, extra resistance, inertance and compliance are added to form more complex (five, 
six and seven element) arterial models. In contrast with the two, three and four element 
Windkessel model, the five-element model simulates the characteristics of microcircula-
tion hemodynamics more accurately, and the six-element model accounts for the hemo-
dynamic contribution of the venous vessels in the cardiovascular system more precisely, 
and the seven-element model further gives the representation of the systemic circulation 
through the improvement on the description of the venous system.
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Multi‑compartment models

Regardless of spatial information, the mono-compartment model regards all arteries as 
a single block. In order to represent the distribution of flow and pressure, some multi-
compartment models which were composed of a series of mono-compartment mod-
els were established. Figure  3 is an example of a simple multi-compartment model of 
the systemic arteries [42]. Every mono-compartment model is a combination of resist-
ance (R), inertance (L) and compliance (C). At present, there are four typical compart-
mental configurations in the multi-compartment model: T, � and inverted L element, 
respectively [13]. The corresponding compartmental configuration should be chosen 
appropriately according to the characteristics of the particular arteries. Since the multi-
compartment model represents position information roughly but in general does not 
signify the nonlinear convective acceleration term of 1D model, this model is usually 
seen as the first order discretization of the one-dimensional linear model [43].

Applications

Mono-compartment models are simplified descriptions of an arterial system, simulating 
physiological properties of the arterial vessels with a few parameters. Multi-compart-
ment models construct a full arterial network by connecting several mono-compart-
ment models, describing particular information of different vessel compartments. Due 
to the simplicity of mono-compartment and multi-compartment models, merely a few 
researchers used them to reconstruct central aortic pressure.

In Windkessel models, proximal flow or peripheral pressure measurements were fre-
quently used as inflow condition. Many researchers chose aortic flow as model input [22, 
44, 45]. Flow at other positions was selected as model input, such as carotid flow [46], 
left ventricle flow [23] and mitral valve mean flow [47]. Few researchers chose brachial 
and radial pressure as model input [48]. For model parameter acquisition, the majority 
of researchers calculated model parameters by population averaging [22, 23, 44–46, 48] 
and only a small number of researchers adopted partially individualized model param-
eters [47].

Mono-compartment models are more commonly applied to the estimation of central 
aortic pressure than multi-compartment models. For example, the pressure waveform 
in the aorta was reconstructed by Stergiopulos et  al. [44] and Struijk et  al. [45] using 
a two-element Windkessel model. Cai et al. [22], Zala et al. [46] and Vennin et al. [22] 
employed a three-element Windkessel model to calculate central aortic pressure. A four-
element Windkessel model was adopted by Her et  al. [23] to reproduce the patient’s 
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aortic pressure waveform undergoing counter-pulsation control by ventricular assist 
devices. Revie et al. [47] used a six-chamber lumped parameter model consisting of left 
ventricle and right ventricle, aorta, pulmonary artery, pulmonary vena cava and pul-
monary vein to monitor aortic pressure changes. It was verified in clinical data [22, 23, 
47] that Windkessel models can describe the general shape of pressure waveform in the 
ascending aorta, however, it is difficult to show the details of pressure waveform such as 
dicrotic notch features. Therefore, Windkessel models have limited accuracy for the esti-
mation of central aortic pressure.

1D models
1D models are distributed parameter models. Theory and application of 1D models are 
described in this part, respectively. 1D models mainly focus on methods that solve one-
dimensional equations and boundary conditions (including inflow, bifurcation and out-
flow conditions).

Model descriptions

Model derivations

The one-dimensional arterial flow theory was proposed by some researchers [16, 17]. 
Euler [49] first established a 1D model using the one-dimensional theory. Although 
assumptions of the model are simple, it laid foundations for further studies. Reymond 
et al. [50] extended the existing 1D model to a more detailed model consisting of the foot 
and hand circulation. Moreover, the ventricular-arterial coupling model was developed 
and 1D model of the circulation was validated. 1D models are commonly used to rep-
resent pulse wave propagation phenomena of large arteries [29]. In the 1D model, the 
blood is assumed to be an incompressible Newton fluid and the vessel is an axisymmet-
ric cylindrical tube. The 1D model is governed by two equations [51]. A continuity equa-
tion (see Eq. 1) and a momentum equation (see Eq. 2) both together describe the motion 
of the blood flow and the vessel wall. The formulas are as follows

where x is the distance along the vessel, t is time, q is the blood flow rate, p is the blood 
pressure, A is the cross-sectional area, r is the vessel radius, ρ is the blood density and µ 
is the viscosity.

