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ABSTRACT

Epidemiological evidence has shown that diabetes is associated with overt heart failure 
(HF) and worse clinical outcomes. However, the presence of a distinct primary diabetic 
cardiomyopathy (DCM) has not been easy to prove because the association between 
diabetes and HF is confounded by hypertension, obesity, microvascular dysfunction, and 
autonomic neuropathy. In addition, the molecular mechanisms underlying DCM are not 
yet fully understood, DCM usually remains asymptomatic in the early stage, and no specific 
biomarkers have been identified. Nonetheless, several mechanistic associations at the 
systemic, cardiac, and cellular/molecular levels explain different aspects of myocardial 
dysfunction, including impaired cardiac relaxation, compliance, and contractility. In this 
review, we focus on recent clinical and preclinical advances in our understanding of the 
molecular mechanisms of DCM and the role of anti-hyperglycemic agents in preventing DCM 
beyond their glucose lowering effect.
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INTRODUCTION

Heart failure (HF) is a complex clinical syndrome with a high socioeconomic burden. It 
is characterized by substantial morbidity and mortality, as well as diminished functional 
capacity and quality of life. The incidence of HF significantly increases with aging, obesity 
and diabetes mellitus (DM).1-3 Patients with type 2 diabetes are more than twice as likely to 
develop HF as those without, and 30%–40% of patients with HF have diabetes or impaired 
glucose tolerance.4 Diabetes is also one of the major risk factors for HF, and patients with 
HF who also have diabetes have a higher mortality rate than non-diabetic patients.5 Both 
type 1 and type 2 diabetes increase the risk of atherosclerosis, which is a cause of ischemic 
events and HF.6,7 However, aside from promoting these pathological triggers, longstanding 
diabetes itself contributes to the development of heart failure with preserved ejection fraction 
(HFpEF) or heart failure with reduced ejection fraction (HFrEF).8 One study showed that even 
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in patients with diabetes who had no history of ischemic events, the incidence of HF ranged 
from 11% to 67% varying according to the diagnostic criteria used.9 This suggests that there 
is a distinct mechanism of diabetes-induced cardiac remodeling.

In 2013, the American College of Cardiology, the American Heart Association,10 and the 
European Society of Cardiology, all in collaboration with the European Association for the 
Study of Diabetes,11 defined diabetic cardiomyopathy (DCM) as ventricular dysfunction 
that occurs in patients with diabetes in the absence of significant coronary artery disease 
or valvular heart disease and independent of common risk factors for atherosclerosis, such 
as hypertension and dyslipidemia. Given the prevalence and mortality of DCM, there is 
consensus on the need to diagnose the disease early and prevent its progression, but until 
recently, there was no gold standard for diagnosing the disease, which is characterized by 
decreased left ventricular (LV) relaxation, decreased ejection fraction (EF), LV hypertrophy, 
and interstitial fibrosis.12 Moreover, diabetes is often accompanied by vascular disease, such 
as atherosclerosis, and it is impossible to differentiate HF from vascular disease based on 
symptoms and signs. The pathophysiological mechanisms underlying DCM are complicated 
and have not been fully elucidated.13 Until recently, the only effective treatments for HF were 
diuretics, beta-blockers, and renin-angiotensin system inhibitors, angiotensin receptor-
neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors (SGLT2i).14 In context of 
DCM, there were no options other than controlling serum glucose and lipid concentrations. 
In particular, there is no specific drugs target the myocardial injury or cardiac remodeling 
process, which are part of the early changes in DCM. Over the last few years, many clinical 
trials have shown that several diabetic drugs have significant cardiovascular (CV) benefits 
including HF (Table 1), and there has been considerable interest in their mechanisms by 
which these medications can prevent or delay the early changes in DCM.

In this review, we summarize the effects of diabetes medications with well-known CV 
benefits and their known and probable mechanism to provide useful information for drug 
choices in patients with diabetes at high risk of HF.
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Table 1. Main results regarding heart failure outcome of recent cardiovascular outcome trials of anti-hyperglycemic agents in type 2 diabetic patients (2010–2024)
Drug class Drug name/Control Study name HHF results No. of patients Study duration

Hazard ratio (95% CI)
DPP-4 inhibitors Sitaglipin/Placebo TECOS ↔ 1.00 (0.83–1.20) 14,761 36 months

Saxagliptin/Placebo SAVOR-TIMI 53 ↑ 1.27 (1.07–1.51) 16,492 25 months
Linagliptin/Placebo CARMELINA ↔ 0.90 (0.74–1.08) 6,979 26 months

Linagliptin/Glimepiride CAROLINA ↔ 1.21 (0.92–1.59) 6,033 76 months
GLP-1 receptor 
agonists

Lixisenatide/Placebo ELIXA ↔ 0.96 (0.75–1.23) 6,068 25 months
Exenatide/Placebo EXSCEL ↔ 0.94 (0.78–1.13) 14,782 38 months
Liraglutide/Placebo LEADER ↔ 0.87 (0.73–1.05) 9,340 45 months

Semaglutide/Placebo SUSTATIN 6 ↔ 1.11 (0.77–1.61) 3,297 25 months
Albiglutide/Placebo HARMONY ↔ 0.85 (0.70–1.04): HHF or CV death composite 9,463 19 months
Efpeglenide/Placebo AMPLITUTE-O ↓ 0.63 (0.49–0.81): MACE, any death, HF, kidney 

outcomes
4,076 22 months

Dulaglutide/Placebo REWIND ↔ 0.93 (0.77–1.12) 9,901 65 months
SGLT2i Canagliflozin/Placebo CANVAS ↓ 0.67 (0.52–0.87) 10,142 43 months

Empagliflozin/Placebo EMPA-REG OUTCOME ↓ 0.65 (0.50–0.85) 7,020 37 months
Dapagliflozin/Placebo DECLARE-TIMI 58 ↓ 0.73 (0.61–0.88) 17,160 50 months
Ertugliflozin/Placebo VERTIS CV ↓ 0.70 (0.54–0.90) 8,246 36 months
Sotagliflozin/Placebo SOLOIST-WHF ↓ 0.61 (0.45–0.84) 1,222 9 months

HHF, hospitalization for heart failure; CI, confidence interval; DPP-4, dipeptidyl peptidase-4; GLP-1, glucagon like peptide-1; CV, cardiovascular; MACE, major 
adverse cardiovascular events; HF, heart failure; SGLT2i, sodium-glucose cotransporter-2 inhibitors.



