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Abstract

Motivation: COPASI is an open source software package for constructing, simulating and analyzing

dynamic models of biochemical networks. COPASI is primarily intended to be used with a graphic-

al user interface but often it is desirable to be able to access COPASI features programmatically,

with a high level interface.

Results: PyCoTools is a Python package aimed at providing a high level interface to COPASI tasks

with an emphasis on model calibration. PyCoTools enables the construction of COPASI models and

the execution of a subset of COPASI tasks including time courses, parameter scans and parameter

estimations. Additional ‘composite’ tasks which use COPASI tasks as building blocks are available

for increasing parameter estimation throughput, performing identifiability analysis and performing

model selection. PyCoTools supports exploratory data analysis on parameter estimation data to

assist with troubleshooting model calibrations. We demonstrate PyCoTools by posing a model selec-

tion problem designed to show case PyCoTools within a realistic scenario. The aim of the model se-

lection problem is to test the feasibility of three alternative hypotheses in explaining experimental

data derived from neonatal dermal fibroblasts in response to TGF-b over time. PyCoTools is used to

critically analyze the parameter estimations and propose strategies for model improvement.

Availability and implementation: PyCoTools can be downloaded from the Python Package Index

(PyPI) using the command ’pip install pycotools’ or directly from GitHub (https://github.com/

CiaranWelsh/pycotools). Documentation at http://pycotools.readthedocs.io.

Contact: stefan.przyborski@durham.ac.uk or daryl.shanley@newcastle.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In biology, systems modelling is used to reproduce the dynamics of a

biochemical network of molecular interactions with a mathematical

model. It has proved particularly useful in the study of cell signalling

systems such as NF-jB (Adamson et al., 2016; Ashall et al., 2009;

Nelson et al., 2004), mTOR (Dalle Pezze et al., 2012, 2016), p53

(Purvis et al., 2012; Sun et al., 2011) and TGF-b (Schmierer et al.,

2008; Vilar et al., 2006; Wang et al., 2014; Zi and Klipp, 2007; Zi

et al., 2014). In these studies, the essential biological relationships are

represented by a series of ordinary differential equations (ODE) to

generate a model. Hypotheses can then be tested by performing

in-silico experiments. Before ODE models can be used to make mean-

ingful predictions they must first be calibrated to experimental data.

Model calibration is a notoriously difficult problem typically due

to the size and complexity of the systems involved and a lack of ap-

propriate experimental data. ODE models are prevalent in systems

biology because they are well-suited for predicting system dynamics

and because many computational tools have been developed
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explicitly for the construction, simulation and analysis of biological

networks. Among these tools are Data2Dynamics (Raue et al., 2015),

Systems Biology Workbench (Sauro et al., 2003), AMIGO (Balsa-

Canto and Banga, 2011), SBpipe (Dalle Pezze and Le Novère, 2017),

libRoadRunner (Sauro et al., 2013; Somogyi et al., 2015), Antimony

(Smith et al., 2009), Tellurium (Choi et al., 2016), Ecell (Takahashi

et al., 2003), PyDsTool (http://www2.gsu.edu/�matrhc/PyDSTool.

htm), PySCeS (Olivier, 2005), ABC-SysBio (Liepe et al., 2010),

Condor Copasi (Kent et al., 2012) and COPASI (Hoops et al., 2006).

COPASI is a widely used tool in modelling biological systems be-

cause it supports a variety of modelling applications including deter-

ministic, stochastic and hybrid model solvers, parameter estimation,

optimization, parameter scans, steady state analysis, local sensitivity

analysis and metabolic control analysis. COPASI has a graphical

user interface (GUI) which makes the tool accessible to non-expert

programmers and mathematicians, but also has a command line

interface for batch processing and an application programming

interface (API) for several programming languages. These APIs have

been used for integrating the COPASI framework with custom soft-

ware, for example in JigCell Run Manager (Palmisano et al., 2015),

CellDesigner (Matsuoka et al., 2014), ManyCell (Dada and

Mendes, 2012) and ModelMage (Flöttmann et al., 2008).

The Python programming language is useful for scientific computing

because of its concise syntax and the availability of open source toolboxes

such as pandas (https://pandas.pydata.org/), numpy (http://www.numpy.

org/), scipy (http://www.scipy.org/), sklearn (Pedregosa et al., 2011) and

matplotlib (Hunter, 2007), which together provide a series of well-

documented, easy-to-use, high-level tools for interacting with and manip-

ulating numerical data. Development of further tools in Python is enabled

by the Python Package Index (PyPI) where code can be made freely avail-

able to other developers. As a result, Python has an extensive publicly

available code base for scientific computing that competes well with other

commercial and non-commercial environments such as Matlab and R.

