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Abstract

The metabolic phenotype of cancer cells is reflected by the metabolites they consume and

by the byproducts they release. Here, we use quantitative, extracellular metabolomic data of

the NCI-60 panel and a novel computational method to generate 120 condition-specific can-

cer cell line metabolic models. These condition-specific cancer models used distinct meta-

bolic strategies to generate energy and cofactors. The analysis of the models’ capability to

deal with environmental perturbations revealed three oxotypes, differing in the range of

allowable oxygen uptake rates. Interestingly, models based on metabolomic profiles of mel-

anoma cells were distinguished from other models through their low oxygen uptake rates,

which were associated with a glycolytic phenotype. A subset of the melanoma cell models

required reductive carboxylation. The analysis of protein and RNA expression levels from

the Human Protein Atlas showed that IDH2, which was an essential gene in the melanoma

models, but not IDH1 protein, was detected in normal skin cell types and melanoma. More-

over, the von Hippel-Lindau tumor suppressor (VHL) protein, whose loss is associated with

non-hypoxic HIF-stabilization, reductive carboxylation, and promotion of glycolysis, was uni-

formly absent in melanoma. Thus, the experimental data supported the predicted role of

IDH2 and the absence of VHL protein supported the glycolytic and low oxygen phenotype

predicted for melanoma. Taken together, our approach of integrating extracellular metabolo-

mic data with metabolic modeling and the combination of different network interrogation

methods allowed insights into the metabolism of cells.

Author summary

Altered metabolism is characteristic for many human diseases including cancer. Disease

progression and treatment efficacy vary between patients. Hence, we need personalized

approaches to define metabolic disease phenotypes. This definition will enable us to

unravel the underlying disease mechanisms and to treat individuals more efficiently.

Computational modeling increasingly supports the analysis of disease mechanisms and

complex data sets. The interpretation of extracellular metabolomic data sets is particularly

promising since this data type is proximal to the actual metabolic phenotype altered in

human diseases. Moreover, it might enable us to directly interpret disease states from

serum samples in the future. Herein, we took a first step towards this ambitious goal. We
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generated a large set of cancer metabolic models from extracellular metabolomic data and

computationally stratified the models based on their metabolic characteristics into differ-

ent phenotype groups. Melanoma emerged as an interesting example of how our approach

can provide insights into the intracellular metabolism from extracellular measurements.

Taken together, this work paves the way to generate condition-specific models from extra-

cellular metabolomic data and demonstrates the many ways by which distinct phenotypes

can be stratified and phenotype-specific intervention targets can be predicted.

Introduction

Aerobic glycolysis indicates the incomplete oxidation of glucose to lactate under normoxic

conditions [1] and has been a focus of cancer research in recent decades [2]. However, cancer

cells are increasingly thought to employ heterogeneous metabolic strategies beyond aerobic

glycolysis [3–6]. Many cancer cells generate substantial amounts of energy through mitochon-

drial oxidative phosphorylation [2, 7, 8]. Moreover, cancer cells use additional fuels, such as

glutamine and fatty acids, to support proliferation [3, 9]. These carbon sources can be used in

different ways, e.g., different parts of the tricarboxylic acid (TCA) cycle can be employed for

glutaminolysis [5, 8, 10, 11]. Reductive carboxylation involves only two TCA cycle reactions

that run in reverse direction without producing energy, whereas glutaminolysis in the forward

direction does yield energy [5, 8, 11]. In addition to various metabolic strategies, cancer cells

display robustness towards environmental changes, such as, nutrient supply or oxygenation

[12–14]. Even though these differences in metabolic phenotypes are known to exist, the vari-

ance in the metabolism of cancer cell lines has not been exhaustively analyzed using extracellu-

lar metabolomic data.

Liquid chromatography-tandem mass spectrometry (LC-MS) was used to determine the

metabolites that were consumed and released by the cancer cell lines included in the NCI-60

panel of the National Cancer Institute’s (NCI’s) Developmental Therapeutics Program (DTP;

http://dtp.nci.nih.gov) [15]. By combining the obtained metabolomic profiles with doubling

times and transcriptomic data, rapid proliferation was associated with cellular glycine require-

ments [15]. However, most of the intracellular pathways that gave rise to distinct metabolomic

profiles remained undetermined.