Solving methods

For solving 1D Navier–Stokes equations, there are two types of methods including time 
domain and frequency domain methods. The time domain method can solve linear or 
nonlinear equations and frequency domain method can only solve linear equations.

a. Time domain method  Generally, Navier–Stokes equations of 1D models are nonlin-
ear, which are solved in the time domain using numerical methods. At present, there are 
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many numerical methods for solving the partial differential equations. Each method has 
its scope of application. The method of characteristics, finite difference method, finite 
volume method, finite element method and spectral method are frequently used to solve 
1D pulse propagation equations.

The method of characteristics is a basic method of solving the partial differential equa-
tions. The essence of this method is the integral along the characteristic line of the par-
tial differential equations to simplify the form of equations. The characteristic method 
has a clear physical meaning and a wide application scope. As for solving the differential 
equations of three independent variables, the method of characteristic can be very com-
plicated, and there are still some problems to be solved. The governing equations can be 
solved by taking use of the method of characteristics [52–54].

The finite difference method is a numerical method for solving complex partial differ-
ential equations by approximating the derivatives with finite differences. While the prin-
ciple of the finite difference method is simple, it can give the corresponding difference 
equation for any complex partial differential equation. Difference equations can only be 
considered as mathematical approximations of differential equations. This method has 
been used by a number of researchers. For instance, Olufsen et al. applied the two-step 
Lax–Wendroff method to solving the continuity and momentum equations [18, 19].

A finite volume method is developed on the basis of the finite difference method. To 
begin with, the calculated region is divided into a series of control volumes and there 
is a control volume at the surrounding of each grid point. Then each control volume is 
integrated and a set of discrete equations are obtained. Finally, the discrete equations 
need to be solved. The finite volume method is suitable for the computation of fluid. This 
method has a high computing speed and low requirements for the grid, but its precision 
is limited. To solve the differential equations, the finite volume method is often used [55, 
56].

The finite element method uses the variational principle to minimize the error func-
tion. The advantage of the finite element method is that this method can simulate 
complex curve or surface boundary accurately. Furthermore, the division of the grid is 
arbitrary and it can design the general program easily. Nevertheless, the finite element 
method cannot give a reasonable physical explanation and some errors in the calculation 
are still difficult to improve. Recently, some investigators used the finite element method 
to solve the differential equations [57–59].

The spectral method is a class of computing techniques of using an orthogonal func-
tion or intrinsic function as an approximate function to solve certain differential equa-
tions. The superiorities of the spectral method are to obtain a higher precision using 
fewer grid points. The poor stability and high complexity in the treatment of boundary 
conditions are the major weaknesses of this method. The spectral method has been uti-
lized to solve the one-dimensional pulse wave propagation equations by a few research-
ers [60, 61].

b. Frequency domain method  In order to reduce the computational complexity of the non-
linear model, a transmission line method is used to solve the Navier–Stokes equations in 
the frequency domain. The method requires that the 1D Navier–Stokes equations are lin-
earized. According to the similarity of electromagnetic propagation theory and pulse wave 
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propagation theory, linear 1D Navier–Stokes equations (see Eqs.  3, 4) in hemodynamics 
are converted into electrical transmission line equations (see Eqs. 5, 6) in the circuit [62]. 
The subsequent work is that we can employ methods of solving electric circuit to solve 1D 
Navier–Stokes equations. A transmission line equivalent circuit of an arterial segment is 
represented as shown in Fig. 4.

where U is the voltage, I is the current, R = 8µ

πr4
 is the resistance, L = ρ

A = ρ

πr2
 is the 

inductance, C = dA
dp

= 3πr2

2Eh
 is the capacitance, E is the Young’s modulus, and h is the 

arterial wall thickness. G is the conductance, describing blood flow leakage, which is 
usually neglected. The electrical circuit is comprised of resistive, inductive and capaci-
tive elements. The values of these elements are calculated from mechanical and geomet-
ric parameters in the arterial tree.

Boundary conditions

For 1D pulse wave propagation equations, boundary conditions, commonly including 
inflow, bifurcation and outflow boundary conditions, need to be determined.

a. Inflow conditions  The flow waveform measured in vivo at ascending aorta or aortic root 
serves as the inflow condition using a magnetic resonance imaging or ultrasound equip-
ment. Alternatively, a flow function derived from a simple model of the heart can serve as the 
inflow condition. The function is periodic which is mainly determined by the cardiac period 
and the cardiac output parameters [18].
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Fig. 4  Transmission line equivalent circuit. a Arterial segment of unit length; b transmission line segment. 
Where Zinput is the input impedance, ZL is the terminal impedance, γ =
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propagation constant and Zc =
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where CO denotes the cardiac output, τ denotes the time for cardiac output to reach its 
maximum and T denotes the cardiac period.