Here we present PyCoTools, an open-source Python package

which provides a high level interface to COPASI tasks with an em-

phasis on model calibration. COPASI tasks are integrated with the

Python environment to provide additional features which are non-

native to COPASI. Features include: the construction of COPASI

models with Antimony (Smith et al., 2009); the automation of repeat

parameter estimation configurations, chaser parameter estimations

and parameter estimations for multiple models (e.g. model selection);

automation of the profile likelihood method of identifiability analysis

(Raue et al., 2013; Schaber, 2012) with visualization facilities which

are flexible enough to support model reduction (Maiwald et al.,

2016); visualization of time courses from ensembles of parameter sets

and multiple ways of visualizing parameter estimation data. We dem-

onstrate PyCoTools by defining a model selection problem to intro-

duce a known negative feedback into a previously published model of

TGF-b signalling (Zi and Klipp, 2007) using new data.

2 Materials and methods

2.1 Experimental
2.1.1 Cell lines and treatment

Neonatal human dermal fibroblasts (HDFn, Life Technologies,

C-004-5C) were cultured as per manufacturer guidelines in

M106 (Life Technologies M-106-500) supplemented with LSGS (Life

Technologies S-003-10). HDFn were seeded at a density of 10 000

cells/cm2 into 12 well plates (Greiner 665180) in 4 ml complete M106

and cultured for 3 days. Media was aspirated, cells washed twice with

DPBS and replaced with 4 ml M106 without LSGS and cells were

serum starved for 24 h. HDFn were treated with 5 ng ml–1 TGF-b1

(Life Technologies, PHG9211) in M106 media without LSGS for 0,

1, 2, 4, 8, 12 h. To harvest, media was aspirated, cells were washed

twice in DPBS and then lysed in 350ml RLT buffer (Qiagen 79216).

2.1.2 High-throughput qPCR

Lysates were snap frozen in liquid nitrogen and stored -80�C prior to

quantification. Cell lystes were thawed at 4�C and then RNA was iso-

lated using the Biomek FxP and the RNAdvance Tissue Isolation kit

(Beckman Coulter, p/n A32646). The resulting RNA was quantified

using the Nandrop 8000 (Nanodrop, ND-8000). cDNA was gener-

ated using 500 ng of TotalRNA and Applied Biosystems High

Capacity cDNA with Reverse Transcription kit (Applied Biosystems

p/n 4368814). cDNA, assays and dilutions of Applied Biosystems

Taqman Fast Advanced MasterMix (Applied Biosystems, p/n

4444965) were plated onto a Wafergen MyDesign SmartChip

(TakaraBio, p/n 640036) using the Wafergen Nanodispenser. The

chip was then loaded into the SmartChip cycler and qPCR performed

using the following conditions: hold Stage 50�C for 2 min, 95�C for

10min, PCR Stage 95�C for 15s and 60�C for 1 min. After 40 cycles

the reaction was stopped and the data was exported for analysis.

Prior to use for fitting, cycle threshold CT values were normal-

ized using the 2�DDCT method of quantitative PCR normalization to

the geometric mean of four reference genes (B2M, PPIA, GAPDH,

ACTB) per sample (Livak and Schmittgen, 2001).

2.2 Computational
2.2.1 PyCoTools availability and installation

PyCoTools was developed partially on Windows 7 and partially on

Ubuntu 16.04.2 with the Anaconda distribution of Python 2.7 and

COPASI version’s 4.19.158 and 4.21.166. PyCoTools can be installed

with ‘pip’, Python’s native package manager using the command ‘pip

install pycotools’. PyCoTools can also be downloaded directly from

source at https://github.com/CiaranWelsh/pycotools. More detailed

instructions on installation and PyCoTools usage can be found in the

PyCoTools documentation (http://pycotools.readthedocs.io).

2.2.2 Definition of the model selection problem

All models were built by downloading the Zi and Klipp (2007) model

from BioModels (ID: BIOMD0000000163) and modifying it as ap-

propriate using the COPASI user interface for each model. The mod-

els are available in the supplementary content as SBML files. Model

selection was performed by calibrating each model to the same experi-

mental data and then evaluating model selection criteria. The Ski

mRNA and Smad7 mRNA profiles were measured whilst protein

level data were derived by assuming that Smad7 and Ski protein ap-

pear 30 min after the mRNA and at 100 times the magnitude. Since

the experimental data units are arbitrary and the Zi and Klipp (2007)

model simulates in nanomoles per litre, the experimental data were

mapped to the model via an observation function (Equation 1).