Metabolism can be investigated using constraint-based modeling [16, 17], which involves

the application of physico-chemical principles and often assumes the system to be in a steady-

state [16]. Limitations on metabolite uptake and secretion rates can be added to the model to

increase the precision of the predictions by eliminating network states that exceed these con-

straints [18]. A reconstruction of the human metabolism is readily available [19, 20], and

numerous analytical methods are used to investigate the metabolic differences that arise due to

the imposed constraints [21, 22]. Metabolomic data derived from body fluids and cell culture

supernatant have previously been integrated with metabolic reconstructions [7, 23, 24].

One existing challenge in the integration of extracellular metabolomic data is incomplete

data. Analytical techniques identify only a subset of the metabolome due to the chemical diver-

sity among small molecules and because the analysis is often a priori limited to a defined set of

targeted metabolites [25]. Hence, the information on which substrates are taken up by the cells

is incomplete. Similarly, the management of data derived from cells grown in serum is difficult

because the quantitative and qualitative composition of the serum is unknown. However, the

quality of computational predictions depends on the extent to which a model’s solution space

can be reduced by integrating available data. Ideally, only biologically relevant network states

Metabolic heterogeneity of the NCI-60 cell lines
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would remain to be investigated [18]. Novel approaches are necessary to overcome these diffi-

culties and enable the rapid classification of metabolic phenotypes based on metabolomic pro-

files. Such approaches could have a broad impact on many biological fields including

biomedicine.

We developed a novel method termed minExCard to complete the uptake and secretion

profile, by predicting a minimal set of metabolite exchanges in addition to the ones measured,

to complete the metabolome. We applied the method to the comprehensive targeted extracel-

lular metabolomic data set from Jain et al., which was generated from the NCI-60 cell lines

grown in medium enriched with serum [15].

Using minExCard we generated 120 condition-specific models from extracellular metabo-

lomic data. Our models utilized different biochemical routes to supply the cells with energy

and were distinctively affected by network perturbations. We distinguished different oxotypes

based on the range of allowable oxygen uptake rates. We identified a distinctive tissue pattern

for melanoma cell lines that was supported by protein and RNA expression levels from mela-

noma cell lines and primary melanoma. This work demonstrates how analysis of extracellular

metabolomic data in the metabolic model context, and the combination of multiple analysis

strategies, can lead to unprecedented insight into cell metabolism.

Results

Generation of heterogeneous condition-specific cancer cell line models

Published metabolomic profiles comprising the uptake and secretion of metabolites from and

into the culture medium were integrated with the metabolic model (Fig 1A) [15]. The metabo-

lomic data consisted of two samples per cell line. Because there was considerable variation

between samples (Fig A in S1 Text), we generated one condition-specific cell line model for

each sample rather than averaging the data for each cell line. The metabolome is dynamic and

constitutes a snap-shot of the phenotype elicited by the cultivated cells over the duration of the

experiment and under a specific set of environmental conditions. We refer to the models as

condition-specific since they are tailored only according to the metabolomic profiles. Generic

cell-line specific models would need to be generated from data sets of different experimental

conditions and the existing literature for the same cell line, to ensure that it can carry out all

the functions observed for these cells under any set of environmental conditions. To generate

a condition-specific model, the global model was constrained using the metabolite uptake and

secretion rates measured for the respective samples. Next, a minimal set of, on average 17 ± 3,

exchange reactions needed to sustain a minimal growth phenotype (Vbiomass,min = 0,008 U)

together with the imposed uptake and secretion rates were identified based on the model struc-

ture by minimizing the number of exchange reactions (using minExCard). An analysis of the

expression of genes associated with the metabolites additionally required in the MCF-7 models

(which required the highest number of added exchange reactions), revealed that extracellular

transport and metabolism of these added metabolites could indeed appear in MCF-7 cells (see

S1 Text, S1A Table, [26]). However, the gene expression data was only used to validate the

added exchanges, but not for the generation of the condition-specific models since the tran-

scriptomic data originated from a different experiment than the metabolomic data. All other

metabolite exchanges and internal reactions that were no longer used by the model were

removed to produce an individual condition-specific cell line model for each sample (Fig 1A).