The other inflow condition is that the left ventricle of the heart is coupled to 1D 
arterial tree model. Two main heart models are developed to represent the rela-
tionship between the ventricular pressure and volume. The time-varying elastance 
model is that the heart is seen as an elastance varying with time [63]. This left ven-
tricular model indicates the instantaneous change of pressure and volume in left 
ventricle.

where E is the elastance, P is the instantaneous pressure of left ventricle, V is the instan-
taneous volume of left ventricle and V0 is the volume intercept of the end-systolic line.

The one-fiber model is another heart model in which the heart is described as a 
rotationally-symmetric cylindrical or spherical cavity [64]. The left-ventricular 
pump function is reflected by wall tissue function. It is assumed that fiber stress and 
strain are homogeneously distributed in the thick wall. The ratio of the fiber stress 
( τf  ) to the pressure of the left ventricle ( Plv ) is closely related to the ratio of the wall 
volume ( Vw ) and the cavity volume ( Vlv).

b. Bifurcation conditions  In arterial networks, vessel branching is another impor-
tant sort of boundary condition. At the bifurcation, the principle of pressure and flow 
continuity was applied [32, 55, 59, 65]. It is assumed that all bifurcations are situated 
at a point and the effect of the bifurcation angles is ignored. Without any blood leak-
age, according to the conservation of mass, the outlet flow of a parent vessel is equal 
to the sum of the inlet flow of two daughter vessels at the bifurcation (see Eq. 11). 
Considering the continuity of pressure, the pressure of a parent vessel and the pres-
sure of each daughter vessel are identical at the bifurcation (see Eq. 12). In reality, 
there exist energy losses at the bifurcations. Generally, the energy loss at a bifurcation 
is quite small and they are often neglected. For the bifurcation at the aortic arch, how-
ever, large energy losses are brought about. Because it has a nearly right-angled turn 
and a high velocity of blood at this bifurcation, remarkable vortices are produced. In 
order to represent the loss at the aortic arch bifurcation, a loss coefficient K is intro-
duced [19] (see Eq. 13).

where ūx denotes the average axial velocity and ρ denotes the density. The subscripts pa 
and d indicate the parent and the daughter vessel, respectively.
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c. Outflow conditions  The simplest outflow boundary condition is that the terminal of 
vessel is seen as a pure resistive load [18]. Nevertheless, a precise peripheral resistance 
value is not easy to be determined. Assuming a constant relation between pressure and 
flow, pressure and flow are in phase, actually, which is not physiologically reasonable for 
large arteries. The pure resistance model is merely suitable for small arteries. To over-
come the weaknesses, a phase-shift between pressure and flow should be applied to the 
downstream boundary. The terminal impedance for the pure resistance is as follows.

where ZL(w) denotes the terminal impedance of large arteries and RT denotes the 
peripheral resistance.

The distal network of truncated vessel is represented as the terminal impedance which 
is modeled by a three-element Windkessel model [66]. The three-element Windkessel 
model is made up of a resistance R1 in series with a parallel combination of a capacitor 
CT and another resistance R2 . This model cannot represent the wave propagation effects. 
The frequency dependent impedance of Windkessel model is given by

The relation between pressure and flow at the truncated arteries is given by the following 
differential equation.

In recent years, the structured-tree model presented by Olufsen [67] has become a pop-
ular outflow boundary condition. Compared with the resistance and Windkessel model, 
the structured-tree model can simulate the impedances of small arteries more accu-
rately. At the terminal branches of the truncated arterial tree, a structured-tree model, 
which is based on linear one-dimensional Navier–Stokes equations, provides a dynamic 
boundary condition for large arteries. The model can describe the phase lag between 
pressure and flow and the high frequency oscillations. Meanwhile, it can also represent 
the wave propagation effects of arterial system. According to the convolution theorem, 
the outflo w boundary condition is obtained by

The root impedance is computed from the relationship between pressure and flow as 
follow

where g = cC , c denotes the wave propagation velocity, ZL(w) denotes the root imped-
ance, namely, the terminal impedance of large arteries, Z(L,  w) denotes the terminal 
impedance of small arteries, L denotes the vessel length and w denotes the angular 
frequency.

(14)ZL(w) = RT

(15)ZL(w) =
R1 + R2 + iwCTR1R2

1+ iwCTR2

.

(16)
∂p

∂t
= R1

∂q

∂t
−

p

R2CT
+

q(R1 + R2)

R2CT
.

