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Abstract

Fold recognition, or threading, is a popular protein structure modeling approach that uses known structure templates to
build structures for those of unknown. The key to the success of fold recognition methods lies in the proper integration of
sequence, physiochemical and structural information. Here we introduce another type of information, local structural
preference potentials of 3-residue and 9-residue fragments, for fold recognition. By combining the two local structural
preference potentials with the widely used sequence profile, secondary structure information and hydrophobic score, we
have developed a new threading method called FR-t5 (fold recognition by use of 5 terms). In benchmark testings, we have
found the consideration of local structural preference potentials in FR-t5 not only greatly enhances the alignment accuracy
and recognition sensitivity, but also significantly improves the quality of prediction models.
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Introduction

Modeling of protein structures based on structure templates

found from experimentally determined structures, called template-

based modeling (TBM), is currently the most effective way to build

a 3-D structure for a protein of unknown structure. To build a

structure model for a target protein sequence, the TBM process

consists of four major steps: identification of structural templates,

alignment of target sequence to structural templates (or sequence-

structure alignment), model building, and model quality evalua-

tion. The first two steps are the key steps in the TBM process,

improvement of which can greatly improve the quality of the final

predicted model [1,2,3,4,5,6,7,8,9,10,11,12,13]. For target se-

quences with high sequence similarity to those of structure

templates, the structural templates can be easily identified and

the target sequences can be reliably aligned to the structural

templates by those methods that use sequence information alone

such as PSIBLAST [14] and HMMER [15]. However, for target

sequences with low sequence similarity, the reliable identification

of structural templates and accurate sequence-structure alignment

requires a much more complex process called threading or fold

recognition that integrates many other types of information with

sequence profile information.

The secondary structure information is probably the most

popular one that has been integrated with sequence profile

information in most of the existing fold recognition methods

[9,10,11,16,17,18,19]. Other types of structural information such as

contact information, solvent accessibility, predicted backbone

torsion angles and structure profiles have also been explored to

improve the accuracy of fold recognition [20,21,22,23,24,25].

Arguably, the integration of a proper type of structural information

can significantly improve fold recognition, particularly for those

target sequences with low sequence similarity to structural templates

of similar fold.

In this work, we introduce another type of structural

information, local structural preference information, in fold

recognition. The structure preferences of 3-residue and 9-residue

fragments were derived as potential-like terms from known

structures. We have shown that integration of these terms with

the three widely used information, sequence profile, secondary

structure and hydrophobic score allows us to develop an effective

fold recognition method, called FR-t5, an abbreviation of fold

recognition with 5 terms.

Results

Overview of the FR-t5, a novel fold recognition approach
by considering local structure preference potentials
(LSPPs)

We have derived local structural preference potentials (LSPPs)

to capture the structure preference of sequence fragments of short

length. Fragments of 3- and 9-amino acids are considered in our

work. To calculate the 3-residue and 9-residue LSPPs, we first

divide the conformers of 3-residue and 9-residues fragments into a

number of bins, then compute the distribution of these binned

conformers among known structures (Details see Methods). By

combining 3-residue and 9-residue LSPPs with the three widely

used information, sequence profile, secondary structure and

hydrophobic score, we further develop a new threading algorithm
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called FR-t5. In FR-t5, dynamic programming (DP) [26,27] is

used to make alignments between the query and the templates.

Then the templates are selected to build the structure models for

the query protein sequence using MODELLER [28]. A detailed

description of the method is given in Methods.

In the following results, we will first show based on different tests

that the incorporation of LSPPs indeed improves the fold

recognition of FR-t5 in both the threading alignment and the

sensitivity of fold recognition by comparing to the method without

considering LSPPs which we called as FR-t3 for convenience.

Then, we will compare the FR-t5 to the state-of-the-art fold

recognition methods. Finally, we will demonstrate the perfor-

mance of FR-t5 in the recent CASP9 of 2010. The consideration

of LSPPs has enabled us to develop an effective fold recognition

approach.

