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Abstract: One of the major clinical issues during the implantation procedure is the bacterial infections
linked to biofilms. Due to their tissue localization and the type of bacteria involved, bacterial
infections at implant sites are usually difficult to treat, which increases patient morbidity and even
mortality. The difficulty of treating biofilm-associated infections and the emergence of multidrug-
resistant bacteria are further challenges for the scientific community to develop novel biomaterials
with excellent biocompatibility and antibacterial properties. Given their ability to stimulate bone
formation and have antibacterial properties, metal ion-doped bioactive glasses (BGs) have received
considerable research. This mini review aims to be successful in presenting the developments made
about the role of biocide metal ions incorporated into BGs against the development of bacterial
biofilms and the spread of nosocomial diseases.

Keywords: bacterial biofilm; bioactive glass; metal ions

1. Introduction

One of the most challenging issues in the healthcare industry is the occurrence of
antibiotic-resistant bacterial infections. The World Health Organization (WHO) has ranked
bacterial infections among its top 10 research priorities. Worldwide, the mortality associated
with antibiotic-resistant infections is estimated at 7 million deaths per year, and it is
anticipated to increase to 10 million deaths per year in 2050 if efficient therapies are not
found [1,2]. Furthermore, it is predicted that the cost of treatment related to bacterial
infections in Europe will rise by more than EUR 1.5 billion/year as a result of the spread
and increase of bacterial diseases [3].

Antibiotics of various types have been developed to control and treat bacterial infec-
tions. Penicillin, among the several antibiotics produced in the 1940s, quickly developed
resistance as a result of use and even abuse. Moreover, because antibiotics in clinical
use concentrate on a limited number of biological targets, drug resistance might develop
over time.

In addition to the aforementioned phenomena, a strategy used by bacteria for their
survival is grouping into complex surface-attached communities, protected by a self-
produced polymer matrix of polysaccharides, produced proteins, and extracellular DNA
called biofilms [4–7]. Compared to their planktonic cells, the bacteria enclosed in the biofilm
have better survival options such as access to nutrients, the ability to grow in oligotrophic
conditions, resistance to biocides, and environmental stability.

The development of biofilms occurs in four stages [8,9]: (I) the initial reversible attach-
ment occurs when the bacterial cell interacts with the substrate; (II) irreversible attachment
takes place when the bacterial cells connect with the surface by secreting extracellular
polymeric substances (EPS) and employing an adhesive-like lipopolysaccharide; (III) as the
biofilm develops and reaches maturity, the bacterial cells are encapsulated in an extracellu-
lar matrix (ECM) which is formed of proteins, polysaccharides, and extracellular DNA that
enables the attachment of other species; (IV) at maturity, the biofilm is capable of releasing
part of its bacterial cells, which return to independent planktonic life (Figure 1).
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Figure 1. The stages of biofilm formation (created with BioRender.com (accessed on 1 September 2022)).

Bacterial biofilm is responsible for more than 60% of nosocomial infections linked to
some implanted medical devices [10] and is also associated with chronic infections, i.e.,
osteomyelitis. The common characteristic of biofilm-associated infections is their inherent
resistance to host immunity, antibiotics, and biocides [11]. It is known that sessile bacteria
need higher levels of antibiotics compared to minimum inhibitory concentrations of the
corresponding planktonic form [12]. A wide range of opportunistic bacteria regularly
found within the microflora of the implant site are able to produce biofilm on prosthetic
materials, usually causing implant therapy failure. Both types of bacteria, Gram-negative
and Gram-positive, can form biofilm on medical devices. The most common bacteria that
undergo planktonic to sessile transition are E. faecalis, S. aureus, S. epidermidis, P. aeruginosa,
S. viridans, E. coli, P. mirabilis, and K. pneumonia [13]. Among them, the Gram-positive
bacteria, S. aureus, coagulase-negative staphylococci, besides Gram-negative bacteria such
as E. coli and P. aeruginosa, are the most commonly involved pathogens in the biofilm
formation on the prosthetic implants [14–16].