(17)p(x, t) =
1

T

∫ T/2

−T/2

z(x, t − τ )q(x, τ )dτ .

(18)ZL(w) =
ig−1sin(wL/c)+ Z(L,w)cos(wL/c)

cos(wL/c)+ igZ(L,w)sin(wL/c)
.
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Applications

1D models can simulate pressure and flow waveforms at any point of the arterial net-
work according to their distributed properties. Since 1D models include too many 
vascular parameters, they haven’t been extensively used to reconstruct central aortic 
pressure up to now. By limiting the number of personalized parameters, 1D models 
may have a great potential for estimation of central aortic pressure in clinical practice.

For 1D models, aortic flow waveform is the most common inflow condition [24, 
68]. Few researchers used peripheral pressure measurement (e.g. brachial pressure or 
radial pressure) as model input [25, 69]. The aortic flow waveform can be measured 
by ultrasound equipment, however, it is not accurate. Meanwhile, it is very expensive 
to obtain aortic flow waveforms by MRI equipment. The pressure waveforms of good 
stability can readily be recorded using peripheral pressure sensors such as applana-
tion tonometry. Generally, vascular geometric parameters of 1D models are meas-
ured by MRI or CT equipment, which is costly and complex. Many researchers used 
population averages for these geometric parameters. Nevertheless, Harana et al. [24] 
measured aortic geometry parameters including ascending aorta, descending aorta 
and three supra-aortic branches using MRI equipment. Meanwhile, pulse wave veloc-
ity (PWV) and vascular resistance and compliance parameters for each subject were 
calculated from measured data. Remaining blood flow parameters such as density and 
viscosity were assumed to be constants.

In recent years, 1D models with different degrees of complexity have been utilized 
by several researchers to reconstruct central aortic pressure. For example, Bárdossy 
et al. [69] presented a “backward” calculation method to derive central aortic pressure 
waveform in a 1D model comprising 50-segment arteries. A personalized transfer 
function between aorta and radial was established by Jiang et al. [24] to estimate cen-
tral aortic pressure based on 1D model including 55 large arteries and 28 small arter-
ies. Khalifé et al. [68] estimated absolute pressure in the aorta by combining a reduced 
1D model including an ascending aorta branch and a descending aorta branch with 
MRI. A non-invasive personalized estimation method of central aortic pressure was 
developed by Harana et  al. [24] using a 1D aortic blood flow model. Owing to the 
complexity of 1D models, the details of pressure waveform can be described easily 
[24]. If all vascular geometric parameters are measured by noninvasive equipments, 
1D models can provide accurate estimation of central aortic pressure.

Tube‑load models
Tube-load models are distributed parameter models. Theory and application of tube-
load models are described in this part, respectively. Tube-load models mainly focus 
on various tube models based on different assumptions.

Model descriptions

Tube-load models are a kind of highly simplified transmission line models, which 
are made up of multiple parallel tubes with loads [70]. The simplest tube-load model 
whose tube is taken as lossless, linear and uniform, only consists of a tube and a load 
as shown in Fig. 5. The tube signifies the wave transmission pathway of large arteries 
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and the load signifies the wave refection site in the arterial terminal. The formulas are 
as follows.

where L denotes the large artery inertance, C denotes the large artery compliance, d 
denotes length of tube, Td denotes the time delay, Zc denotes the characteristic imped-
ance, ZL denotes the terminal impedance, Ŵ denotes the wave reflection coefficient, P 

(19)Td =
√
LC

(20)Zc =
√

L/C

(21)Ŵ(jw) =
ZL(jw)− Zc

ZL(jw)+ Zc

(22)P(x, jw) = Pf (0, jw)e
jwTdx/d + Pb(0, jw)e

−jwTdx/d

(23)Q(x, jw) =
1

Zc
(Pf (0, jw)e

jwTdx/d + Pb(0, jw)e
−jwTdx/d)

(24)Pp(jw) =

(

jw + 1

RC + 1

2ZcC

)

ejwTd + 1

2ZcC
e−jwTd

jw + 1
RC + 1

ZcC

Pc(jw)

Periphery

artery

R

Z
C

Aorta

C

Td

Fig. 5  Single tube model with a load. R the peripheral resistance, C the load compliance, Zc the characteristic 
impedance and Td the time delay
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denotes the pressure, Q denotes the flow. In addition, the subscripts f, b, c and p are for 
the forward and backward wave, aorta and peripheral artery, respectively.