DCM AS EMERGING DIABETIC COMPLICATIONS

1. Epidemiology
In 1972, Rubler et al.15 reported a distinct type of cardiomyopathy characterized by the 
absence of coronary artery or valvular disease in patients with diabetes. Their findings 
were based on postmortem histopathologic examinations, and they postulated that 
microangiopathy or abnormal myocardial metabolism may be the underlying mechanism.15 
The Framingham Heart Study reported a higher rate of HF in diabetic men (2.4-fold) and 
women (5.0-fold) than in age-matched individuals without diabetes, independent of other 
comorbidities such as obesity, hypertension, dyslipidemia, or coronary artery disease.16,17 
Another epidemiologic study, the Strong Heart Study, similarly reported a 1.5-fold higher 
incidence of HF in patients with than without diabetes.18 Moreover, the incidence of HF 
among patients with diabetes is closely associated with the blood glucose level. One study 
showed that in patients with type 1 diabetes, the risk of HF increased by 30% for every 
1% increase in the hemoglobin A1C (HbA1c) concentration.19 Other studies revealed that 
in patients with type 2 diabetes, each 1% increase in HbA1c level resulted in an 8%–16% 
increase in the risk of HF after adjustment for other risk factors.20,21

Large, randomized controlled trials investigating the CV safety of SGLT2i recently showed 
that the rate of hospitalization for HF in patients with diabetes was 8–15 per 1,000 patient-
years.22,23 Additionally, among patients with diabetes, the survival rate was significantly lower 
among those with than without incident HF.24 A recent meta-analysis showed that among 
diabetic patients, diastolic dysfunction was more common than systolic dysfunction, with 
HFpEF having a higher incidence than HFrEF (7% vs. 4%, respectively).4

2. Diagnosis and management of DCM
There is no effective and accurate diagnostic method for DCM, possibly because molecular 
mechanisms are not fully elucidated, and it remains asymptomatic for many years. DCM 
is initially characterized by myocardial fibrosis, dysfunctional remodeling, and associated 
diastolic dysfunction, later by systolic dysfunction, and eventually by clinical HF (Fig. 1). 
According to the 2021 European Society of Cardiology guidelines, the diagnosis of HF should 
be based on the presence of cardinal symptoms (breathlessness, fatigue, ankle swelling, 
etc.) or signs (elevated jugular vein pressure, pulmonary crackle, peripheral edema). After 
checking the risk factors for HF and electrocardiographic findings, echocardiography 
should be performed if HF is considered likely. This can confirm the presence of diastolic 
dysfunction and EF and diagnose the presence and type of HF.14 However, these diagnostic 
algorithms cannot detect early changes in heart caused by diabetes, such as myocyte 
hypertrophy, myocardial inflammation or fibrosis.

The most accurate way to identify myocardial injury, one of the early changes in DCM, 
is endomyocardial biopsy, but it is invasive and not easily accessible in a general practice 
setting.25 Otherwise, cardiac MRI can be used to detect metabolic changes in the early 
stage of DCM. Phase-contrast MRI can visualize fluid movement and measure its velocity, 
providing various parameters of diastolic dysfunction.26 Speckle tracking echocardiography is 
also one way to diagnose DCM. By quantitatively and qualitatively measuring the movement 
or deformation of cardiac tissue, it can detect changes in DCM at relatively early time points 
and has proven to be a useful tool for identifying ventricular dysfunction in many animal 
models of diabetes.12 Global longitudinal strain (GLS) is a key parameter measured using 
speckle tracking echocardiography. GLS is measured as a percentage and represents the 
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degree of myocardial deformation during systole. In patients with diabetes, GLS is often 
reduced compared to non-diabetic individuals. This reduction in GLS indicates impaired 
LV function even when the LVEF remains normal (GLS).13 However, these tools also have 
limitations and cannot clearly diagnose DCM and are not commonly performed in general 
practice due to methodology and cost.

Ideally, treatment for DCM should be able to reverse the pathophysiologic changes of the 
disease. However, there is no specific treatment for these DCMs at this time. If early DCM 
with preserved EF is suspected, SGLT2i and diuretics (if symptomatic) can be considered 
according to treatment guideline for HFpEF.14 As DCM progresses and EF declines, additional 
medications such as beta-blockers, mineralocorticoid receptor antagonist, and inhibition of 
the renin-angiotensin system, beta-blockers and those inhibit the renin-angiotensin system 
can be added.14