The 120 models differed with respect to the numbers of reactions, metabolites, and genes

(Fig 1B and 1C, Fig B in S1 Text). Many of the models could substantially exceed the maxi-

mally possible growth rates expected for any human cell (S1B Table). The capability of the

models to grow at realistic rates was analyzed by applying constraints on the biomass objective

Metabolic heterogeneity of the NCI-60 cell lines
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function based on reported growth rates (+/-20%) for the individual cell lines, and flux balance

analysis revealed whether the model remained feasible with these constraint. Only 14 models

were infeasible when constrained using the experimental growth rates (see S1 Text, S1C Table)

because the feasible range of flux rates through the biomass reactions exceeded or did not

reach up to the experimental growth rates, even when assuming a 20% error range. ACHN-2

and UACC-257 were limited to experimental growth rates just by the metabolite uptake and

secretion profile and the minimal growth constraint (S1 Text, S1B and S1D Table).

Fig 1. Metabolic models provide a context for the analysis of metabolomic data. A 1. The refinement step denotes the addition of

transport and exchange reactions to enable the uptake and secretion of the metabolites detected in the metabolomic profiles of the NCI-60

cell lines [15]. 2. The condition-specific cell line models were generated using minExCard. In total, 120 models (NCI-60 multiplied by 2) were

generated from published metabolomic data and the extended metabolic model. 3. The models were analyzed using a set of computational

methods. Based on the computational results, the models were divided into different metabolic phenotypes, and drug targets were predicted

for each individual model. The approach is applicable to a variety of biomedical applications. An analysis of tumor or patient-specific omics

data could be used to stratify disease phenotypes and to predict personalized disease intervention strategies. B Differences in the number of

reactions, metabolites, and genes across a large set of models. C Distribution of the number of reactions, metabolites, genes, and exchange

reactions among the 120 cell line models.

https://doi.org/10.1371/journal.pcbi.1005698.g001
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Considering a lower error of 5% or constraining both upper and lower bound to the growth

rate, the ACHN-2 model became infeasible (S1D Table). The predicted growth rates for the

HCT-116 models using sampling Vmedian,biomass = 0.038 U, corresponding to a doubling time

of 18.2 hrs, deviated at most 7% from the growth rate reported by Jain et al. and others (S1D

Table, [15, 27]). Taken together, the diversity of the models and their ability to predict realistic

growth rates suggested that they were a good starting point to investigate metabolic heteroge-

neity between the cell lines.

Distinct metabolic phenotypes

Metabolic strategies yield different amounts of ATP, e.g., full oxidation of glucose to CO2 can

yield 32 ATP and aerobic glycolysis can yield two ATP [28, 29]. Herein, we used the ATP yield

as an estimator for distinct pathway utilization. For this analysis, we divided the sum of flux

through all reactions in the model that produced ATP by the individual glucose uptake. There

was a large range of ATP yields across the models (Fig 2A, ATP yield: min = 2.92, max = 55.27,

S1B Table) that exceeded the theoretical measure for aerobic glycolysis. An exact fit with the

theoretical ATP yields was not expected because the models could use all substrates as defined

by the uptake profile and ATP-producing reactions present in the condition-specific model

and not only glucose (Fig A in S1 Text). As a sanity check, we tested for maximum ATP hydro-

lysis flux from only O2 and glucose as carbon source. ATP hydrolysis flux from glucose did not

exceed the theoretical measures [28, 29] in any of the 120 cancer models (S1E Table). Upper

bounds on exchange reactions were opened for the sanity check. Rank-ordered ATP yields

nearly continuously increased and were occasionally interrupted between groups of models

(Fig 2A, Fig C in S1 Text). One interruption was associated with the switch of the major ATP-

producing reaction. Models with an ATP yield < 4.21 (’glycolytic’ models, n = 38, Fig 2A) pro-

duced the highest fraction of ATP through phosphoglycerate kinase (PGK). In contrast, mod-

els with an ATP yield> 7.26 produced ATP primarily via ATP synthase (’OxPhos’ models,

n = 82, Fig 2A). Thus, the ATP yield and ATP production strategy divided the models into gly-

colytic and OxPhos phenotypes. The distinction of the models was significantly associated

with the ratios of glucose uptake to lactate secretion (ttest, p< 0.01), and glucose uptake to glu-

tamine uptake (ttest, p< 0.0002). Taken together, the distinction of the glycolytic and the

OxPhos models emerged from the ratios of fluxes of metabolites, which are associated with the

observed Warburg phenotype and, which were imposed on the models as individual flux

constraints.