LSPPs improves the threading alignment in FR-t5
To test whether the incorporation of LSPPs improves the

alignment accuracy, the performance of FR-t5 was evaluated by

comparing to FR-t3 on two datasets: SALIGN [29] and

MUSTER190 [19]. The SALIGN dataset consists of 200 pairs

of structurally similar proteins with 65% of equivalent Ca atoms

superposed within an RMSD of 3.5 Å. But the sequence similarity

of these SALIGN protein pairs is low, ,20% sequence identity on

average. The Muster190 dataset contains 190 protein pairs whose

structural similarities are indicated by SCOP hierarchical structure

classification, 120 of them having same folds but in different

superfamilies and 70 of them belonging to same superfamilies but

not same family. The structural alignments used as gold standards

were carried out by the TM-align program [30]. The MUS-

TER190 dataset could be more difficult to align than SALIGN,

because the protein pairs of MUSTER190 (average TM-score =

0.536) are less structurally similar than those of SALIGN (average

TM-score = 0.653).

To compare the alignment accuracy of FR-t5 and FR-t3 on the

two datasets, for each protein pair, we align the query with its

template using the threading program FR-t5 and FR-t3,

respectively. The alignment accuracy is calculated as the

percentage of correctly aligned positions by comparing to the

gold standards generated by the TM-align program (see Table 1).

Table 1 summarizes the alignment accuracies of FR-t5 and FR-

t3 on both datasets. Obviously, FR-t5 achieves better alignments

than FR-t3 (58.9% vs 57.1% on SALIGN and 36.0% vs 35.1% on

MUSTER190). These tests demonstrate that the consideration of

LSPPs in fold recognition can improve the alignment accuracy.

LSPPs improves fold recognition sensitivity in FR-t5
To further investigate whether the consideration of LSPPs is

able to improve the fold recognition sensitivity, we compared FR-

t5 with the method without considering LSPPs, FR-t3, on the

Lindahl dataset [31] which is a widely used dataset for

benchmarking the sensitivity of other threading programs

[3,6,7,10,11,31,32,33]. The Lindahl dataset includes 976 pro-

teins, of which 555, 434 and 321 proteins have at least one match

with the others in the dataset at the family, superfamily and fold

levels, respectively. To evaluate the contribution of LSPPs in fold

recognition sensitivity by comparing FR-t5 to FR-t3, each protein

was aligned with the other 975 proteins. The fold recognition

sensitivity is measured as the percentages of the true hits

identified as the first rank or as one of the top five ranks (see

Table 2).

As shown in Table 2, the FR-t5 outperforms FR-t3 in Top1 by

2.4%, 4.9%, and 5.4%, at the level of family, superfamily, and

fold, respectively, indicating that the consideration of LSPPs can

improve the sensitivity of fold recognitions at all SCOP levels. But

compared to the improvement at family level (84.0% versus 81.6%

in Top1 and 90.2% versus 89.7% in Top5), the improvements at

the superfamily level (49.1% versus 54.0% in Top1 and 64.7%

versus 71.9% in Top5) and the fold level (29.6% versus 35.0% in

Top1 and 58.4% versus 65.5% in Top5) are even more significant.

This shows the advantage of the incorporation of LSPPs for fold

recognition in its ability to significantly improve fold recognitions

for proteins sharing low sequence similarity.

The consideration of LSPPs in FR-t5 significantly
improves the quality of structure modeling in CASP8 test
set

To gain more comprehensive insights into the contribution of

LSPPs in fold recognition, the methods with (FR-t5) and without

(FR-t3) consideration of LSPPs were more rigorously compared by

applying them to find structure templates and make structure

prediction for the CASP 8 targets [34]. In CASP 8, 164 domains

from 121 target proteins to be predicted were used to evaluate the

server prediction performance [35]. Of the 164 domains, 13 were

defined as free modeling (FM) targets and 154 as template-based

(TBM) targets (including 3 FM targets). Of the 154 TBM targets,

50 were further defined as the high-accuracy (TBM-HA) targets.

The above classification was based on sequence and structure

similarity [35]. To ensure a blind prediction, we only used the

non-redundant (NR) sequence database (ftp://ftp.ncbi.nih.gov/

blast/db) and PDB database [36] generated before the start of

CASP8. The prediction performance is evaluated by the TM-score

of the first model and Top 5 models.