3. Pathophysiology of DCM
Some of the pathogenesis of DCM is relatively well established and has been the subject of 
many review articles. Hyperglycemia in diabetes increases metabolites such as advanced 
glycation end products, which affect cardiomyocytes and endothelial cells. Insulin resistance 
(IR) reduces the amount of glucose available in the cardiomyocyte by decreasing the 
expression of glucose transporter (GLUT) 1 and 4 on cell membrane, causing metabolic 
shift in the cardiomyocyte. IR also promotes hepatic lipolysis, lipogenesis, which increase 
the amount of free fatty acids, allowing them to be used as an energy source to compensate 
the insufficient glucose in the cardiomyocytes. However, over time, the limit of free fatty 
acids β-oxidation is reached. The excess free fatty acids are then metabolized into ceramide 
and diacylglycerol (DAG), which is the main cause of lipotoxicity. It induces mitochondrial 
dysfunction, which not only decreases ATP production but also increases the production of 
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Fig. 1. Schematic representation of the progression diabetic cardiomyopathy. 
The changes in diabetic cardiomyopathy are initiated by hyperglycemia, hyperinsulinemia, elevated fatty acids, and impaired insulin signaling. Diabetic 
cardiomyopathy is defined as ventricular dysfunction that occurs in patients with diabetes in the absence of significant coronary artery disease or valvular 
heart disease and independent of common risk factors for atherosclerosis. The incidence increases with blood glucose and duration of diabetes. After an initial 
asymptomatic period that begins with fibrosis of cardiomyocytes, cardiac remodeling progresses, leading to symptomatic diastolic and systolic heart failure. 
FFA, free fatty acid; HbA1c, hemoglobin A1C.



reactive oxygen species (ROS), resulting in increasing oxidative stress in the cardiomyocyte. 
This cascade of responses leads to cardiomyocyte death, cardiac hypertrophy, inflammation 
and progressive fibrosis (Fig. 2, Table 2).

IR
IR is the main pathogenesis of diabetes and is also caused by factors such as chronic 
inflammation and oxidative stress. In addition, IR can be increased in HF due to increased 
adrenergic tone, and IR is known to be an independent risk factor in stable patients with 
chronic HF.27 First, IR is associated with an increase in hepatic lipolysis, lipogenesis, and 
gluconeogenesis, resulting in a change in the energy source of cardiomyocytes.28 Excess 
energy sources lead to glucotoxicity and lipotoxicity, which increases the production of 
ROS,29 and also affects signaling pathways such as phosphatidylinositol (phosphatidylinositol 
3-kinase [PI3K]/protein kinase B [Akt]), which leads to cardiomyocyte hypertrophy and 
reduced distensibility.30 PI3Ks have been suggested to regulate cardiac injury during diabetes 
and seem to be a key factor in cardiac impairment in diabetic rats.31 PI3Ks are primarily 
involved in the regulation of cardiac insulin signaling and energy metabolism.32 Normal 
myocardial insulin signaling activates PI3K/Akt, which stimulates GLUT4 translocation from 
intracellular vesicles to the sarcolemma and subsequent glucose uptake in cardiac tissue. 
The PI3K pathway also stimulates CD36 translocation to the sarcolemma, which leads to an 
increase in fatty acid uptake.32 Reduced PI3K/Akt signaling and GLUT4 expression have been 
observed in myocardial tissue from patients with type 2 diabetes.33 Impaired activation of the 
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Fig. 2. Molecular pathogenesis of diabetic cardiomyopathy and the action of anti-hyperglycemic agents. 
Summarize the molecular mechanisms involved in insulin resistance, energy substrate shift, mitochondrial dysfunction, calcium homeostasis and epicardial fat 
in diabetic cardiomyopathy and the potential targets for inhibition by currently used anti-hyperglycemic agents. 
ROS, reactive oxygen species; SGLT2i, sodium-glucose cotransporter-2 inhibitors; GLP-1, glucagon like peptide-1; DPP4i, dipeptidyl peptidase-4; GIP, glucose-
dependent insulinotropic polypeptide.



insulin-mediated PI3K pathway ultimately reduces glucose utilization; this makes the heart 
dependent on fatty acid β-oxidation for ATP production and leads to cardiac insufficiency 
and the development of DCM. In addition, long-term downregulation of insulin/PI3Kα/
Akt signaling is associated with cardiac hypertrophy, reduced cardiac contractility, and 
increased cardiomyocyte death.32 Cardiac-targeted PI3K gene therapy using active PI3K(I) 
viral constructs has been shown to inhibit cardiac remodeling and rescue cardiac dysfunction 
in diabetic mice.34

Long-term exposure to hyperglycemia increases the amounts of inflammatory cytokines 
such as tumor necrosis factor [TNF]-α, interleukin [IL]-6, IL-8, etc.) in cardiomyocytes.35 
It stimulates immune cells within the myocardium to increase pro-inflammatory M1 
macrophages (decrease anti-inflammatory M2)36 and increase the activity of NOD-like receptor 
family, pyrin domain containing (NLRP) and caspase-1 in association with the inflammasome, 
which also leads to increased macrophage infiltration and sustain inflammatory reaction.37-39 
This process is accompanied by mitogen-activated protein kinase (MAPK) activation, and 
a series of signaling pathways such as Erk1/2, p38 MAPK, and JNK are involved in cardiac 
hypertrophy, remodeling.40 Glucotoxicity and lipotoxicity also contribute to the inflammatory 
response by enhancing nuclear factor (NF)-κB through Toll-like receptor (TLR) 2 or 4.41
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Table 2. Summary of mechanisms of action of diabetes medications related to possible pathogenesis of DCM
Possible pathophysiology Drug’s mechanism of action
Insulin resistance

Increased inflammatory cytokines
TNF-α, IL-6, IL-8 GLP-1 agonist (↓), DPP-4inhibitor (↓), GLP-1/GIP dual agonist (↓)

Lipotoxicity
CD36 GLP-1 agonist (↓)
Increased lipid metabolites GLP-1 agonist (↓)

Altered signaling pathway
PI3K/Akt GLP-1 agonist (↓)

Fibrosis
TGF-β1 SGLT2i (↓)/ GLP-1/GIP dual agonist (↓)