A variety of approaches have been applied to inhibit the formation of harmful biofilms,
including physical methods (ultrasound and magnetic fields treatments) [17,18], altering
the surface characteristics of the materials (such as their smoothness, wettability, and
hydrophilicity) [19], coating prosthetic implants with a particular material [20], biochemical
methods using the degradative enzyme [21], and biomaterials as an antibiotic delivery
system [22].

Considerable efforts are being devoted to finding and manufacturing biomaterials
that have applications in therapies for bone infections [23–26]. Bioactive glasses (BGs) have
become an emerging field for bone pathologies due to their antibacterial properties. How-
ever, when metal ions or drugs are incorporated into the BGs structure, their bactericidal
properties are improved.

2. Bioactive Glasses

BGs are of great interest in the field of medical implants due to their osteoinductive,
osteoproductive, osteoconductive, and antimicrobial properties [27]. L. Hench, who rev-
olutionized the field of biomaterials with his invention of 45S5 BG, known as Bioglass®

(wt. %: 45SiO2-24.5Na2O-24.5CaO-6P2O5), in the early 1970s, classified a bioactive material
as one that causes a biological reaction at its interface and promotes a bond to develop
between the tissues and the material [28]. He discovered that the composition of 45S5
bioactive glass bonded with the bone through the formation of hydroxyapatite (HAP), an
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analog to the mineral phase of bones when it was in contact with biological fluids. The
Bioglass® composition has received the approval of the US Food and Drug Administration.
Currently, it is used for middle ear treatment and periodontal repair and augmentation [29].

Since then, the research on BGs has provided very good results through the conversion
of traditional glasses into glasses with added properties that address healthcare needs.
BGs can bond to and integrate with the bone tissue without promoting inflammation and
toxicity or forming fibrous tissue [30,31].

The main advantage of BGs for tissue engineering applications is their surface reactiv-
ity. The reaction products resulting from the interaction between BGs and the physiological
fluids lead to the formation of the HAP-like phase, similar to the crystalline HAP of bones.
When these glasses are exposed to an aqueous environment, they undergo several surface
reactions that have been described as the bioactivity of BGs [32]:

I. Rapid exchange of Ca2+ with a proton or hydrate proton;
II. Generation of silanols (Si–OH) at the site of the breakdown of the silica network.

Solution interface for BG. In this stage, soluble silica [Si(OH)4] is also produced and
released to the bodily fluid;

III. Condensation and repolymerization of the silica-rich layer take place on the BGs’surface.
Consumption of Si–OH;

IV. Ca2+ and PO4
3− migrate to the surface and form Ca–PO4

3− clusters on the top of the
SiO2-rich layer, and the crystallization of the amorphous CaP takes place;

V. Finally, the hydroxycarbonate apatite layer (HAC) is formed by the incorporation of
OH– and CO3

2− anions from the solution.

Furthermore, the release of ions makes the surrounding environment hostile to mi-
crobial development through the generation of osmotic and acid-base imbalance without
being dependent on antibiotics and without harming the host tissues.

BGs can be obtained either by the traditional melt-quenching or the modern sol-gel
method [33].

Melt-derived BGs are prepared at temperatures higher than 1000 ◦C, with a procedure
analogous to that used to melt common window glasses. The resulting material does not
have any porosity at all, and the surface area depends only on the particle size obtained by
grinding up the powders.

In the 1990s, the sol–gel method, which involves the hydrolysis and polymerization
of metal hydroxides, alkoxides, and/or inorganic salts, was used for the first time to create
BGs [34]. Contrary to the melt-derived BGs, the sol–gel glasses are not prepared at elevated
processing temperatures. The surface and structural properties (such as the surface area and
porosity) can be finely modulated depending on the composition and synthesis conditions.
The BGs obtained by the sol–gel method can have different types of pores, such as nanopores,
macropores, or mesopores [35]. At the very end, controlled nanostructured materials can be
obtained. Due to their outstanding textural properties, HAP is deposited much faster on the
sol–gel BGs than on the melt-derived ones, and the materials exhibit higher bone-bonding
rates, together with excellent degradation/resorption properties [36–38].