As shown in Table 3, when the first models for all 164 targets

were considered, FR-t5 outperforms FR-t3 in both TBM targets

and FM targets by an improvement of TM-score about 1.9% on

average. The improvement of FR-t5 over FR-t3 is more significant

for the difficult FM targets of no detectable templates: a 12.5%

(0.025/0.2) increase of TM score. While for the easy 50 TBM-HA

domains, there is no significant improvement, emphasizing the

contribution of LSPPs to the structure prediction beyond sequence

similarity.

Table 1. The alignment accuracies for FR-t5 and FR-t3 on
SALIGN and MUSTER190 datasets.

Method SALIGN MUSTER190

FR-t3 57.160.14%a 35.160.20%

FR-t5 58.960.16% 36.060.19%

aMean value and the standard error (estimated by bootstrap simulation on
10,000 re-sampling of the dataset).

doi:10.1371/journal.pone.0017215.t001

Table 2. The benchmarking of the sensitivity of FR-t5 and FR-
t3 on Lindahl dataset.

Method Family (%) Superfamily (%) Fold (%)

Top1 Top5 Top1 Top5 Top1 Top5

FR-t3 81.6 89.7 49.1 64.7 29.6 58.4

FR-t5 84.0 90.2 54.0 71.9 35.0 65.5

doi:10.1371/journal.pone.0017215.t002

FR-t5: A Fold Recognition Method
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Comparison with other methods
As shown above, the incorporation of LSPPs can significantly

improve both alignment accuracy and sensitivity of fold recogni-

tion. Here we ask whether FR-t5 which simply incorporates local

structural preference information into the three widely used terms

(sequence profile, secondary structure and hydrophobic score) can

achieve a satisfactory performance that is comparable to the

existing popular fold recognition programs. In developing fold

recognition methods, the SALIGN dataset [29] and Lindahl

dataset [31] have been widely used to test alignment accuracy and

fold recognition sensitivity, respectively. In order to compare FR-

t5 with the existing popular fold recognition methods directly, we

carried out the tests based on these two datasets that had been

previously used to test or develop these existing methods.

Based on the dataset SALIGN that was used to assess the

performance of BLAST [37], COMPASS [38], SALIGN [29],

SPARKS [7], SP3 [9] and UNI-FOLD [39], we compared the

alignment accuracy of FR-t5 with the alignment accuracies of

these methods reported in the literature [39]. As shown in table 4,

FR-t5 is slightly better than UNI-FOLD, the best of these methods

(58.9% vs 57.4%).

Based on the Lindahl dataset, we also compared the fold

recognition sensitivities between FR-t5 and the existing 9

threading methods that demonstrated good performance in

previous CASPs, namely SAMT98 [40], FUGUE [3], RAPTOR

[6], SPARKS [7], HHpred [18], FOLDpro [32], SP3 [9], SP4

[10], SP5 [11]. Table 5 shows that in terms of fold recognition

sensitivity, FR-t5 is comparable to the best of these existing 9

threading methods in finding structural templates for proteins with

a wide range of sequence similarities to their template structures

(from the family level to fold level).

Participation of FR-t5 in the recent CASP 9
Our newly developed FR-t5 has participated in the recent

CASP9 of 2010 under the name of Jiang_THREADER. As a server

group, Jiang_THREADER made structure prediction for all the

147 domain targets provided by CASP9. Based on the evaluation,

our program Jiang_THREADER was ranked 24th among all 81

structural modeling programs (http://predictioncenter.org/casp9/

CD/data/html/groups.2.html), demonstrating the relative good

performance of our FR-t5 in structural modeling, which is

comparable to most of the state-of-the-art structural modeling

programs.

The prediction results from all participated methods have

been released online (http://predictioncenter.org/download_

area/CASP9/server_predictions/), allowing us to make compar-

isons based on individual predictions. Here we would like to show

some successful examples predicted by FR-t5 (See Figure 1). One

example is T0549 of 84 AA, the FR-t5 predicts the model with a

TM-score of 0.662 which has the best performance among all

prediction methods;Another example is T0592 of 144 AA, the FR-

Table 3. The comparison of FR-t5 and FR-t3 on CASP8 test set.