For tube-load models, there are three main types of loads, including pure resistance, 
generic pole-zero, three-element Windkessel models. The pure resistance load is a high 
simplification of small arterial vessels, accounting for the peripheral resistance [26, 71]. 
The greatest advantage of this kind of load is simplicity and its disadvantage is that there 
is a big difference from the real vascular structure. The generic pole-zero models as a ter-
minal impedance can change the order of system flexibly [72]. However, the weakness of 
the model is that model parameters do not have physiological significance. The most fre-
quently used load is the three-element Windkessel model, which consists of a character-
istic impedance, a resistance and a compliance [73, 74]. Although the Windkessel model 
fails to provide the detailed anatomical and mechanical information of arterial network, 
it can describe the lumped properties of terminal arterial vessels well.

Based on different assumptions, tube-load models have been developed into T-tube, 
lossy tube-load, nonlinear tube-load and non-uniform tube-load models, which are 
summarized in Table 3. In comparison with the simplest tube-load model, these models 
have a higher accuracy in hemodynamic simulation.

T‑tube model

The T-tube model is a frequently-used tube-load model, in which there are two tubes 
with two terminal loads as shown in Fig. 6 [75, 76]. While the tubes signify head-end 
and body-end travel paths, the loads represent head-end and body-end reflection sites, 

Table 3  Summary of tube-load models based on different assumptions

Model type Model feature Model parameter estimation

T-tube model Two parallel tubes signify head-end 
and body-end propagation paths

Using frequency domain method from 
central and peripheral pulse waves

Lossy tube-load model Blood pressure decays along the 
arterial tree

Using frequency domain method from 
central and peripheral pulse waves

Nonlinear tube-load model Arterial compliance is an exponential 
function of blood pressure

Using time domain method from cen-
tral and peripheral pulse waves

Non-uniform tube-load model Tube exponentially tapers along arte-
rial vessels

Using frequency domain method from 
central and peripheral pulse waves

Aorta

RhCh

Z
ch

Rb Cb

Z
cb Head load  Body load  

Body tube Head tube 

Fig. 6  The T-tube model. R the peripheral resistance, C the load compliance, Zc the characteristic impedance; 
subscripts b and h are for the body load and head load, respectively
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respectively. The advantages of the T-tube model are that it is a simple model and that 
it can indicate main features of pressure and flow waveforms in the large blood vessels. 
However, it cannot represent the wave reflection intensely depending on frequency.

Lossy tube‑load model

Tube-load models mentioned above are based on lossless tube-load models. The lossless 
tube-load model is a kind of ideal and simple model. In some situations, ignoring the loss 
of tube can bring large errors [77–80]. For example, for reconstructing the central aortic 
pressure waveform from peripheral pressure waveforms, it is generally assumed that the 
mean pressure is same at any position. In fact, the blood pressure loss is large along the 
arterial tree in pathophysiologic conditions or postoperative period. In order to improve 
the accuracy of tube-load models, Abdollahzade et al. [20] proposed the lossy tube-load 
model of arterial tree in humans as shown in Fig. 7. Compared with lossless tube-load 
models, lossy tube-load models have smaller errors and larger efficacy.

Nonlinear tube‑load model

Previously, tube-load models were regarded as linear models. In recent years, Gao et al. 
[81, 82] has developed a nonlinear tube-load model based on the exponential relation-
ship between blood pressure and compliance as shown in Fig. 8. In the nonlinear tube-
load model, arterial compliance is no longer a constant but a function of blood pressure. 

RC

ZcPi
Po

Pfi(t)

Pbi=e-γ(s)loPbo(t)

Pfo =e-γ(s)loPfi(t)

Pbo (t)

Aorta Periphery

Fig. 7  The lossy tube-load model. P the blood pressure, γ the wave propagation constant, l0 the length of the 
tube, R the peripheral resistance, C the load compliance, Zc the characteristic impedance; subscripts i and o 
are for the inlet and outlet of the tube, respectively

C0 e
-αP

R  CC0 e
-αPC0 e

-αP

Pd

ZcL  L  L  
Pp 

Fig. 8  The nonlinear tube-load model. P the blood pressure, α the constant, L the large artery inertance, 
R the peripheral resistance, C0 the large artery compliance, C the load compliance, Zc the characteristic 
impedance; subscripts p and d are for the inlet and outlet of the tube, respectively
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In contrast with the linear tube-load model, the nonlinear tube-load model has a higher 
accuracy in estimating pulse transit time [21].