Furthermore, the sol–gel processes can be combined with the supramolecular chem-
istry of surfactants, resulting in the third-generation class of BGs referred to as ordered
mesoporous bioactive glasses (MBGs), with the values of the surface and porosity up to
five times higher than those obtained by the sol–gel method [39,40]. The surfactants for
preparing MBGs mainly include CTAB, P123 (EO20-PO70-EO20), and F127 (EO106-PO70-
EO106) [41]. MBGs exhibit the highest in vitro bioactivity and their ordered mesoporous
structure allows for the incorporation of antimicrobial agents, etc., thereby having a huge
potential in the therapy of bacteria-associated infection.

Moreover, BGs can be used to produce three-dimensional scaffolds, which are an
advantage in tissue-engineering applications. Thus, a bioactive, biodegradable, and highly
porous matrix that could resemble the cancellous bone is obtained.

The introduction of the sol–gel method opened the research to new types of materials
for medical applications. One of the advantages of this method, in comparison with the
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conventional melting technique, is the possibility of easy chemical doping. Moreover, the
traditional melting method’s higher processing temperature causes some components,
including P2O5, to evaporate throughout the process, decreasing the overall bioactive
potential of the glass, as well as other properties [42].

The antibacterial property of the BGs is an intriguing characteristic. In some cases,
BG compositions have demonstrated antibacterial properties without any addition to their
composition of metal ions or antibiotics.

Zhou et al. [43] compared the efficacy of 45S5 and S53P4 (53SiO2-23Na2O-20%CaO- 4%
P2O5, wt. %) BGs against the biofilm generated by MRSA and V. parvula. They found that
45S5 BG particles exhibited a higher reduction of the biofilm than the S53P4 BG particles,
suggesting the potential of 45S5 BG for eradicating mature biofilm. They emphasized the
influence of the BGs particle size on the effectiveness against biofilms. Smaller particles
reduced biofilms significantly more than larger particles across the experiment. Other
researchers have demonstrated the strong activity of S53P4 BG to reduce the biofilm
produced by a wide variety of bacteria, including S. aureus, P. aeruginosa, K. pneumoniae,
and S. epidermidis [44,45].

Considering that bacteria can evolve defensive mechanisms against antibiotics through
mutation and selection, an alternative to treating bone infections is the use of biocide metal
ions. Low-bacterial resistance is one of the advantages of these ions.

Moreover, the concentration of the dopant should be determined, because the low
dopant concentrations sometimes may not produce the desired properties, and on the
contrary, high dopant concentrations may have cytotoxic and carcinogenic effects [46].

Many studies have suggested the positive effect of metal ions loaded on BGs against
bacterial biofilm (Table 1).

Table 1. The inhibitory ability of bacterial biofilm of some metal ions.

Ions BG Composition Synthesis Microbial Biofilm Ref.

Ga3++Ag+ 10CaO-37Na2O-45P2O5-3Ga2O3-5Ag2O (mol %) Melting Inhibition of P. aeruginosa
biofilm [47]

Zn2+

Zn doped BG (5 mol %) Sol–gel

Reduced biofilm formation of
A. actinomycetemcomitans,

P. gingivalis,
and P. intermedia [48,49]

55SiO2-40CaO-5P2O5 (mol %)
Zn (2.39 wt. %) Sol–gel Inhibition of S. aureus, P. aeruginosa,

and A. aceti biofilms

Ti4+ 40P2O5·16CaO·24MgO·17.5NaO·2.5TiO2
(mol %) Melting Inhibitory effect on S. mutans biofilm [50]

Ag+
70SiO2-28CaO-2AgO (mol %) Sol–gel S. aureus and P. aeruginosa biofilms

formation was entirely inhibited [51,52]
60B2O3–36CaO–(4–X)P2O5–(X)Ag2O

x = 0.3, 0.5, 1 (mol %) Sol–gel Eradicated P. aeruginosa biofilm by
up to 99.7%.