Method ALLa TBMb TBM-HAc FMd

Top1e Top5f Top1e Top5f Top1e Top5f Top1e Top5f

FR-t3 0.629 0.661 0.660 0.691 0.837 0.852 0.200 0.258

FR-t5 0.641 0.673 0.670 0.700 0.837 0.862 0.225 0.277

aAll 164 target domains(there are 3 overlap targets between TBM and FM categories).
b154 TBM target domains.
c50 TBM-HA target domains.
d13 FM target domains.
eThe average TM-scores for Top1 models of the two methods are given.
fThe average TM-scores for Top5 models of the two methods are given.
doi:10.1371/journal.pone.0017215.t003

Table 4. The alignment accuracy (%) of FR-t5 on the SALIGN
test data.

Methods Acc

FR-t5 58.9

BLAST 26.1

COMPASS 43.2

SALIGN 56.4

SPARKS 53.1

SP3 56.6

UNI-FOLD 57.4

Since the programs BLAST, COMPASS, SALIGN, SPARKS, SP3, UNI-FOLD have all
been tested on the SALIGN test data previously, for comparison, their results
were taken from the previous studies: BLAST, COMPASS, and SALIGN from
Marti-Renom et al [29], SPARKS and SP3 from Zhou and Zhou [9], and UNI-FOLD
from Poleksic and Fienup [39].
doi:10.1371/journal.pone.0017215.t004

Table 5. The comparison of FR-t5 with other methods for
fold recognition on the Lindahl benchmark.

Methods Family (%) Superfamily (%) Fold (%)

Top1 Top5 Top1 Top5 Top1 Top5

FR-t5a 84.0 90.2* 54.0 71.9* 35.0 65.5*

SAMT98b 70.1 75.4 28.3 38.9 3.4 18.7

FUGUEb 82.2 85.8 41.9 53.2 12.5 26.8

RAPTORb 75.2 77.8 39.3 50.0 25.4 45.1

SPARKSb 81.6 88.1 52.5 69.1 24.3 47.7

FOLDprob 85.0* 89.9 55.5 70.0 26.5 48.3

HHpredc 82.9 87.1 58.8 70.0 25.2 39.4

SP3c 81.6 86.8 55.3 67.7 28.7 47.4

SP4c 80.9 86.3 57.8 68.9 30.8 53.6

SP5c 81.6 87.0 59.9* 70.2 37.4* 58.6

athis work.
b, cResults are cited from from Refs [32] and [11], respectively.
*The best results are marked by asterisk.
doi:10.1371/journal.pone.0017215.t005

FR-t5: A Fold Recognition Method
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t5 predicts the model with a TM-score of 0.771, which comes next

to Raptor (with a TM-score of 0.789). For the more difficult target

T0553 of 141 AA, FR-t59s prediction is the best among the fold

recognition methods, which predicted a model with a TM-score of

0.332 that is comparable to the de novo prediction method

BAKER-ROSETTASERVER with a TM-score of 0.331. We

note that it is hard to do a fair comparison with other prediction

methods based on the prediction models submitted to the CASP

prediction center. First, as pointed out by Wu and Zhang [19], the

threading performance is usually sensitive to the template library

which varies greatly between different methods. Second, in CASP,

some predictions could combine several threading methods (so

called meta-threading methods) [5,41,42,43], integrate multiple

templates [44,45,46,47], perform optimizations such as all-atom

refinement [48,49] and employ ab initio prediction when the

correct templates are ambiguous [45,48,50]. However, our FR-t5

prediction does not incorporate the results of other methods of

same kind or perform any further refinement. Nonetheless, the

relative good performance of FR-t5 in CASP9 has demonstrated

its potential application to structure modeling.