XObs tð Þ ¼
X tð Þ
XSF

(1)

where:

XObs tð Þ ¼ A mapping between experimental and simulated data

X tð Þ ¼ Amount of model species X at time t

XSF ¼ Scale factor for species X ¼ 100

X 2 fSmad7mRNA; SkimRNA; Smad7Protein; SkiProteing

All scale factors were set to 100 which is a reasonable value to en-

sure new profiles were of the same order of magnitude as the
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original. The initial concentration of Smad7 and Ski protein were set

to 100 times that of the corresponding mRNA and all new kinetic

parameters were estimated. All parameters from the original Zi

et al. (2014) model were fixed at the published values, including ini-

tial concentration parameters. Initial concentrations of Smad7

mRNA and Ski mRNA were set using Equation 2:

X t0ð Þ ¼ X l;t0ð Þ �XSF (2)

where:

X t0ð Þ ¼ Initial amount of species X in the model

X l;t0ð Þ ¼Empirical average of species X at t¼0 in arbitrary units

All parameters were estimated between the boundaries of 1e�7 and

1e4. Three hundred parameter estimations were performed per

model using COPASI’s stochastic genetic algorithm with a popula-

tion size of 300 over 500 generations and starting from random val-

ues. The residual sum of squares (RSS) objective function was

weighted using the standard deviation of the 6 data replicates. All

parameter estimations were configured and run simultaneously

using PyCoTools ‘tasks.MultiModelFit’ class on a computer cluster

running the Sun-Grid Engine job scheduling software. The estima-

tions can optionally be configured to run on a single machine.

2.2.3 An idealized model selection problem

In addition to the main model selection demonstration, another ideal-

ized model selection demonstration has been provided in the supple-

mentary content. The purpose of this alternative demonstration is to

provide an example with short execution times that parallels the main

model selection problem and provides code that users can run them-

selves. Specifically, in this alternative model selection problem we cre-

ate three models (a negative feedback motif, a positive feedback motif

and a feed-forward motif) using the Antimony interface. Analogous to

the main problem defined above, we then perform model selection

using synthetic experimental data from the negative feedback top-

ology, visualize the results and run an identifiability analysis.

3 Results

3.1 Overview of PyCoTools facilities and architecture
PyCoTools provides COPASI users with a means of efficiently con-

figuring and running COPASI tasks from a Python environment.

The PyCoTools package is comprised of three main modules:

‘model’, ‘tasks’ and ‘viz’.

The ‘Model’ object under the ‘model’ module plays a central role

in PyCoTools by using Python’s ‘lxml’ library to extract model in-

formation from the COPASI XML and store it in Python classes.

Manipulating XML was chosen because of its widespread use in sys-

tems biology and because well documented tools exist for its ma-

nipulation. The information extracted is subsequently available as

‘Model’ attributes. The ‘Model’ enables users to add, remove and

change model components and acts as a central entity that can be

modified and configured by other PyCoTools classes. As an alterna-

tive means of building models, the ‘model’ module provides an inter-

face to and from the SBML model definition language, Antimony

(Smith et al., 2009). PyCoTools wraps functions from Tellurium

(Choi et al., 2016) and command line COPASI to convert between

Antimony, SBML and COPASI models, thereby facilitating the tran-

sition between environments.

The ‘tasks’ module uses the ‘Model’ class extensively to config-

ure COPASI tasks. Supported tasks include deterministic, stochastic

or hybrid time courses, arbitrary dimensional parameter scans or re-

peat tasks, and parameter estimations. Additionally, tasks are pro-

vided which are not available in COPASI within a single function.

Specifically, PyCoTools automates the configuration of ‘repeat par-

ameter estimations’ and increases the rate by which parameter esti-

mations can be run. This is achieved by automatically configuring

COPASI’s repeat parameter estimation feature and running model

replicates simultaneously. A queueing system is introduced to pre-

vent overuse of limited computational resources. PyCoTools sup-

ports the configuration and running of ‘chaser estimations’ where

parameter estimates from a global algorithm are inserted into the

model and driven to a minimum with a local algorithm. Other tasks

supported by PyCoTools include model selection and the calculation

of profile likelihoods for assessing a identifiability status of a model

(Raue et al., 2009; Schaber, 2012).