Cu2+ Cu (2 mol %)-doped MBGs Sol–gel Disrupted the biofilm matrix of
S. epidermidis [53]

Te4+ 48.6-xSiO2-16.7Na2O-34.2CaO-0.5P2O5-xTeO2
x = 1, 5 (mol %) Melting Ability to inhibit S. aureus and

S. epidermidis biofilms formation [54]

3. Mechanism of Antibacterial Action of Metal Ions

The antibacterial mechanism of BG implies the ionic dissolution products that result in
a slight increase in the medium pH and osmolarity, creating an inhospitable environment
for the proliferation of bacteria, but sometimes the pH alone is insufficient to eradicate the
bacteria in the solution [55].

Metal ions with bactericidal action can be incorporated into the glass structure in
order to improve the antibiofilm activity of the BGs. When the glass is dissolved in the
bodily fluid, these ions are slowly released and interact with cells, inducing changes in
their metabolism. Various metal ions with antibacterial assets can be included into the glass
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network, such as copper (Cu+ and Cu2+) [56,57], zinc (Zn2+) [58,59], gallium (Ga3+) [60,61],
cerium (Ce3+ and Ce4+) [62,63], silver (Ag+) [64–67], and magnesium (Mg2+) [68].

The antibacterial mechanism of the metal ions can be explained by the production of
ROS (reactive oxygen species) and the interactions of these ions with the cell membrane,
the biomolecules at the cell membrane, or the cytoplasm matrix, respectively (Figure 2) [69]:

(1) Release of the metal ions from the BGs;
(2) Direct interaction of the metal ions with the cell wall through electrostatic interactions,

compromising the membrane function and hindering nutrient assimilation;
(3) Reactive oxygen species (ROS) generation, extracellular and intracellular, and oxida-

tive stress cause damage to the proteins and DNA. Oxidative stress determined by
ROS is crucial in the antibacterial effect of metal ions;

(4) The high level of metal ions attached to the cell membranes and the high ROS lev-
els can generate the disruption of the cellular wall, and hence the leaking of the
cellular content;

(5) A high level of ROS induces loss of the proton motive force and dysfunction of
electron transport;

(6) Depending on metal ions uptake, these can interfere with both proteins and DNA,
destruction their function, and interrupt cellular metabolism, besides the metal ions
mediated ROS production [70]. The production of ROS, due to the incomplete re-
duction of oxygen molecules, is often reported in bacterial cells treated with metal
ions. ROS are oxygen-containing derivatives composed of highly unstable oxygen
radicals, such as superoxide (O2

−), hydroxyl (OH−), hydrogen peroxide (H2O2), and
singlet oxygen (O2) [70]. When the ratio of the generated ROS to antioxidant defenses
is perturbed, the ROS concentration continuously increases and causes damage to
bacterial proteins and DNA, accumulating oxidative stress and leading to a change in
their functionality and the death of the bacteria [70].
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The chemistry of metal ion-mediated ROS production can be systematized as follows:
(i) redox-active metal ions that take part in reduction reactions by gaining electrons or
oxidation reactions by losing electrons (i.e., Cu2+); (ii) some metal ions (i.e., Cu2+ and Ag+)
can target the proteins that contain [4Fe–4S] clusters, such as the bacterial-type ferredoxins,
and consequently impede their ability to transfer electrons in the metabolic reactions [71],
and, as a result, Fe may be uncontrollably released into the cytoplasm, where it produces
ROS; (iii) metal ions, such as Cu2+ and Ag+, may also contribute to oxidative stress in
bacteria by depleting the antioxidant reserve, and, as a consequence, the cell’s antioxidative
defense is compromised, making it more susceptible to subsequent metal ion-mediated
ROS [72].

The generation of ROS and, thus, the toxicity displayed by the materials, can be
influenced by several characteristics, such as solubility, shape, size, oxidation status, and
surface area [73].