Discussion

In this work, we have developed a new threading method FR-t5

by combining the information of local structural preference for 3-

residue and 9-residue fragments with sequence profile, predicted

secondary structure, and hydrophobic scoring. The incorporation

of the two new terms is intended to capture the local structure

stiffness when the template structure is aligned with the query

sequence. To explore the effects of the two new terms on the

improvement of fold recognition, the FR-t5 method is compared

with the method FR-t3 that only considers sequence profile,

predicted secondary structure and hydrophobic scoring. Based on

testings on three public benchmarks, we have shown that the

incorporation of the two terms improves both the alignment

accuracy and recognition sensitivity in fold recognition. Moreover,

when testing on the CASP8 targets, we found that incorporation of

the two new terms can significantly improve the structure

modeling for the targets of low similarity, with an improvement

of TM-score of 12.5% for the 13 hard targets.

Many pioneering studies have analyzed the characteristics of

recurring local structural fragments and their mappings to local

sequence properties [51,52,53,54,55,56,57,58,59,60]. The map-

pings between local sequence and structure have been used to

improve protein structure modeling. The Rosetta program [59] uses

the information of 3-residue and 9-residue fragments for de novo

protein structure prediction and refinement of protein prediction

models. In the SP3/SP4/SP5 [9,10,11] and MUSTER [19], the

local structural profiles derived from 25 top fragments in the

comparison of the 9-residue fragment with all same-size fragments

in the structural database have also been shown to contribute much

to the good performance of fold recognition. Recently, Zhou and

Skolnick showed that use of fragment comparison and template

comparison which provide local and global quality evaluation of the

prediction model, respectively can better rank and assess the

prediction model [24]. These studies have demonstrated the direct

use of local sequence and structure mappings in terms of fragment

library to improve protein structure modeling. In our study, inspired

by the work of Shakhnovich group that used a local sequence-

energy term for protein structure de novo prediction [61], we have

derived a statistics-based local structural preference potential (LSPP)

for 3-residue and 9-residue fragments for fold recognition. Indeed,

the integration of 3-residue and 9-residue LSPPs into the three

widely used information, sequence profile, secondary structure and

hydrophobic score has led us to develop the effective fold

recognition program, FR-t5. We believe the development of the

local structural preference potential will be of great benefits for

application, because it is independent of databases and requires no

structural comparison which is computationally expensive. There-

fore, the local structural preference potential we developed can be

easily incorporated into other threading methods.

Consideration of individual terms that are independent is very

important for development of an effective knowledge-based

scoring function. In our work, we have considered two types of

structural information. One is the secondary structure information

Figure 1. Modeled structures for three CASP9 targets, T0549, T0592 and T0553, by FR-t5. (a) The superposition between the native
structure of T0549 (green) and the top1 model (red) predicted by FR-t5. (b) The superposition between the native structure of T0592 (green) and the
top1 model (red) predicted by FR-t5. (c) The superposition between the native structure of T0553 (green) and the top1 model (red) generated by
FR-t5.
doi:10.1371/journal.pone.0017215.g001

FR-t5: A Fold Recognition Method
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and the other is local structural preference information. Although

the two types of structural information can be highly correlated,

they are different, which can capture different aspects of structural

feature. The secondary structure term is intended to capture the

secondary structure propensity of a residue, which is based on

three crude categories: alpha helix, beta sheet and coil regions.

While the LSPPs used in our study is able to capture more detailed

local structural conformation at short fragment level. In our

testing, we found that the incorporation of LSPPs significantly

improve the performance, suggesting the complementary nature of

the two types of structural information in fold recognition.

Although we have shown that consideration of local structure

information in potential-like forms has significantly improved fold

recognition. There is still much room to improve. First, the

fragment sizes have not been extensively explored. In our study, for

simplicity, we only attempted fragments of 3-residue and 9-residue.

Second, since different representations of the structural fragments

can reveal different features of the local structures, finding better

way of structure representation could dramatically improve fold

recognition. Lastly, a more systematic and comparative analysis is

needed to look for discretization of the local structural space, which

will generate more appropriate bin numbers for the improvement of

fold recognition. Despite this, our consideration of local structural

preference information has led us to develop an effective fold

recognition method, FR-t5, which can achieve a comparable

performance to the existing well-established threading methods.