The ‘viz’ module [the concept of which takes inspiration

from the Ecell software by Takahashi et al. (2003)] contains all

PyCoTools visualization facilities. The aim of the ‘viz’ module is to

produce publication quality figures of time courses, parameter esti-

mations, profile likelihoods and model selection. The ‘viz’ module

also provides a host of exploratory data analysis tools for analyzing

repeat parameter estimation data. These tools and their usage are

described next.

3.1.1 Tools for analysis of repeat parameter estimation data

Repeat parameter estimation data can be visualized in multiple ways

and this information can be used to diagnose problems and direct

modelling efforts. The tools provided in PyCoTools collectively

allow one to gauge uncertainty in model predictions or parameter

estimates, assess the performance of algorithms used for optimiza-

tion, visualize distributions of parameters and visualize putative

relationships between parameters.

Usually the first item of interest after a parameter estimation is

to visualize simulated predictions against empirical data. PyCoTools

extends the basic ‘simulated versus experimental time course plot’ to

calculate and display confidence intervals for each profile. This is

achieved by inserting parameter sets into the model in turn, simulat-

ing a time course and aggregating the results by bootstrapping an

estimator (e.g. the mean) of the users choice. By visualizing predic-

tions from several parameter sets, uncertainty is propagated from

parameter estimates to model predictions. The ‘ensemble time

course’ thus emphasizes model strengths and weaknesses, highlight-

ing regions of confidence and those which require attention.

While ensemble time courses are used to inform our confidence

on model predictions, profile likelihoods are used to inform our con-

fidence on parameter values. Briefly, a profile likelihood is a param-

eter scan of parameter estimations, starting from a best parameter

set. Each parameter is fixed in turn and its value is systematically

varied over the course of the scan. The remaining parameters are re-

optimized at each point of the scan and the objective function value

traces a path through parameter space. The shape of this profile is

then compared to a confidence threshold based on the likelihood

ratio statistic (Raue et al., 2009).

A profile likelihood typically has one of three interpretations. If

the profile does not exceed the threshold in one or both directions

and is not flat, the parameter is practically non-identifiable. In this

case, the trajectory of the other model components over the profile

may be used to direct model reduction strategies (Maiwald et al.,

2016). If a profile is completely flat the parameter is structurally

non-identifiable, which means the parameter is algebraically related

to another. To resolve structural non-identifiabilities, one can fix
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one of the parameters in a relationship to an arbitrary value.

Of note, one must be cautious about using profile likelihoods to ren-

der a parameter structurally non-identifiable because the profile

likelihood method only samples the parameter space. It is possible

that the profile appears flat but only on the scale of the sampled pro-

file. Therefore, structurally non-identifiable parameters should be

further investigated to determine any relationships which might

exist. Finally, if the profile exceeds this threshold in both directions

the parameter is identifiable and the parameter values at which the

profile exceeds the threshold are the upper and lower confidence

boundaries for the parameter (Raue et al., 2009). Ideally, for precise

model predictions, every estimated parameter in a defined parameter

estimation problem should be identifiable. In reality, limited data

and overly complex model structures often lead to identifiability

issues.

Maiwald et al. (2016) extended the usefulness of profile likeli-

hood from assessing identifiability to model reduction. A practical

non-identifiability exists because the optimization does not have

enough data to inform model parameters, or put another way, the

model is too complex for the data. Viewing the paths traced by other

parameters in a profile likelihood analysis (e.g. putting the trajectory

of another parameter on the y-axis rather than the objective function

value) provides information about the relationship between the par-

ameter of interest on the x-axis and the parameter on the y-axis.

Identifying this relationship enables steps to be taken to resolve the

problem by fixing parameters or replacing non-identifiable species

or parameters with algebraic equations. Profile likelihoods are there-

fore useful in a data-driven approach to iteratively refine an opti-

mization problem, fixing parameters where possible and modifying

the topology as necessary until the model fits the experimental data.

Profile likelihood calculations are a computationally intense task

and to be useful, it is required that the starting parameter set is opti-

mal, or at least very close to optimal, with respect to the data. It is

therefore prudent to assess this condition before conducting a profile

likelihood analysis. The performance of an optimization problem

can be evaluated by plotting the sorted objective function value [i.e.

residual sum of squares (RSS) or likelihood] for each parameter

estimation iteration against its rank of best fit (herein referred to as

a ‘likelihood-ranks’ plot). In these plots the best case scenario is ei-

ther a flat line for when there is only a single global minimum or

more commonly, a monotonically increasing step-like function

where each step marks a different minimum (Raue et al., 2013).

Horizontal lines in the likelihood-ranks plot indicate that many iter-

ations of the same optimization problem have located the same min-

imum, which increases our confidence that the problem is well-

posed. In contrast a smooth curve indicates that estimations have

not converged to a minimum.