Energy substrate disorder
Decreased metabolic flexibility GLP-1 agonist (↑ cardiomyocyte glucose uptake)

GLP-1 agonist (↑ glucose oxidation)
GLP-1 agonist (↑ pyruvate influx to TCA cycle)

Ketone bodies
Increased ketone bodies SGLT2i (↑)
Ketone body oxidation SGLT2i (glucose/fatty acid → ketones)

Mitochondrial dysfunction and oxidative stress
Mitochondrial homeostasis

AMPK SGLT2i (↑)/GLP-1 agonist (↑)/Metformim (↑)
PGC-1α SGLT2i (↑)/GLP-1 agonist (↑)/DPP-4inhibitor (↑)/Metformin (↑)

Mitochondrial biogenesis SGLT2i (↓fission)
Oxidative stress

ROS production SGLT2i (↑sirtuin 3/SOD, ↓AGEs)/GLP-1 agonist (↓)
Calcium homeostasis

Elevated intracellular resting Ca
RyR2 GLP-1 agonist (↓)
SERCA2a Tirzepatide (↑)
Na+/H+ exchanger SGLT2i (↓)

Epicardial fat
Increased epicardial fat thickness GLP-1 agonist (↓), Metformin (↓)
Inflammatory cytokines SGLT2i (↓)

DCM, diabetic cardiomyopathy; TNF, tumor necrosis factor; IL, interleukin; GLP-1, glucagon like peptide-1; DPP-4, dipeptidyl peptidase-4; GIP, glucose-
dependent insulinotropic polypeptide; PI3K, phosphatidylinositol 3-kinase; TGF, transforming growth factor; SGLT2i, sodium-glucose cotransporter-2 inhibitors; 
TCA, tricarboxylic acid; AMPK, adenosine 5′-monophosphate-activated protein kinase; PGC-1α, peroxisome proliferator-activated receptor gamma coactivator-
1α; ROS, reactive oxygen species; AGEs, advanced glycation end-products; SERCA2a, sarco/ER Ca2+-ATPase 2a.



These inflammatory responses increase the expression of transforming growth factor 
(TGF)-β1 and accumulation of extra-cellular matrix (ECM).42 TGF-β is one of the most 
thoroughly studied cytokines in the field of fibrosis,43 and its gene expression is also 
increased by hyperglycemia.44 Binding TGF-β to its receptors trigger formation of a 
heterotetrameric complex, composed of 2 type I and 2 type II receptor molecules. 
Subsequently, this complex activates canonical Smad signaling and/or Smad-independent 
signaling pathways such as MAPK and small guanosine 5′-triphosphatases such as RhoA.45 
The eight known Smad proteins are divided into 3 main groups. Smad 1, 2, 3, 5, and 8 are 
receptor-regulated Smads (R-Smad) that are activated by TGF-β1 type 1 receptor kinase. 
After activation by TGF-β1 type 1 receptor, R-Smad dissociates from the receptor and form 
trimeric complexes with Smad 4 (common Smad). One Smad 4 molecule can bind to 2 
molecules of the same R-Smad or may form a mixed complex (Smad 2 and 3 or Smad 1 and 
3). These R-Smad/Smad 4 complexes then translocate into the nucleus, where they regulate 
transcription of the target genes. Smad 6 and 7 are inhibitory Smad, which act competitively 
with R-Smad and block the TGF-β1-induced signaling pathway.46 In addition to the canonical 
Smad pathway above-mentioned, TGF-β1 also acts through a non-canonical Smad pathway.47 
It initiates its intracellular action mainly by activating the MAPK pathway, TGF-β-activated 
kinase 1, Rho GTPase, PI3K/Akt, focal adhesion kinases extracellular receptor-regulated 
kinase 1/2 signaling pathway.48

Energy substrate disorder
Under normal physiological conditions, >90% of ATP is generated in mitochondria. Of 
this ATP, approximately 60%–90% is generated through the oxidation of FFAs, with the 
remaining portions being derived from other substrates such as glucose, lactate, ketones, 
and amino acids, albeit to a lesser extent.49 The proportion of utilization between energy 
sources is regulated by the Randle cycle, which is mainly determined by glucose availability.

In DM, the expression of glucose transporters on the cell surface, GLUT1 and especially 
GLUT4, is reduced, and the expression of peroxisome proliferator-activated receptor-α is 
increased, leading to increased activity of enzymes involved in fatty acid degradation. This 
results in a higher utilization of fatty acids than under normal conditions, contributing to IR.50 
Prolonged periods of this condition can lead to mitochondrial uncoupling, which requires 
more oxygen to produce a given amount of ATP. Excess fatty acids are metabolized to ceramide 
and DAG beyond their capacity for β-oxidation capacity, which are major contributors to 
lipotoxicity.12 Due to the lack of glucose transporter, glucose that cannot be assimilated in the 
cell is converted into polyols and hexoamines, which are pro-oxidant, pro-inflammatory, and 
contribute to glucotoxicity by producing advanced glycation end-products (AGEs).12

The normal heart is metabolically flexible, making it relatively easy to shift between energy 
substrates. However, as HF progresses, metabolic flexibility decreases and ATP production 
decreases, leading to energy deficiency.51,52 Finally, in the end-stage of HF, ATP production 
is reduced by approximately 30% from normal.53,54 A compensatory response to reduced 
mitochondrial oxidative metabolism and ATP production in HF is an induction of glycolysis.55 
In this process, glucose uptake is increased via an increase in GLUT1 expression, but glucose 
oxidation is decreased, resulting in the accumulation of polyols and hexosamine in the 
cytoplasm as byproducts. These metabolites contribute to the progression of HF by activating 
the cardiac remodeling pathway.56 Compensation by increased glycolysis does not increase 
ATP production enough and eventually leads to an energy deficiency.57 Furthermore, this 
process induces the accumulation of H+ in the cytosol, which triggers the activation of the 
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Na/H exchanger. This, in turn, increases the action of the Na/Ca exchanger, leading to the 
accumulation of Ca in the cytosol.58