Methods

Local Structural Preference Potential of 3-residue
Fragments

The local structural preference potential of the 3-residue

fragment is computed by following Yang et al’s method [61] with

adaptation. Let us suppose a 3-residue fragment that consists of

three amino acids Ai{1, Ai, and Aiz1, the four variables

wAi
,QAi

,hb and hP are used to represent the conformation space

of the 3-residue fragment, where hb is the angle between b1
Ai

and

b2
Ai

, hP is the angle between P1
Ai

and P2
Ai

, respectively (see

Figure 2). The width of bins was 60u, 60u, 30u, 30u for

wAiz1
,QAiz1

,hb and hP, respectively. The potential of the 3-residue

fragment EAi{1AiAiz1
is obtained from the Potential Database (see

below) by:

EAi{1AiAiz1
~

{mNjz 1{mð ÞN̂Nj

mNjz 1{mð ÞN̂Nj

ð1Þ

where Nj and N̂jNj are the number of observations in the j-th bin

and the total number of observations not in the j-th bin,

respectively. The normalization process requires the careful choice

of the value of m (0,m,1) to balance the contribution of the

positive counts
P

Nj and the negative counts
P

N̂jNj for all the bins

in the database. Because the total number of observations not in

the j-th bin, N̂jNj is always far larger than number of observations in

the j-th bin, Nj , a big weight (m.0.5) should be given to the

positive counts. The value of m should be chosen to make

vEAi{1AiAiz1
w~0 (net interaction energy, i.e., the average of

energies for the bins that have at least one positive count.). In the

case of 3-residue fragment, the value of m~0:991 is chosen to

make the net interaction zero. The potentials of all 8000 3-residue

fragments over the binned conformers constitute an energy table.

In threading, we assume a 3-residue fragment to adopt its

template conformation, then its local structural preference

potential Efrag3 can be obtained from above energy table.

The Local Structural Preference Potential of 9-residue
Fragment

The local structural preference potentials of a 9-residue

fragment describe the statistical distributions of its binned

conformers. Given the myriad of conformers of 9-residue

fragments, to avoid the undersampling issue, we introduce a

coarse-grained model described as follows: First, to reduce the

sequence space of 9-residue fragments, the 20 amino acids were

re-represented as three alphabets based on their hydrophobic-

polar properties: H for hydrophobic residues F, W, Y, C, M, I, L

and V; N for neutral residues A, G, T, S and P; and P for polar or

hydrophilic residues N, Q, D, E, H, R and K [62]. Then, to

decrease degrees of freedom in the conformation of a 9-residue

fragment, each residue is represented by its Ca. Supposing Ca
Bi

is

the Ca atom of the residue Bi (where Bi is the HNP type of a

residue i), Figure 3 illustrates the coarse-grained model of a 9-

residue fragment that centers on the residue i. In the coarse-

grained model, the conformation of 9-residue fragment has same

number of degrees of freedom as 3-residue fragment (comparing

Figure 3 and Figure 2). Therefore, by following the conformation

annotation of 3-residue fragment as shown in Figure 2, we

introduce b1
Bi

to represent the vector bisecting two vectors

(Ca
Bi{3

Ca
Bi{4

and Ca
Bi{3

Ca
Bi{2

) and P1
Bi

to denote a vector in a

plane defined by three continuous Ca atoms (Ca
Bi{4

,Ca
Bi{3

, and

Ca
Bi{2

). Therefore, the four variables wBiz1
, QBiz1

,hb, and hp can

also be used to describe the reduced conformation space of 9-

residue fragment, where wBi
is the virtual dihedral angle defined by

four continuous Ca atoms (Ca
Bi{2

,Ca
Bi{1

,Ca
Bi

, and Ca
Biz1

); QBi
is the

virtual dihedral angle defined by four continuous Ca atoms (Ca
Bi{1

,

Ca
Bi

,Ca
Biz1

, and Ca
Biz2

); hb is the angle between b1
Bi

and b2
Bi

; and hp

is the angle between P1
Bi

and P2
Bi

. wBiz1
, QBiz1

, hp, and hp are

Figure 2. A Schematic Diagram of Spatial Representation and Conformational Constraints of a 3-residue Fragment. The bold letters
b1

Ai
and b2

Ai
denote the bisecting vector of Ca

Ai{1
NAi{1

and Ca
Ai{1

CAi{1
, the bisecting vector of Ca

Aiz1
NAiz1

and Ca
Aiz1

CAiz1
, respectively. P1

Ai
and P2

Ai

denote the vectors in planes defined by three backbone atoms (NAi{1
,Ca

Ai{1
, and CAi{1

), and (NAiz1
,Ca

Aiz1
, and CAiz1

), respectively.
doi:10.1371/journal.pone.0017215.g002
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further binned at intervals of 60u, 60u, 30u and 30u, respectively.