If the likelihood-ranks plot shows a smooth curve, it is a good

idea to either rerun the parameter estimation using a different algo-

rithm or different algorithm settings. Alternatively, while others

(Raue et al., 2013) employ a multi-start Latin-hypercube strategy

with a local optimizer to ensure strategic and uniform sampling of

the parameter space, given the choice of algorithms in COPASI it is

easy to first run a global and then switch to a local algorithm. This

strategy, here referred to as a ‘chaser estimation’, can be performed

on all or a subset parameter sets to drive them closer to their respect-

ive minima.

In addition to profile likelihoods and time course ensembles,

viewing distributions of parameter estimation data and correlations

between parameters can provide information about an optimization

problem. Box plots provide immediate information about the range

of parameter estimates and how they compare to other parameters.

Often a box plot can provide clues to a parameter’s identifiability

status. Histograms on the other hand provide a more detailed view

of parameter distributions and can identify behaviour (e.g. bimodal

parameters) that would not be identified with box plots. Moreover,

a combination of Pearson’s correlation heat maps and scatter graphs

can be used to locate linear or log-linear relationships between

parameters.

An important aspect of visualizing parameter estimation data is

that not all parameter sets fit the model equally well. Parameter sets

with higher objective function values can distort the distribution of

better performing parameter sets or the shape of a relationship. For

this reason PyCoTools implements flexible means of subsetting par-

ameter estimation data before plotting.

3.2 A demonstration: extending the Zi and Klipp (2007)

model
To demonstrate PyCoTools, we define a model selection problem to

extend a published model of canonical TGF-b signalling (Zi and

Klipp, 2007) (Fig. 1). As an alternative demonstration, we also pro-

vide an another model selection problem in the supplementary con-

tent, as described in the methods.

TGF-b binds to the autophosphorylated homodimeric type 2

TGF-b receptors which phosphorylate and heterodimerize with

homodimers of type 1 TGF-b receptors (De Crescenzo et al., 2001).

This event leads to internalization of the ligand–receptor complex

into one of two types of membrane bound intracellular compart-

ment: early endosomes or caveolae. Evidence in Di Guglielmo et al.

(2003) suggests that ligand–receptor complexes in the early endo-

some, rather than the caveolae, are responsible for conveying the

TGF-b signal, via phosphorylation, to the Smad second messenger

system. Phosphorylated Smad2/3 binds to Smad4, translocates to

the nucleus and induces transcription of TGF-b responsive genes

(Schmierer et al., 2008). Smad7 is a well characterized negative

regulator of the Smad system and is transiently produced in response

to TGF-b (Hayashi et al., 1997; Nakao et al., 1997). Multiple mech-

anisms of negative regulation by Smad7 have been reported, includ-

ing the recruitment of E3 ubiquitin ligases to either Smad2/3 in

competition with Smad4 (Yan et al., 2016) or to activated TGF-b
receptors in caveolae (Di Guglielmo et al., 2003; Kavsak et al.,

2000). Many biological entities have been proposed as regulators of

this process, including PPM1A (Lin et al., 2006), NEDD4L (Gao

et al., 2009), SNoN (Stroschein et al., 1999) and Ski. Ski acts as co-

repressor at Smad regulated genes by recruiting histone deacetylases

which leads to epigenetic constriction of Smad-responsive genes

(Akiyoshi et al., 1999).

The Zi and Klipp (2007) model (Fig. 1a) combines work by Vilar

et al. (2006) describing TGF-b receptor internalization and recycling

dynamics with a Smad nuclear-cytoplasmic translocation module. In

this model, an explicit representation of the Smad7 negative feed-

back was not included, but was instead incorporated into the rate

law for the reaction describing the degradation of the activated lig-

and–receptor complexes from within caveolar compartments

(‘LRC_Cave’ in Fig. 1a). The purpose of the model selection prob-

lem presented here is to investigate the feasibility of three alternative

mechanisms of negative regulation (Fig. 1) in explaining the experi-

mental data (Fig. 2).