Non‑uniform tube‑load model

The electrical transmission line theory is applied to mathematical modeling of arterial 
vessels. It is generally assumed that the transmission line model is a uniform tube with 
a terminal load. Taylor [83] explored the wave propagation properties of a non-uniform 
transmission line, since the uniform tube is too simple to reflect the real characteristics 
of the arteries. Subsequently, Einav et al. [84] proposed an exponentially tapered trans-
mission line model of the arterial system, in which the geometrical properties and wall 
elasticity of the tube exponentially tapered along the length of arterial vessels. At pre-
sent, there are two methods to describe the taper effects of a non-uniform tube. One 
method is that the inductance and capacitance of the tube change with the position 
exponentially as shown in Fig. 9a [85–87]. Another method is that an artery is separated 
into several smaller segments and each segment is viewed as a uniform tube as shown in 
Fig. 9b [88, 89].

Applications

Tube-load models include tubes and loads, describing wave propagation and refection 
phenomenon with only a few parameters. Combining the advantages of Windkessel 
models (simplicity) and 1D models (accuracy), tube-load models have become an attrac-
tive tool for the reconstruction of central aortic pressure waveform.

For tube-load models, inflow conditions are obtained from one or two measured 
peripheral pressure waveforms. A radial [71, 73, 74], brachial [26] or femoral [72] pres-
sure measurement is commonly used as model input. Moreover, some researchers [27, 
90–92] chose two measured peripheral pressure waveforms as inflow conditions such 
as radial and femoral arteries. Because intravascular and extravascular pressure at radial 
artery is very close, the radial pressure waveform can be accurately recorded using an 
applanation tonometry. The brachial cuff-based measurement is a very convenient 

b

a

Proximal 

artery 

Distal 

artery

Proximal 

artery

Distal 

artery

Fig. 9  The non-uniform tube-load model. a A non-uniform tube tapering with the position exponentially; b 
a non-uniform tube consisting of multiple uniform tubes with a successive decrease in diameter dimension
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approach for obtaining brachial pressure, especially suitable for longer term outpatient 
monitoring of central aortic pressure or potential general hospital ward usage.

Single tube or T-tube models with different loads are used to described the relation 
between central and peripheral pressures. For example, Swamy et  al. [72] employed a 
single tube with a generic pole-zero load to establish an adaptive transfer function 
between aortic and femoral pressures. A single tube model with a resistance load was 
applied by Gao et  al. [71] and Natarajan et  al. [26] to the estimation of central aortic 
pressure. Individualized transfer functions were built by Sugimachi et al. [73] and Hahn 
et  al. [74] using a single tube model with a three element Windkessel load. Ghasemi 
et al. [27, 90], Lee [91] and Kim et al. [92] utilized a T-tube model with a three-element 
Windkessel load, to reconstruct central aortic pressure from two measured peripheral 
pressure.

In order to acquire an adaptive or individualized transfer function, most researchers 
measured the pulse transit time for each subject through some noninvasive approaches 
and calculated the remaining parameters by population averaging [26, 27, 71–74, 92, 93]. 
Blind system identification is another method of estimating model parameters, which 
can reconstruct the central aortic pressure waveform from two distinct peripheral pres-
sure waveforms [90, 91]. The blind system identification method can obtain fully indi-
vidualized parameters. The weakness of this method is that it is inconvenient to measure 
multiple distinct peripheral pressure waveforms in clinical practice. To examine the 
performance of individualization, Hahn [93] made a comparative study on the estima-
tion of central pressure among a fully individualized, two partially individualized and a 
fully generalized transfer functions based on tube-load models. The 9 swine experiment 
results showed that the fully individualized transfer function had higher accuracy than 
two partially individualized functions and the fully nonindividualized transfer function. 
Since in the tube-load model, only one parameter, the pulse transit time, could be readily 
individualized, tube-load models had moderate accuracy for estimation of central aortic 
pressure.

Discussions and conclusions
Comparisons of three types of models

In this paper, recent progresses of Windkessel, 1D and tube-load models in the arterial 
system are reviewed. Windkessel models are developed into increasingly complicated 
and detailed structures and a variety of Windkessel models are established [39, 94]. 1D 
models including more arterial segments and coupling the heart have been set up in 
recent years [29, 50]. Tube-load models with various types of tubes based on different 
assumptions are investigated [77, 81, 83].

To select an appropriate model, the comparisons among three types of low-dimen-
sional models are made. The Windkessel model can give a global description of the 
arterial system and every model element has a particular physiological meaning [15, 
28]. Windkessel models only include a few parameters and the parameters are usually 
estimated from measured aortic pressure and flow waveforms. Due to its simplicity, the 
Windkessel models have a low accuracy. The iterative and system identification tech-
niques are adopted by most researchers, such as linear least-squares method [95] and 
subspace model identification method [96]. Since the Windkessel model is established 
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by a set of ordinary differential equations, this model is simpler than the distributed 
parameter model built by a set of partial differential equations. The model is fit for calcu-
lating hemodynamic parameters and simulating the whole circulatory system.