The total number of bins is 39*(360/60)*(360/60)*(180/30)*(180/

30) <25.5 million, is greater than the number of 9-residue

fragments (about 1.5 million) in the structural template database.

Because most of bins are inaccessible due to the position features of

the Ca atoms of the protein backbone [63,64], the actual number

of bins (i.e., the size of the energy table) is significantly reduced and

thus the undersampling issue can be avoided. The structural

preference potential of 9-residue fragment EBi{4���Bi ���Biz4
is

obtained from the Potential Database (see below) by:

EBi{4���Bi ���Biz4
~

{mNjz 1{mð ÞN̂Nj

mNjz 1{mð ÞN̂Nj

ð2Þ

where Nj and N̂jNj are the number of observations in the j-th bin

and the total number of observations not in the j-th bin. The value

of m~0:994 is chosen to make the net interaction zero.

In threading, we assume a 9-residue fragment to adopt its

template conformation, then its local structural preference

potential Efrag9 can be obtained from above energy table.

The Potential Database
The parameters of local structural preference potentials for 3-

residue and 9-residue fragments are derived from the PDB

database released before CASP8 beginning date of May 3rd of

2008. The non-redundant PDB library of sequence identity #30%

was generated with PISCES [65]. The sequences that share

sequence identity greater than 30% to the sequence in the training

dataset ProSup [66] were further removed, resulting in 6298

sequences whose structures were determined by X-RAY with

resolution higher than 3.0 Å. If there are any chain breaks in the

fragment, the value of the energy is set to a reference value of 0.

Scoring Functions
The local structural preference potentials for 3-residue (Efrag3)

and 9-residue fragment (Efrag9) are combined with the three widely

used terms, sequence profile (Eseq,seq), secondary structure (E2nd)

and hydrophobic score (Ehydro) to make up a scoring function for

template-based modeling. The shift constant (Eshift) is introduced to

avoid the alignment of unrelated residues in the local regions [19].

Thus, the score E(i,j) for measuring the extent/quality of alignment

between the ith residue of a query sequence and the jth residue of a

template sequence of known structure is a linear combination of

the above five terms and the shift constant, which is given as

follows:

E(i,j)~Eseq,seqzw1E2ndzw2Ehydrozw3Efrag3zw4Efrag9zEshift ð3Þ

where wi are the weights of the equation, which were obtained by

training the equation on the dataset ProSup (see below). The

calculation of Eseq,seq, E2nd and Ehydro sees below. For simplicity, fold

recognition or template-based modeling by using the scoring

function with 5 terms is called FR-t5, while the method that uses

the scoring function consisting of the three terms, sequence profile,

secondary structure, and hydrophobic score is denoted as FR-t3.

Sequence Profile, Eseq,seq

For a given sequence, its sequence profile was built by using

PSIBLAST [14] to search against the non-redundant (NR)

sequence database. The PSIBLAST was run at e-value cutoff

0.001 with 3 iterations.

The term Eseq,seq in Equation 1 is the sequence profile match

score between query sequence and template sequence,which is

computed as:

Eseq,seq~
X20

k~1
Fseq

query(i,k)P
seq
template(j,k) ð4Þ

where Fseq
query(i,k) is the frequency of the presence of residue k of

the template sequence at the position i of the query sequence,

P
seq
template(j,k) is the log-odds profile value (Position-Specific

Substitution Matrix in PSIBLAST) of the residue k at position j

of template sequence.

Secondary Structure, E2nd

The term E2nd in Equation 1 is the match score between the

predicted secondary structure of the query sequence and the

observed secondary structure of the template structure, which is

given below:

E2nd~
1, squery(i)~stemplate(j)

{ 1, squery(i)=stemplate(j)

�
ð5Þ

where squery(i) is the predicted second structure of the query

sequence at position i and stemplate(j) is the observed second

structure of the template at position j. The secondary structures of

query sequences are predicted by the program PSIPRED [67].