After calibration, the ‘viz.ModelSelection’ class was used to cal-

culate and visualize the Akaike information criteria (AIC) corrected

for small sample sizes (AICc) (Fig. 3a) and the Bayesian information

criteria (BIC) (Supplementary Fig. S1). With these statistics, a lower

value indicates a better agreement with the data and thus a better
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(a)

(c) (d) (e)

(b)

Fig. 1. Network representation of ODE networks used in model selection problem. (a) The Zi and Klipp (2007) model is a common component of each model vari-

ant. (b) Simulation output from the Zi and Klipp (2007). (c–e) The model variable ‘Smads_Complex_n’ is responsible for transcription reactions in model variants

while ‘LRC_Cave’ is degraded by Smad7 protein, thus completing the explicit representation of the Smad7 negative feedback loop. In (c) Model 1, Smad7 partici-

pates in but is not consumed by the reaction with LRC_Cave while in (d) Model 2, Smad7 is consumed by this process. In (e) Model 3, the same topology as

Model 2 is assumed but it also incorporates second order mass action degradation kinetics for Ski protein

(a)

(b)

Fig. 2. Experimental data used for model calibration. Neonatal human dermal

fibroblasts were treated with 5 ng ml–1 TGF-b for 0, 1, 2, 4, 8 and 12 h. Shown

are profiles of 6 biological replicates for (a) Smad7 and (b) Ski messenger RNA,

measured by high throughput quantitative PCR as described in the methods

(a)

(b)

Fig. 3. Model selection criteria. (a) Distribution of Akaike information

criteria (AICc) per model displayed as violin plot. The central white dot repre-

sents the median; the thin centre line is the 95% confidence interval; the thick

central bar is the interquartile range and the width represents the frequency

with which a score was observed. These graphs were produced with

‘viz.ModelSelection’. (b) A comparison of model selection criteria for the best

ranking parameter sets in each model
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model. In the current problem, a closer inspection of the best model

selection values (Fig. 3b) indicates that from a purely statistical per-

spective, the topologies of Models 1 and 2 are indistinguishable in

terms of the experimental data (Fig. 2) while Model 3 is worse.

The simulated profiles for each model (Fig. 4) supports the model

selection results. While the Smad7 mRNA and Ski mRNA profiles are

slightly greater in Model 1 and Model 3 respectively, all profiles are

virtually indistinguishable between all the models. It is likely that the

difference in the Ski mRNA profile in Model 3 accounts for the differ-

ence observed in the best model selection criteria (Fig. 3b). Regardless

of this slight difference, the same qualitative interpretation holds for

each model: the speed and magnitude of both Smad7 and Ski mRNA

induction profiles are overestimated while the protein level data fits

each model to a high degree of confidence.

When looking at model predictions it is important to consider

whether the parameter sets used to produce them are actually the

best parameter sets. This is important because it is quite common

for parameter estimation algorithms to find sub-optimal parameters.

Here, while improvements can still be made, the algorithm and set-

tings were reasonably well-chosen because the likelihood-ranks plot

produced a step-like shape for each model (Fig. 5), heuristically

mapping out where the local and global minima are.

Profile likelihoods are only meaningful when calculated

from a minimum with respect to the data. For this reason the best

three parameter sets from the stochastic genetic algorithm in Model 2

were ‘chased’ with a Hooke & Jeeves algorithm (tolerance¼1e�10

and iteration limit¼1000) using the ‘PyCoTools.tasks.Chaser

ParameterEstimations’ class. Profile likelihoods were then computed

Fig. 4. Ensemble time courses produced with ‘viz.PlotTimeCourseEnsemble’. The top 10 best parameter sets for each model were sequentially inserted into their

respective models. Time courses were simulated with each parameter set and averaged. Red profiles indicate experimental data while solid blue lines are simu-

lated profiles. Shaded areas represent 95% confidence intervals

(a) (b) (c)

Fig. 5. A ‘likelihood-ranks’ plot. The residual sum of squares objective function value is plotted against the rank of best fit for each parameter estimation iteration

for each model (a–c). Graphs were produced with ‘viz.LikelihoodRanks’
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around these three parameter sets, again using the Hooke & Jeeves al-

gorithm (tolerance¼1e�6 and iteration limit¼50). Sampling was

conducted on a log10 scale over 6 orders of magnitude, 1e3 times

above and below the best estimated parameter values. For brevity,

profile likelihoods for Models 1 and 3 are not discussed. The identifi-

ability analysis shows that seven of the ten parameters are identifiable

and the remaining three are practically non-identifiable (Fig. 6 and

Supplementary Fig. S2).

To investigate the source of these non-identifiabilities, two strategies

were employed: Pearson’s correlation analysis and the ‘profile likeli-

hood model reduction’ approach as described in Maiwald et al. (2016).