1D models and tube-load models are distributed parameter models which signify the 
distributed properties along the arterial vessels. 1D models can accurately predict flow 
and pressure in the entire arterial tree and the model parameters can truly reflect the 
physiological properties of arterial vessels [49]. A 1D model is determined by a set of 
partial differential equations with a lot of parameters. It is very difficult to determine a 
large number of parameters using system identification methods. The majority of geo-
metrical and mechanical parameters can be directly measured by MRI, CT or Doppler 
ultrasound equipment. The rest of the parameters are approximated or seen as constants 
such as the thickness of arterial wall and width of boundary layer. The 1D model is an 
appropriate approach to study pulse wave propagation phenomenon in arterial system.

Tube-load models are a parallel connection of multiple tubes with parametric loads, 
which is a simplified 1D model. The tube indicates the path of pulse wave propagation 
and the load indicates the effective reflection point [75, 76]. The transit time of pressure 
and flow waves is described by the time delay constant parameter of the model. Tube-
load models can represent the relationship between central and peripheral arteries with 
a few parameters. Once proximal and distal waveforms of the arterial tree are obtained, 
the parameters of tube-load models can be determined by system identification tech-
niques. In comparison with 1D model, tube-load model has a lower computation cost. 
Meanwhile, the shortage of the tube-load model is that it is less accurate than 1D model. 
Tube-load models are suitable for investigating wave propagation and reflection.

In general, computational time of three types of models is short and they have the 
potential for real-time and general use clinical monitoring in intensive care. In spe-
cific applications, however, in order to obtain more accurate clinical parameters, these 
models may need to be optimized such as personalization of the model which will be 
made a detailed discussion later. The personalized model requires that model param-
eters can be obtained individually. The real-time character depends on required patient-
specific model parameters, which should be discussed in the following two cases. If the 
patient-specific model parameters cannot be real-time obtained, the central aortic pres-
sure monitoring is impossible. For example, the pulse transit time parameter in tube-
load models can be obtained from various combinations of physiological signals such as 
two pulse waveforms (e.g. carotid and radial sites) and a combination of ECG and pulse 
waveforms (e.g. radial site) methods. If we choose the former method (two pulse wave-
forms), the pulse transit time parameter cannot be real-time obtained since the carotid 
pulse waveform is difficult to measure for long time. In this case, we cannot monitor 
central aortic pressure in real-time. The pulse transit time parameter can be real-time 
estimated if we choose the latter method (ECG and pulse waveforms) because ECG and 
radial pulse waveforms can be measured simultaneously for long time, real-time central 
aortic pressure can be monitored. Windkessel models and tube-load models can be used 
in long-term monitoring of central aortic pressure/potential general hospital ward usage, 
however, 1D models cannot. This is because geometric parameters of 1D model need to 
be measured by CT or MRI equipment, which is very complex and costly. Detailed com-
parisons of three types of low-dimensional models are summarized in Table 4.



Page 19 of 25Zhou et al. BioMed Eng OnLine           (2019) 18:41 

Future challenges

Although a variety of physics-based models have been developed, there still exist a 
number of challenging problems to be solved. Multi-scale modeling, coupling of vari-
ous systems and patient-specific modeling are very significant research subjects at 
present.

Multi‑scale modeling

A model of each scale has its scope of application [29, 97, 98]. Low-dimensional mod-
els have low computational cost but poor accuracy, which is applicable to represent 
the global properties of the arterial networks. Nevertheless, high-dimensional models 
can offer high accuracy simulation but with greater complexity. They are commonly 
used to describe the local properties of arterial vessels in detail. Therefore, coupling 
models of various different scales can combine the advantages of different dimen-
sional models [43, 99, 100]. Multi-scale modeling of arterial vessels can be a powerful 
tool for providing potential applications in clinical practice.

Coupling of various systems

There exist a variety of biological systems such as the nervous system and the respira-
tory system in human body which run simultaneously and interactively. The effects of 
other biological systems are usually ignored in physical modeling of cardiovascular 
system. As a matter of fact, the nervous system has a significant impact on cardio-
vascular system [101]. For example, as the blood pressure changes, to avoid dysfunc-
tions, the sympathetic nerves and the parasympathetic nerves are usually motivated 