4. Metal Ions Incorporated Bioactive Glasses with Antibiofilm Efficiency

In recent years, several studies have demonstrated the effective antibiofilm activity
of different formulations of BGs. Ag+, Cu2+/+, Ga3+, Ti4+, and Zn2+ are some examples
of ions that can be used in doped BGs to target the inhibition and disruption of bacterial
biofilm [47,48,50,53].

A recent study [23] reported that F18 glass, synthesized by the melting method,
belonging to the SiO2-Na2O-K2O-MgO-CaO-P2O5 system, is a promising material for
preventing and controlling bacterial biofilm. The bacterial strains S. aureus and methicillin-
resistant S. aureus (MRSA) were used to evaluate the reduction of the biofilm. The results
showed the inhibition of the S. aureus biofilm following direct contact with the F18 BG
particles for 6 h. A reduction of the viable bacterial population by about six logs was
observed. Additionally, there was a reduction in the MRSA S. aureus biofilm and S. aureus
by approximately five logs when the bacterial cells were exposed to an intermediate dosage
of 12 mg/mL (F18 dissolution products and powder) [23].

One of the most efficient ions against bacterial biofilm is zinc (Zn) [74,75]. Zn is a
multifunctional therapeutic ion. Zn can stimulate bone formation because it is a cofactor
in many enzymes and is involved in DNA replication [74]. Zn can also leak from the BG,
causing oxidative stress in the intracellular medium or damage to cell membranes [76].

Zn-containing BGs have been shown to have antimicrobial properties against S. aureus
and E. coli in the planktonic form [77].

In their investigation, Esfahanizadeh et al. [48] discovered that BG doped with 5 mol %
of Zn significantly reduced the ability of Gram-negative anaerobic periodontal pathogens
such as P. gingivalis, A. actinomycetemcomitans, and P. intermedia to develop a biofilm.

Zn (2.39 wt. %)-doped nano-BG particles (55SiO2-40CaO-5P2O5 mol %) were obtained
by Paramita et al. [49] using the sol–gel method. The results showed that Zn-doped BG
had better antibiofilm activity than undoped BG against the most common biofilm-forming
strains: A. aceti, P. aeruginosa, and S. aureus. The assay was carried out at concentrations
ranging from 0.1 to 1 mg/mL. At the concentration of 0.5 mg/mL, the A. aceti biofilm was
reduced by 50%, whereas the P. aeruginosa and S. aureus biofilms were reduced by 30–40%.
At selected concentrations, no cytotoxic effect was observed.

Silver (Ag) exhibits powerful antibacterial activity against a range of bacterial
species [78–80], including antibiotic-resistant strains [81]. Incorporating Ag into BG
has been proposed as a possible alternative to antibiotics for reducing infection in clin-
ical applications [51,82,83]. Wilkinson et al. [51] aimed to elucidate the antibiofilm effi-
cacy of Ag-doped BG (TheraGlassTM) against the opportunistic pathogens P. aeruginosa
and S. aureus. Recently marketed for bone tissue regeneration, TheraGlass (TheraGlass®,
MedCell, Burgess Hill, UK) is a novel, highly bioactive glass synthesized by the sol–gel
method (70SiO2-30CaO mol%) [84]. The study [51] revealed that the treatment alone with
Ag-doped BG led to a significant reduction of viable biofilm bacteria (P. aeruginosa and
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S. aureus). The obtained data demonstrate that Ag-doped BG is effective against established
ex vivo biofilms.

In a recent publication [52], the antibacterial activity of Ag-doped borate glasses with
compositions of 60B2O3-36CaO-(4-x)P2O5-(x)Ag2O, where x = 0.0, 0.3, 0.5, and 1 (mol %),
was examined in vitro.The dose-dependent antibacterial activity of the Ag-doped BG was
demonstrated against P. aeruginosa preformed biofilms, with up to a 99.7% reduction in the
bacterial cell counts.