The Pearson’s correlation approach identified several parameter pairs

as putative linear correlations (Supplementary Fig. S3). Of these, only

the most correlated pair, the km and I50 parameters of Smad7 transcrip-

tion, was verified to be log-linearly related in both scatter graphs

(Fig. 7a) and profile likelihood traces (Fig. 7b). To resolve this issue,

one could replace one of the free parameters in the relationship with

the algebraic equation resulting from the fit of a linear model to the

profile likelihood trace (Fig. 7b). The other putative relationships sug-

gested by the Pearson’s correlation analysis (Supplementary Fig. S3)

were also investigated but the relationships were more difficult to inter-

pret. As an example, Supplementary Figure S4 shows the relationship

between ‘(SkiDeg).k1’ and ‘(SkimRNADeg).k1’ parameters. While the

scatter graph shows a reasonable linear correlation (Supplementary Fig.

S4a), it is defined on a very small interval and the profile likelihood is

clearly non-linear, albeit linear on a sub-domain of the parameter space

(Supplementary Fig. S4b).

Lastly, distributions of parameter estimates were visualized using

box plots (Supplementary Fig. S5) and histograms (Supplementary

Fig. S6). Despite being presented last, these are computationally in-

expensive to generate and are good to view prior to more involved

analyses such as profile likelihoods. To demonstrate the effect of

sub-optimal parameter sets, a comparison is made between box

plots generated for Model 2 using all parameter estimation data

(Supplementary Fig. S5a) to those using only the top 10% ranking

parameter sets (Supplementary Fig. S5b). Supplementary Figure S5

demonstrates that suboptimal parameter sets can distort the insight

that can be gained from visually exploring parameter estimation

data. Without truncating the parameter estimation data, the obser-

vation that the distributions of parameters from the best parameter

sets reflect the identifiability status of the model, would be missed.

4 Discussion

PyCoTools is an open source Python package designed to assist

COPASI users in the task of modelling biological systems.

PyCoTools offers an alternative high level interface to COPASI tasks

including time courses, parameter scans and parameter estimations.

While COPASI implements the heavy computation, PyCoTools

automates task configuration and execution, thereby promoting effi-

ciency, organization and reproducibility.

PyCoTools bridges COPASI with the Python environment allowing

users to take advantage of Python’s numerical computation, visualiza-

tion, file management and code development facilities. One tool in par-

ticular, the Jupyter notebook, allows annotation of code blocks with

rich text elements and is a powerful environment from which to develop

and share annotated workflows. The combination of Jupyter note-

books, COPASI and PyCoTools therefore enables the production of re-

producible and shareable models that are annotated with justifications.

PyCoTools supports model editing using both an object-oriented

approach and with Antimony, a model specification language for

building SBML models (Smith et al., 2009). The Antimony and

COPASI user interface are complementary and can be used together

to enhance the modelling process. For example, models in Antimony

format can be used as a ‘hard copy’ while a parallel COPASI model

can be used for exploratory changes that are ‘committed’ to the hard

copy when satisfactory.

PyCoTools supports the configuration of ‘composite’ tasks

which are those comprised of a combination of other tasks. These

tasks can be configured using the COPASI user interface but general-

ly take time and are vulnerable to human error. For example, users

can automatically configure repeat parameter estimations, chaser

parameter estimations and model selection problems, thereby cir-

cumventing the requirement for manual configuration.

Fig. 6. Profile likelihoods were calculated using the ‘tasks.ProfileLikelihood’ class for the top three parameter sets of Model 2 and visualized using

‘viz.PlotProfileLikelihood’. The black stars indicate the best estimated parameter. The dotted green line indicates the 95% confidence level and the red spots are

the minimum RSS value achieved after re-optimization of all parameters except the parameter of interest (x-axis). Lines between red spots have been interpo-

lated using a cubic spline

Fig. 7. Identification of a log-linear relationship between

‘(Smad7Transcription).km’ and ‘(Smad7Transcription).I50’ (km and I50, re-

spectively). (a) Scatter graph showing that as km increases, I50 decreases

(r2¼0.995, P-value¼1e�39). (b) The path traced by km is plotted as a function

of I50 during the profile likelihood calculation. Graphs were produced using

‘viz.Scatters’ and ‘viz.PlotProfileLikelihood’ respectively
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Another composite task supported by PyCoTools is the profile

likelihood method of identifiability analysis (Raue et al., 2009).

Models with non-identifiable parameters are common in systems

biology and it is useful to have a means of assessing which parame-

ters are reliably defined by an estimation problem. PyCoTools auto-

mates the procedure outlined by Schaber (2012) for conducting

profile likelihoods in COPASI, thereby enabling COPASI users to

perform an identifiability analysis more efficiently and in a way less

amenable to errors than manual configuration. PyCoTools also ena-

bles users to calculate profile likelihoods from multiple parameter

sets thereby enabling users to address one of the shortcomings of the

profile likelihood approach: that it is a local method of identifiabil-

ity analysis.