Table 4  Comparison of Windkessel, 1D and tube-load models

Model type Windkessel models 1D models Tube-load models

Model structure Including capacitors, resis-
tors and inductance

Dividing the arterial tree 
into many small seg-
ments

Consisting of multiple 
tubes with terminal 
loads

Model parameters Few A lot Few

Easy to estimate Difficult to estimate Easy to estimate

Complexity Low High Moderate

Accuracy Low High Moderate

Simulate wave propaga-
tion and reflection 
phenomenon

No Yes Yes

Inflow condition Aortic flow function Aortic flow or pressure 
waveforms

Aortic pressure waveforms

Aortic pressure waveforms Aortic flow function

Heart model

Outflow condition Venous pressure Pure resistance Windkessel model

Windkessel model Generic pole-zero model

Structured-tree model Pressure

Pressure

Geometrical and mechani-
cal properties

None Vessel diameter, length, 
thickness, elasticity and 
blood viscosity

Vessel length and elasticity
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to regulate cardiovascular response [101]. Smith et  al. [102] proposed a modified 
cardiovascular model by including a minimal autonomic nervous system activation 
model. This modified model can simulate various cardiovascular diseases such as 
hypovolemic shock septic shock, cardiogenic shock, pericardial tamponade and pul-
monary embolism.

Due to the fact that both the respiratory system and the cardiovascular system located 
in the thoracic cavity, the cardiovascular system can be influenced by the respiratory 
system strongly [103]. For example, an integrated model of the cardiopulmonary sys-
tem was present by Albanese et  al. [104], which included cardiovascular circulation, 
respiratory mechanics, gas exchange and neural control mechanisms. The physiological 
parameters in normal and pathological conditions were simulated and the interactions 
between the cardiovascular and respiratory systems were explained. Trenhago et  al. 
[105] proposed a refined coupled model of the cardiovascular and respiratory systems, 
consisting of 19 compartments, in which the respiratory system was extended to include 
a complex system for gas exchange and transport. The advantage of the refined model is 
that it enables to simulate situations in which existing models cannot predict mimic and 
it helps us to understand complex mechanisms better. For modeling of cardiovascular 
system, the respiratory effects should be considered. In comparison with previous car-
diovascular model, a modified cardiovascular model integrating neurological and res-
piratory components has better accuracy. Hence, combining the nervous system and the 
respiratory system with the cardiovascular system might be a good way to improve the 
accuracy of models.

Patient‑specific modeling

Patient-specific models can provide opportunities for improving accuracy [106–108]. 
The patient-specific parameters can be obtained from imaging techniques such as mag-
netic resonance imaging, computed tomography and ultrasound. A properly personal-
ized model can predict physiological or pathological status more accurately [109, 110]. 
The personalized modeling in the arterial system can play an increasingly key role in the 
development of medical instruments.

This paper takes the estimation of central arterial pressure as an example to introduce 
personalization of physics-based models. Although several individualized estimation 
methods of central aortic pressure have been proposed, these methods haven’t been suf-
ficiently verified in clinical practice yet. An accurate and convenient method of recon-
structing central aortic pressure waveform with sufficient verification is a current hot 
topic. The physics-based models with clear physiological meaning may provide great 
potential for individualized estimation approach of central aortic pressure. In these three 
types of physics-based models, 1D models are the most accurate and complicated. Under 
the condition of guaranteeing a high accuracy, reducing the complexity of the model as 
much as possible is the prefered method. By examining the influence of the complex-
ity of the arterial tree on the accuracy of the model, the complex model can be greatly 
simplified. For example, a 1D aortic model consisting of ascending aorta, aortic arch, 
thoracic aorta and abdominal aorta with Windkessel outflow conditions may be created 
to reconstruct aortic pressure waveform with a high accuracy. Another feasible way is to 
use body size parameters to replace complex blood vessel parameters. Since 1D models 
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have too many parameters, it is actually impossible to measure all parameters, however, 
human body size parameters are available easily. A statistical analysis has shown that the 
blood vessel sizes have close correlation with sex, age, height, and weight of a subject 
[111]. Furthermore, Young’s modulus representing vascular stiffness has a strong cor-
relation with age. It might be possible to build relationships between geometrical and 
mechanical parameters of 1D models and body size parameters of the subject. The geo-
metrical and mechanical parameters can be firstly employed by population averages and 
then the average parameters can be calibrated with body size parameters. Combining 
with the two methods above, a modified 1D model may be the best choice for estimating 
central aortic pressure.

Conclusion

In conclusion, different physics-based models in cardiovascular system have differ-
ent traits and the selection of models mainly depends on the aim of modeling includ-
ing complexity and accuracy required. By discussing the advantages and disadvantages 
of various physics-based models, this review contributes to a better understanding of 
physiological mechanism in the arterial system and provides effective guidance on low-
dimensional physics-based modeling.
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