Ketone bodies are recognized as an important source of energy for the heart.59,60 In a 
fasting state, the concentration of ketone bodies in the body is usually increased,61,62 and 
this response is exacerbated in patients with HF.63 Recent reports have shown that ketone 
body oxidation in cardiomyocytes is increased in HFrEF64-66 but not in HFpEF.67 In terms of 
efficiency, ketone bodies produce more ATP per carbon than glucose, but the amount of ATP 
produced relative to oxygen consumed is less than glucose,68 so more research is needed to 
determine whether the role of ketone bodies in HF is compensatory or causative.

Mitochondrial dysfunction and oxidative stress
The heart weighs 0.5% of the body but produces 8% of total ATP.69 To keep the heart 
contracting, it requires an efficient and stable system to produce large amounts of energy, 
and when this process is compromised by any cause, HF develops. In diabetes or IR, there 
is also a progressive mitochondrial dysfunction in cardiomyocytes, leading to intracellular 
lipid accumulation. This generates large amounts of ROS, increasing oxidative stress and 
accelerating the progression of DCM. One of the mechanisms by which ROS contributes to 
the progression of DCM is by reducing the activity of adenosine 5′-monophosphate-activated 
protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator-1α 
(PGC-1α), resulting in decreased mitochondrial biogenesis, diminished cardiac autophagy, 
more severe cardiac impairment, and increased mortality in diabetic mice.70 Treatment with 
the AMPK activator metformin has been shown to improve cardiac function by promoting 
autophagy.71 In addition, activation of the AMPK pathway ameliorates cardiac hypertrophy 
by inhibiting the nutrient-sensing mammalian target of rapamycin (mTOR) C1 pathway.72 
Excessive ROS production also facilitates protein kinase C signaling and the hexosamine 
pathway and inhibits endothelial nitric oxide synthase (eNOS) and prostacyclin synthase 
activity, contributing to the development of cardiomyopathy.73,74 PGC-1α promotes the 
synthesis of new mitochondria and enhances oxidative phosphorylation, which is essential 
for energy production.75 PGC-1α expression is regulated by numerous factors, including 
insulin, glucagon, and exercise.76 In diabetic conditions, impaired insulin signaling leads to 
decreased PGC-1α activity, which causes mitochondrial dysfunction. This leads to decreased 
ATP production, increased ROS generation, and inadequate antioxidant defense.77 PGC-1α 
also regulates the metabolic flexibility of cardiomyocytes by modulating the switch between 
glucose and fatty acid utilization.78 Experimental studies have shown that PGC-1α deletion 
can exacerbate cardiac metabolic imbalance; this leads to lipotoxicity and accumulation of 
lipid intermediates, which are detrimental to cardiac function.79 By contrast, moderate PGC-
1α overexpression in the mouse heart reduces cardiac remodeling and has a beneficial effect 
on cardiac function.80,81

Mitochondrial dysfunction includes impaired mitochondrial respiratory capacity, increased 
mitochondrial oxidative stress, as well as altered mitochondrial ultrastructure.82-86 
Mitochondria are dynamic organelles that constantly undergo fusion and fission. These 
processes are necessary for mitochondrial biogenesis and contribute to mitochondrial 
energy regulation and ROS homeostasis.87 Mitochondrial fusion results in the formation 
of elongated tubular mitochondria under nutrient-poor or energy-demanding conditions, 
whereas fission promotes smaller fragmented mitochondria in environments of caloric 
excess.88 These processes also allow damaged segments of mitochondria to be separated and 
removed through mitophagy.89 Deletion of fission protein Drp 1 in the heart (cardiac-specific 
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Drp1 knockout mice) can result in the development of cardiomyopathy.90 One study showed 
that incubating H9C2 rat cardiomyoblasts in high-glucose medium induced mitochondrial 
fragmentation and ROS production.91 This indicates that chronic exposure to a high glucose 
environment alters mitochondrial dynamics, which leads to an imbalance between fusion 
and fission. Fission in turn generates more ROS, leading to a vicious circle. ROS scavenging 
might help disrupt this circle and restore normal mitochondrial dynamics.

Calcium and sodium homeostasis disorder
Calcium (Ca2+) is an important messenger coupling electrical signaling in the heart to 
contraction of the myocardium. When cardiomyocytes depolarize, a small influx of Ca2+ 
through sarcolemmal L-type Ca2+ channels (LTCCs) triggers a large release of Ca2+ from the 
sarcoplasmic reticulum (SR) to the cytosol, resulting in cardiomyocyte contraction.92 At the 
end of the contraction cycle in cardiomyocytes, Ca2+ in the cytosol is reuptake into the SR, 
primarily via sarco/ER Ca2+-ATPase 2a (SERCA2a), and a small amount of Ca2+ a is removed by 
the Na+/Ca2+ exchanger.92 Elevated cytosolic Ca2+ also stimulates Ca2+ uptake in mitochondria, 
leading to increased ATP production.93

As previously mentioned, diastolic dysfunction develops early in DCM due to a number of 
causes, including hyperglycemia, IR and oxidative stress. Ventricular relaxation abnormalities 
are associated with abnormalities in Ca2+ homeostasis in cardiomyocytes94 and one of the 
accompanying electrophysiologic changes in the myocardium is a prolongation of action 
potential.95 This involves an elevated intracellular resting Ca2+, slowed Ca2+ transients, the 
reduction of (SR) Ca2+ reuptake.96 There are also reports of decreased expression of SERCA2 
or LTCC in diabetes,97,98 which reduces cytoplasmic Ca2+ clearance, decreases Ca2+ loading of 
the SR, resulting in a prolonged action potential and contributing to diastolic dysfunction.99