One alternative to COPASI and PyCoTools is Data2Dynamics

(Raue et al., 2015). While Data2Dynamics provides an excellent

range of model analysis tools, the transfer of files between COPASI

and Data2Dynamics is imperfect, often necessitating that a COPASI

user redefine their model within the Data2Dynamics environment.

PyCoTools allows COPASI users to stay within the COPASI envir-

onment, thereby making profile likelihood analysis more accessible

to COPASI users.

In this work we have demonstrated PyCoTools by posing a

model selection problem to discriminate between three model topol-

ogies (Fig. 1) with respect to some experimental data in response to

TGF-b (Fig. 2). Rather than using synthetic data, our aim was to

demonstrate in a ‘real world’ scenario how PyCoTools can be used

together with COPASI to calibrate a set of models and discriminate

between them.

As this is primarily a software demonstration and not a biologic-

al investigation, the model selection problem proposed was designed

to be as simple as possible whilst still being non-trivial.

Mechanistically the three models (Fig. 1) are alternative hypotheses

which attempt to address the dynamics of the Smad7 (Fig. 2) nega-

tive feedback. Model alternatives were based on a published dynam-

ic model of TGF-b signalling (Zi and Klipp, 2007) that was adapted

to incorporate Smad7. Since the decay of Smad7 is transient and fast

(Fig. 2a), the simplest mechanism involving only Smad7 with first

order mass action degradation kinetics would not be able to account

for the observed decline in Smad7. Therefore Smad7 degradation

was assumed to be an active process. Since Ski is a known Smad co-

repressor (Akiyoshi et al., 1999) and Smad7 is a Smad responsive

gene (Hayashi et al., 1997), Ski was proposed to be transcribed in

response to TGF-b (Fig. 2b) and inhibit Smad7 transcription. The

model alternatives are slightly different representations of this hy-

pothesis (Fig. 1).

In this model selection problem it is clear that the model topolo-

gies chosen are too similar to be discriminated with the experimental

data and therefore the models are virtually indistinguishable

(Fig. 4). Generally, with model selection, the strongest statement

that can be made about a model is a rejection, since accepting the

hypothesis does not necessarily guarantee that it is correct. By com-

paring the performance of multiple models in model calibration it is

possible reject one or more topologies in favour of another. Here,

however, because the models are so similar, it was not possible to

provide support for any model being worse than any other, despite

the minor differences in model selection criteria for Model 3

(Fig. 3a). In a more comprehensive investigation many more topolo-

gies would be similarly compared to iteratively reject topologies

until the model is capable of making useful, validatable predictions.

Regardless of the biological interpretation, we have demon-

strated the process of using PyCoTools and COPASI to discriminate

between model alternatives and to critically assess the parameter

estimation process. Model calibration is an essential part of a sys-

tems modelling investigations, but it is often limited by a vast,

underdetermined parameter space and therefore, procedures that

provide a measure of uncertainty are valuable. In PyCoTools, we

have implemented a number of features aimed towards gauging con-

fidence and uncertainty in the optimization process so that COPASI

users can diagnose problems and make better informed decisions

based on their parameter estimation output. These tools include: the

likelihood-ranks plot (Fig. 5) which enables evaluation of an opti-

mization algorithm and settings on a specific problem (Raue et al.,

2013); ensemble time courses (Fig. 4) which calculate confidence

intervals from predictions made from multiple best parameter sets

and propagates uncertainty from parameter estimates to model pre-

dictions; profile likelihoods for assessing identifiability (Fig. 6,

Supplementary Fig. S2) and for model reduction (Fig. 7b) (Maiwald

et al., 2016); Pearson’s correlation heat maps (Supplementary Fig.

S3) and scatter graphs (Fig. 7a) for identifying relationships, and

box plots (Supplementary Fig. S5) and histograms (Supplementary

Fig. S6) for visualizing distributions of parameter estimates.

Together these tools provide detailed information about an opti-

mization problem that can be used to guide the modelling process.

5 Conclusion

PyCoTools is an open-source and extensible Python package

designed to facilitate the use of COPASI, particularly for model

calibration. PyCoTools supports a range of tools which are either

wrappers around COPASI tasks, an ordered workflow of task con-

figurations, or plotting facilities for exploratory data analysis on

parameter estimation data. Use of PyCoTools can enhance the ef-

fectiveness with which one can calibrate models to experimental

data and discriminate between alternate hypotheses.
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