Additionally, several studies [85,86] proved that Ag has an antimicrobial activity
only against bacteria and fungus, but not against epithelial cells, indicating its clinical use
without adverse side effects on human health.

Fan et al. [87] showed that Ag-containing MBGs (molar ratio Si:Ca:P = 80:15:5) pre-
sented an antibacterial activity against E. faecalis biofilm in the root canal of human teeth.

Copper (Cu) has also been used as a therapeutic ion due to its biocidal action against
Gram-positive and Gram-negative bacteria and its low cytotoxicity to human cells. It is a
necessary element for both human and animal existence [88]. Additionally, by enhancing
angiogenesis and promoting osteogenesis, it plays a significant role in the metabolism of
bone formation [88]. Similar to Ag-containing BG, the effect of Cu-containing BG against
bacteria is associated with Cu ions released from the glass matrix. The antibacterial activity
of Cu is achieved either directly by interacting with biomolecules or indirectly by activating
oxygen species [89]. However, because bacteria are more sensitive to Ag ions than to Cu
ions, the lower concentration of Ag ions has the same effect as Cu ions [89].

In 2008, the United States Environmental Protection Agency classified Cu as a metallic
antimicrobial agent against many disease-causing bacteria [90].

Using poly(styrene)-block-poly(acrylic acid) (PS-b-PAA) and hexadecyltrimethylam-
monium bromide (CTAB) as structure-directing agents, Holquin et al. [91] produced Cu-
doped hallo BG nanoparticles with the following composition: 79.5SiO2-(18-x)CaO-2.5P2O5-
xCuO (x = 0, 2.5 or 5 mol % of CuO).

Their study showed that the composition with a greater amount of Cu was able to
degrade the biofilm formed by S. aureus at a minimal concentration, indicating its suitability
as a bactericide agent [91].

Furthermore, Bari et al. [53], demonstrated that Cu-containing MBG (2 mol %) pre-
pared by an ultrasound-assisted one-pot synthesis inhibited bacterial growth and was
also able to restrain the formation of a biofilm produced by S. epidermidis, and even fa-
vored its dispersion. It is known that S. epidermidis produces considerable quantities of
polysaccharide intercellular adhesions that induce biofilm formation [92]. The findings
are consistent with other studies [93,94], providing evidence of copper’s antimicrobial
efficiency against bacterial growth and the development of biofilm being an effective
alternative for conventional systemic therapies based on antibiotics.

Gallium (Ga) is another interesting element to be used as a therapeutic ion due to its
broad-spectrum activity and immunity to the conventional resistance mechanism of bacteria
associated with antibiotics. All these characteristics are linked with gallium’s pathway in
bacteria metabolism. Ga acts as a “Trojan horse”, disrupting the bacterial Fe metabolism.
Since the ionic radii of Ga3+ and Fe3+ are nearly identical, many biologic systems cannot
discriminate between them [95]. Most bacteria need Fe3+ in their intracellular environ-
ment, which is reduced to Fe2+ during the process of many proteins. Ga can replace Fe
in the cytoplasm but, unlike Fe3+, Ga3+ cannot be reduced to Ga2+, and the proteins become
inactive [96,97]. Regarding Ga-containing BGs, gallium has been doped into both sol–gel and
melt-quenching-derived glasses, and both have shown adequate efficiency against bacteria
found in biomaterial-related infections [98–101]. Yazdi et al. [102] synthesized a Ga-doped
zinc borate bioactive glass manifesting a sustained and controlled release of ions for at least
28 days, which was consistent with the bacteriostatic activity against P. aeruginosa.