Epicardial fat
Epicardial fat is the visceral fat around the heart, located in the atrioventricular and 
intraventricular grooves in normal adults.100 When comparing HFpEF patients with similar 
body mass index (BMI), those with comorbid DM have a larger epicardial adipose tissue 
(EAT) mass than those without.101,102 There is no muscle fascia between the EAT and 
myocardium, so they share the same microvasculature and interact via paracrine or vasocrine 
secretion.103,104 In the presence of IR, such as diabetes and obesity, the body secretes fatty 
acids or proinflammatory cytokines such as leptin, TNF-α, IL-1β, and IL-6, which contribute 
to the development of HF.105,106 It has already been reported that proinflammatory cytokines 
increase macrophage infiltration, leading to cardiac tissue fibrosis,107 which is partly 
responsible for the development of atrial arrhythmias.108,109 In addition to affecting diastolic 
dysfunction,110 the release of inflammatory mediators can cause systemic inflammation, 
which can contribute to multiple organ dysfunction.111

The increased EAT mass is located in the cardiac fossa and is often accompanied by 
biventricular hypertrophy, and the pericardium is not sufficiently expanded, resulting in an 
increase in intracardiac pressure.112,113 This leads to an increase in pericardial pressure and LV 
end-diastolic pressure, and an increase in pulmonary capillary hydrostatin pressure, which 
also causes dyspnea.114
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POTENTIAL TREATMENT OF DCM

1. SGLT2i
Recent studies have demonstrated that SGLT2i exhibit antioxidant, anti-inflammatory, 
anti-fibrotic and vascular protective effects aside from anti-diabetic effects in several rodent 
models of diabetes. These effects are thought to mediate the beneficial CV effects based 
on the results of many clinical trials, but the exact mechanisms are not fully understood. 
Researchers have proposed various hypotheses for the action of SGLT2. We herein focus on 
those that are closely related to the pathogenesis of DCM.

In a rat model of T2DM, administration of dapagliflozin and metformin reduced myocardial 
fibrosis and endothelial-to-mesenchymal transition (EndMT) compared with the control 
group.115 The study also showed that treatment of human umbilical vein endothelial cells and 
primary cardiac fibroblasts with dapagliflozin inhibited high-glucose induced increases in 
EndMT, as well as TGF-β/Smad signaling and AMPK activity. Another report published in 
2022 showed that dapagliflozin treatment reduced serum/glucocorticoid regulated kinase 
1 (SGK-1) expression and ameliorated cardiac fibrosis and LV dysfunction in a rat model 
of diabetes using alloxan.116 SGK-1 is an important regulator of fibroblast activation by 
TGF-β1 and has been reported to modulate cardiac fibrosis through FoxO3a.117 Therefore, 
dapagliflozin is expected to prevent DCM by inhibiting EndMT and fibroblast activation 
through AMPK mediated TGF-β/Smad signaling.

SGLT2i may affect the utilization of energy in cardiomyocyte, increasing energy efficiency 
in patients with a failing heart. In a non-diabetic porcine model, empagliflozin increased 
myocardial ketone uptake and improved myocardial energetics and LV reverse remodeling 
.118 The utilization of ketone bodies may be inhibited in the myocardium of patients with 
diabetes because of mitochondrial dysfunction which impairs the conversion of ketone 
bodies to acetyl-CoA.119 Mice with deletion of succinyl-CoA:3 ketoacid-CoA transferase, 
the enzyme involved in the last step of ketone body oxidation, exhibit an increase in fatty 
acid oxidation and ROS production, changes in myocardial mitochondrial and myofilament 
microstructure, and deformation of the myocardium over time.120 Ketone bodies are elevated 
in patients with SGLT2i, suggesting that in HF, SGLT2i may shift myocardial fuel metabolism 
from fatty acid/glucose oxidation to a more energy-efficient fuel such as ketones in HF.121

As mentioned above, mitochondrial dysfunction, which produces more harmful ROS and 
less ATP, plays an important role in DCM and HF; however, the mechanism is uncertain. 
Many studies have shown that SGLT2i have beneficial effects on mitochondrial function.122 
In rat with T2DM, empagliflozin treatment resulted in a significantly higher survival rate 
after acute myocardial infarction, as well as increased expression of myocardial sirtuin 
3 and superoxide dismutase 2, which are associated with reduced oxidative stress and 
increased respiration.123 Another study revealed that empagliflozin inhibits mitochondrial 
fission via AMPK activation, thereby reducing the generation of ROS and maintaining the 
function of the cardiac microvascular endothelial cell barrier.124 There are also reports that 
empagliflozin improves mitochondrial biogenesis and balance between fusion and fission in 
rats with diabetes,125 prevents decreases in mitochondrial size, and maintains mitochondrial 
numbers.126 Empagliflozin may also enhance mitochondrial function by increasing the 
expression of PGC-1α in rats with diabetes.127
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Treatment with SGLT2i reduces cardiac oxidative stress by inhibiting the production of 
AGEs within the myocardium and aorta.128 AGEs and activation of AGE receptors are 
associated with increased NF-κB signaling which increases collagen synthesis and promotes 
proinflammatory signaling in DCM.129,130 The anti-inflammatory effect of SGLT2i may 
be enhanced by activation of the AMPK pathway with downstream inhibition of Na+/H+ 
exchanger isoform 1, thereby decreasing inflammation and apoptosis pathway activity.131 
Activation of the AMPK pathway also suppresses the mTOR pathway, which enhances 
autophagy in the myocardium and activates PGC-1α, thus improving mitochondrial 
function.132 By enhancing the AMPK pathway, empagliflozin reduced the expression of IL-6 
and TNF-α133 and increased autophagy134 in the myocardium of diabetic rat. These anti-
inflammatory effects also suppress profibrotic TGF-β/Smad signaling, which alleviates 
cardiac fibrosis and remodeling.115