The secondary structures of template structures are assigned by

Figure 3. Coarse-grained Structure Model of a 9-residue Fragment. The coarse-grained structure of a 9-residue fragment consists of nine
points, each of which represents an amino acid and is denoted as the Ca atom of the residue. A link between two Ca atoms is a virtual bond that
connects the two residues. Thus, the description of the coarse-grained structure of a 9-residue fragment follows that for 3-residue fragment (see
Figure 2). The bold letters b1

Bi
, b2

Bi
denote the bisecting vector of Ca

Bi{3
Ca

Bi{4
and Ca

Bi{3
Ca

Bi{2
, the bisecting vector of Ca

Biz3
Ca

Biz2
and Ca

Biz3
Ca

Biz4
,

respectively. P1
Bi

, P2
Bi

denote the vectors in a plane defined by three continuous Ca atoms (Ca
Bi{4

,Ca
Bi{3

, and Ca
Bi{2

), and (Ca
Biz2

,Ca
Biz3

, and Ca
Biz4

),
respectively.
doi:10.1371/journal.pone.0017215.g003
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DSSP [68]. The secondary structures are represented by three

states, Helix (H), Strand (E), and Coil (C).

Hydrophobic score, Ehydro

The term Ehydro is the match score of the hydrophobic patterns

between the query sequence and template sequence, which is

given below:

Ehydro~

1:0, if Aquery(i),Atemplate(j)[fV,I ,L,F ,Y ,W ,Mg
1:0, else if Aquery(i)~Atemplate(j)~P

0:7, else if Aquery(i)~Atemplate(j)

0, otherwise

8>>><
>>>:

ð6Þ

where Aquery(i) is the residue type of the query sequence at

position i and Atemplate(i) is the residue type of the template at

position j. The hydrophobic scoring matrix is taken from Silva

[23].

The Gap Model
The gap model in the threading algorithm is an important

factor that affects the alignment accuracy. Many different gap

models were introduced previously. For example, SP3/SP4 [9,10]

and MUSTER [19] used a position-dependent gap penalty model

which depends on the type of secondary structure. SP5 [11] used a

profile-based gap model, which depends on the multiple sequence

alignment made by PSIBLAST. More recently, Peng and Xu [69]

used a more complicated gap model, which uses both context-

specific and position-specific gap penalty. In our work, we

employed the position-dependent gap penalty model in the

dynamic programming, which operates as follows:

1. No gaps are allowed in the region where the predicted

secondary structure and the secondary structure of the

template are in the same state of helix or sheet;

2. The end gap penalty is neglected;

3. Affine gap opening (go) and gap extension penalties (ge) are

applied to other regions.

Dynamic Programming
We use the Needleman-Wunsch global alignment algorithm

[26] to optimize the matching score between the query sequence

and template structure based on Eq. (1) with the position-

dependent gap penalty model described above.

Parameterization of the Scoring functions
The parameters used in FR-t5 and FR-t3 were trained on the

ProSup dataset [66] that consists of 127 protein pairs of significant

structure similarity but of low sequence identity less than 30%.

The alignments of these protein pairs are given by ProSup

program and used as gold standards in the parameterization.

There are 5 and 7 parameters ((v1,v2,Eshift,go,ge), (v1,v2,
v3,v4,Eshift,go,ge)), in FR-t3 and FR-t5, respectively, which were

parameterized by following the same training procedure used by

Zhou and Zhou [9]. In brief, to optimize the parameters, we

maximized the number of matches between the gold standard

alignment and the alignment made by the threading method.

Template Selection
The template rankings are based on two normalized scores: Sn1

and Sn2. Sn1 is the raw score S normalized by the length of

alignment including gaps between the query and template

sequences. Sn2 is the raw score normalized by the alignment

length excluding query ending gaps. To rank the templates of a

query sequence, if the maximal Sn1 is greater than or equal to the

maximal Sn2, they will be ranked by Sn1, and otherwise by Sn2.
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