According to the study [47], melt-derived Ag- and Ga-doped phosphate glass with
the following composition 10CaO-37Na2O-45P2O5-3Ga2O3-5Ag2O (mol %) contributed to
the biofilm growth inhibitory effect on P. aeruginosa (up to 2.68 reductions in log10 values
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of the viable counts compared with controls). The composition may offer a successful
choice to combat opportunistic pathogens such as P. aeruginosa-associated infections due
to the controlled release of antibacterial Ga and Ag ions at the site of infection. The melt-
derived Ag- and Ga-doped phosphate glass was also tested in terms of the inhibition of
biofilm formation against P. gingivalis and S. gordonii periodontal pathogens [103]. The
glass developed in the study [103] reduced biofilm formation of P. gingivalis after 7 days of
exposure by combining the actions of Ga and Ag synergistically. Ag ions destabilize the
biofilm matrix to increase the biofilm’s contact area, hence enhancing the chances of the Ag
and Ga ions subsequently killing the bacteria.

Recently, Tellurium (Te), an element from the chalcogens group that exhibits several
oxidation states, has been studied for biological applications due to its antimicrobial, an-
tioxidant, and antitumoral properties [54,104–106]. Telluride (Te2−)→elemental tellurium
(Te0)→tellurite (TeO3

2−)→tellurate (TeO4
2−) are only a few of the redox states in which

Tellurium can be found. The tellurite (TeO3
2−) is highly toxic for most bacteria (e.g.,

Escherichia coli) even at concentrations of 1 µg mL−1 [107].
This opens a new perspective for the Te element in terms of biomaterials to prevent

bacterial infections in tissue engineering applications.
A recent study [54] analyzed the antibacterial activity against bacterial biofilm of Te-

doped BGs. The investigated Te-doped BG showed a significant biofilm metabolic reduction
for both S. aureus and S. epidermidis, the most frequent strains involved in orthopedics
infections [108].

The antibacterial activity of Te is due to a combination of different mechanisms that
are likely not yet fully disclosed. Turner et al. [109] gave an explanation of some events.
Briefly, tellurite can exceed the outer membrane due to the environmental pH variation
and then exert its toxic action in the cytoplasmic compartment by triggering an increase in
the generation of reactive oxygen species (ROS) [110]. The tellurite influences the activity
of the superoxide dismutase (SOD) that is necessary to counteract the oxygen species
(ROS) formed.

5. Conclusions and Future Perspectives

Bone and joint infections during orthopedic surgery due to bacterial biofilm on pros-
thetic implants is a growing public health concern. Bacterial biofilms are among the most
critical problems currently confronting medicine due to their growing antibiotic resistance
and unique defense mechanisms. The development of multifunctional biomaterials for
bone regeneration with good drug delivery capabilities that exhibit antibacterial activity
against bacterial biofilm represents the current focus in tissue engineering research. BGs
show considerable potential for regenerative medicine because they can have simultaneous
antibacterial, antibiofilm, and regenerative properties.

Studies have emphasized the antibacterial properties of BGs, frequently highlighting
how their effectiveness is related to their particle size or, if they are doped with biocide
metal ions, how they can damage the cell membrane of bacteria or generate ROS. F18 BG is
a promising material showing a reduction of S. aureus and MRSA biofilms following direct
contact. Comparing the efficacy of 45S5 and S53P4 BGs against the biofilm generated by
MRSA and V. parvula, it was found that 45S5 BG exhibited a higher reduction of the biofilm
than S53P4 BG, and the particle size played a significant role in the effectiveness against
biofilms, with the smaller particles being more effective.

The incorporation of biocide metal ions such as Ag, Cu, Zn, or Ga into BGs demonstrated
more promising antibiofilm effects than the undoped BGs. Ag-doped BG, TheraGlassTM

(TheraGlass®, MedCell, Burgess Hill, UK), recently marketed for bone tissue regeneration,
showed a notable reduction of P. aeruginosa and S. aureus biofilms. Among the doped BGs,
Te-doped BG showed a significant biofilm reduction of the most frequent strains involved in
orthopedic infections, namely S. aureus and S. epidermidis.

Despite the significant progress in the search for efficient BG compositions for the cure
of mature biofilms, only a few have been evaluated for in vivo trials.
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In the future, considerable research needs to be devoted to developing BGs that will
trickle from the study to clinical applications, thus enabling a reduction in biofilm infections
in orthopedic surgery and other medical specialties.
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