By inhibiting Na+/H+ exchanger, SGLT2i exerts a homeostatic function, normalizing 
intracellular sodium and calcium levels. This improves the availability of calcium for 
myocardial contraction. Dapagliflozin reduced diastolic Ca2+ and Na+ overload and increased 
Ca2+ transient amplitude in ventricular cardiomyocytes.135 Reported a decrease in mRNA 
expression of NHE11 in empagliflozin-treated mice, suggesting that NHE11 in cardiac tissue 
may be a potential target for SGLT2i.136

In addition, dapagliflozin has been shown to significantly reduce EAT thickness in patients 
with DM and/or obesity, and some studies have concluded that this is independent of weight 
loss.137,138 Mechanisms such as decreased local proinflammatory chemokines (e.g. CCL2) and 
improved insulin sensitivity of EAT cells have also been suggested as possible mechanisms 
for decreased EAT thickness independent of weight loss.139

2. Glucagon like peptide-1 (GLP-1) receptor agonists
GLP-1 receptor agonists have been shown to exhibit potential cardioprotective properties 
which may be derived from their attenuation of CV risk factors including hyperglycemia, 
high blood pressure, obesity, and unfavorable lipid profiles. While other effects on the 
myocardium are plausible, the precise pharmacological or physiological mechanisms by 
which these agents reduce CV events remain uncertain.

A mechanistic investigation showed that the GLP-1 receptor agonist liraglutide directly 
suppresses the activation of PI3K/Akt1 and stimulates AMPKα signaling pathways in 
cardiomyocytes, thereby inhibiting angiotensin II and pressure overload induced cardiac 
remodeling.140 Several studies have shown that treatment with GLP-1 receptor agonists reduces 
myocardial ischemia/reperfusion injury and prevents cardiac remodeling in various animal 
models of ischemic heart disease.141-143 Other studies also demonstrated that treatment with 
GLP-1 analogues, including exenatide, not only reduced LV stiffness, diastolic dysfunction, and 
cardiac remodeling but also improved the survival of rats that developed HF following aortic 
banding or coronary artery ligation.144,145 In a human study, GLP-1 receptor agonists or infusion 
of GLP-1 was shown to improve LV function and prevent the progression of cardiac remodeling 
in patients with acute myocardial infarction after successful angioplasty.146,147

Preclinical studies have reported an increase in myocardial glucose uptake with GLP-1 
agonists.148,149 and albiglutide-treated rats exhibited increased myocardial glucose uptake as 
well as alterations in glucose and lactate oxidation after ischemia/reperfusion injury.150 GLP-1 
also improves energy efficiency due to energy substrate shift in the HF. Liraglutide increased 
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the rate of myocardial glucose oxidation in rats with diabetes, which may contribute to 
improved cardiac efficiency and alleviate diastolic dysfunction.151 Metabolomics studies 
of semaglutide-treated mice have reported increased pyruvate influx into the tricarboxylic 
acid cycle and increased fatty acid oxidation, suggesting that increased efficiency of ATP 
production is one of the mechanisms involved.152

In HL-1 cardiomyocytes, liraglutide treatment reduces IL-1β-induced ROS production, 
ameliorates lipotoxicity by reducing lipid accumulation, and improves mitochondrial 
function by activating AMPK, PGC-1α, and others.153 A study in which novel oral GLP-1 was 
administered to diabetic rats also reported improvements in cardiac function, including 
LVEF, and suggested that the mechanisms may be a reduction in oxidative stress through 
a decrease in the oxidative stress marker malondialdehyde, an increase in the mRNA 
expression of SOD1, and an improvement in mitochondrial function, leading to improvement 
in myocardial hypertrophy and fibrosis.154

Liraglutide modulates intracellular calcium homeostasis to reduce reperfusion injury in 
cardiomyocytes.155 Furthermore, exendin-4 also shows anti-arrhythmic effects by reducing 
phosphorylation of RyR2 and attenuating CaMK-II activity, thereby reducing calcium leak 
from the SR.156 These results suggest that GLP-1 agonists are involved in calcium homeostasis 
in cardiomyocytes, which may contribute to delay the progression of HF.

Unlike subcutaneous fat, EAT has a GLP-1 receptor.157 It has been proposed that GLP-1 agonist 
administration may alter adipocyte formation or metabolism of EAT. Cohort studies in type 2 
diabetes patients have reported a dose-dependent reduction in EAT thickness with semaglutide 
and dulaglutide once weekly,158 and a reduction in EAT with metformin and liraglutide has also 
been reported, along with reductions in HbA1c and BMI.159 This mechanism may explain some 
of the favorable CV outcomes seen with GLP-1 agonist administration.

3. Dipeptidyl peptidase-4 (DPP-4) inhibitor
In large clinical outcome trials, DPP-4 inhibitors have demonstrated CV safety without risk 
reduction.160 However, an increased incidence of hospitalization for HF was noted in some 
clinical trials.161-163 Intriguingly, translational data from animal models have nevertheless 
revealed potential cardioprotective effect of DPP-4 inhibitors in DCM. The effectiveness and 
mechanisms of DPP4 inhibitors in HF are not widely studied.

Linagliptin attenuated cardiac dysfunction in diabetic mice with sepsis by inhibiting the 
NF-κB pathway.164 Treatment with evogliptin also attenuated cardiac systolic/diastolic 
dysfunction, hypertrophy, and fibrosis by reducing the accumulation of lipid droplets in the 
myocardium and alleviating mitochondrial injury by activating PGC-1α/NRFs/TFAM signaling 
in diabetic db/db mice.165

In contrast, DPP-4 inhibitors can repress the degradation of stromal cell-derived factor 1, 
substance P and neuropeptide Y, increases sympathetic tone,166-169 which may aggravate HF. 
Neuropeptide Y1 and substance P may also aggravate HF by inducing cardiac fibrosis and 
cardiomyocyte apoptosis.170,171 These conflicting results led the Consensus Report of the 
American Diabetes Association of 2022 to recommend against DPP-4 inhibitor therapy in 
patients with diabetes who develop stage B and C HF.172
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The effect of DPP-4 inhibitors on EAT is also controversial. Some have reported anti-
inflammatory properties of EAT through administration of DPP-4 inhibitors. They thought 
that DPP-4 inhibitors downregulated the receptor for AGEs,173 reduced ROS generation, and 
decreased ICAM-1 expression.174 Conversely, there are also reports that DPP-4 inhibitors may 
accentuate CXCL12 or mineralocorticoid receptor signaling to trigger a proinflammatory 
response, which requires further clinical studies and investigation of the mechanisms.

4. Metformin
Numerous preclinical studies have provided promising results regarding the effect of 
metformin on treatment of DCM. Metformin is a well-known 5-AMPK pathway activator. The 
activated AMPK pathway provides cardioprotective effects by increasing glucose uptake and 
glycolysis, inducing autophagy via suppression of mTOR signaling, reducing cardiomyocyte 
apoptosis, promoting PGC-1α (which improves mitochondrial function), and increasing 
eNOS activity in endothelial cells.71,175,176 In addition, the AMPK pathway inhibits oxidative 
stress and inflammatory responses and attenuates cardiac fibrosis by suppressing the TGF-β/
Smad 3 signaling pathway.177-179 In a recent study, metformin attenuated hyperglycemia-
induced collagen type I gene expression in the fibroblasts of heart and vascular adventitia by 
inhibiting discoidin domain receptor 2, a collagen receptor tyrosine kinase.180

Metformin is a classic diabetes medication that helps with weight loss, and recent meta-
analyses have shown that it is associated with reduced mortality in HFpEF patients,137 as 
well as a 10% reduction in EAT thickness after 3 months of metformin alone.181,182 The exact 
mechanisms are not well understood, but it has been suggested that it increases fat oxidation 
and increases thermogenesis.183

5. �GLP1/glucose-dependent insulinotropic polypeptide (GIP) dual agonist and 
GLP1/GIP/glucagon triple agonist

Results from the CV outcome trials of tirzepatide, a GLP-1/GIP dual agonist, and retatrutide, 
a GLP-1/GIP/glucagon triple agonist, have not yet been reported. The results of SURPASS-
CVOT (NCT04255433) comparing tirzepatide to dulaglutide in CV outcomes are expected to 
be reported soon, and we expect CV efficacy to be better than that of GLP-1 agonists, based 
on the previously documented benefits of tirzepatide, including improved glycemia, weight 
loss, blood pressure reduction, and improvement in CV risk factors, including lipid profile.184 
However, there are conflicting reports on the CV effect of GIP,185-187 so we need to confirm the 
results of this trial in the future.

The results of several nonclinical studies with tirzepatide are promising. In the AC16 cardiac 
cell line exposed to high glucose, mRNA expression associated with fibrosis, such as TGF-β 
and matrix metalloproteinase-9, is increased; however, when treated with tirzepatide, their 
expression is significantly reduced. In addition, mRNA expression of SERCA2a is significantly 
increased, suggesting that tirzepatide may be effective in delaying the progression of DCM.188 
In mice treated with lipopolysaccharide, tirzepatide significantly improves cardiac function, 
including LVEF and LV fractional shortening, and is associated a decrease in inflammatory 
cytokines such as IL-1β, IL-6, and TNF-α, suggesting a beneficial effect by inhibiting the 
activation of TLR4/NLRP3 inflammasome signaling pathways.189
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CONCLUSION

In this review, we focused on molecular rather than neurohumoral mechanisms in the 
pathogenesis of DCM and summarized how anti-diabetic medications such as SGLT2i, GLP-
receptor agonists, and metformin may impact the early pathological changes in DCM beyond 
their glucose-lowering effects. Recent studies have highlighted the potential of SGLT2i to 
mitigate cardiomyocyte fibrosis, improve mitochondrial function, and reduce oxidative stress 
and inflammation, suggesting their role in reversing some of the early molecular changes 
in DCM. GLP-1 receptor agonists have also shown promise in improving cardiac efficiency 
and reducing myocardial ischemia and remodeling. Metformin, through activation of the 
AMPK pathway, exhibits cardioprotective effects by enhancing autophagy, reducing oxidative 
stress, and inhibiting fibrosis. Despite advances in this mechanical understanding and 
clinical studies confirming the HF reduction effects of some drugs, there remains a need for 
further research to fully elucidate the specific mechanisms by which these medications exert 
their cardioprotective effects in the context of DCM. Future studies should aim to conduct 
a long-term clinical trial to assess the sustained impact of SGLT2i, GLP-1 receptor agonists, 
and other antidiabetic agents on cardiac function and structure in diabetic patients. By 
addressing these areas, we can improve our understanding of DCM and enhance therapeutic 
strategies, ultimately improving the prognosis for diabetic patients at high risk of HF.
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