Consideration of differences in the utilization of the TCA cycle, i.e., ATP production of suc-

cinate-CoA ligase, enabled the further identification of two OxPhos subtypes (Fig D in S1

Text). This division was not obvious according to ATP yield (Fig E in S1 Text). In addition to

ATP, cells need cofactors to support proliferation. Distinct strategies used in the models pro-

duced different cofactors and enabled the division of glycolytic models into two subtypes (Fig

2B and 2C, S1F–S1J Table). The two OxPhos subtypes were further subdivided into a total of

six subtypes (Fig 2B and 2C, S1J Table). The glycolytic subtypes differed only in the major

FADH2-producing reaction (Fig 2B, I and II). Two OxPhos subtypes were associated with

high TCA cycle contribution to ATP production, which was associated with a high utilization

of cytosolic malic enzyme as a leading NADPH source (Fig 2B, IV and VII). The four remain-

ing OxPhos subtypes predominantly used either isocitrate dehydrogenase (IDH, Fig 2B, V and

VIII) or dihydroceramide desaturase (Fig 2B, III and VI) for NADPH production. Glyceralde-

hyde-3-phosphate dehydrogenase was the primary NADH producer in OxPhos models with

relatively more glycolysis-based ATP production, whereas 2-oxoglutarate dehydrogenase was

favored in models with a higher contribution of ATP synthase (Fig 2C). Thus, the predicted

Metabolic heterogeneity of the NCI-60 cell lines
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Fig 2. Distinction of the models. A Rank-ordered ATP yields achieved by the models describe a gradual increase rather than clusters

around theoretical ATP yields. The spread of ATP yields highlights the metabolic heterogeneity between the 120 models. The cell lines use a

mixture of pathways and metabolic fuels for ATP production, which explains that the predicted ATP yield can exceed the theoretical

measures. Two major strategies for ATP production can be distinguished based on the ATP yields. The distinction lies in the higher

contribution of either phosphoglycerate kinase (green squares) or ATP synthase (red squares) to the total ATP production. B A fine-grained

division of the OxPhos models is achieved considering the production strategies of ATP, NADPH, NADH, and FADH2. The table lists the

reactions contributing most to ATP, NADH, NADPH, and FADH2 production for each phenotype (I-VIII). C A three dimensional plot of the

eight phenotypes with respect to the utilization of glycolysis, the TCA cycle, and oxidative phosphorylation. D Three different oxotypes are

distinguished. The distinction between the OxPhos models (blue) is different from the phenotypic classification performed based on the

energy and cofactor production strategies depicted above (see also S1 Text). E Six model clusters are distinguished according to each

models’ ability to deal with environmental changes. Variations in glucose, glutamine, lactate, and oxygen lead to a distinct stratification of

OxPhos models. Fig F in S1 Text shows different perspectives.

https://doi.org/10.1371/journal.pcbi.1005698.g002
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strategies for cofactor production enabled further refinement for the classification of glycolytic

and OxPhos models.

Robustness towards genetic and environmental perturbation

Thus far, we stratified the models based on the imposed constraints and the distinct use of cen-

tral metabolic pathways. In the following, we predict the behavior of each model towards envi-

ronmental and genetic perturbations. Fluctuations of nutrients and oxygen supply during

transformation shape the individual metabolic network and may influence the robustness of

cancer cells towards environmental changes [30]. Variations of glucose uptake, glutamine

uptake, oxygen uptake, and lactate secretion (phenotypic phase plane analysis (PhPP)) led to

two major observations [31]. First, the size and form of the solution spaces varied across mod-

els (Fig 3). Using the form and size of the solution spaces as visual clues (Fig G in S1 Text), we

divided the models into six distinct clusters (Figs 2E and 3, S1K Table, S1 Text). Second, the

solution space, which contains all possible network states and which was defined by variations

in oxygen uptake, divided the models into three groups (Fig 2D) (i) Glycolytic models could

only grow at low oxygen uptake rates (Figs 2D and 3 cluster 4). The group of OxPhos models

comprised (ii) models growing only at high oxygen uptake rates (Figs 2D and 3 cluster 1–3)

and (iii) models that were indifferent with respect to oxygen uptake rates (Figs 2D and 3 clus-

ter 5–6). The latter two groups provided a separation of the OxPhos models that was distinct

from the previous analysis. Thus, the models could be further divided according to their

robustness towards oxygen uptake.

In silico gene knock-outs can predict novel drug targets [32]. Single gene deletion of 1215

unique human genes (all isozymes of one gene were constrained to zero at once) was per-

formed for each of the 120 models. The number of essential genes varied across models

(min = 132, max = 272, S1B Table) and was not associated with any phenotype. A total of 55

genes were essential to all models and could constitute metabolic targets for all previously

defined phenotypes (S1L Table). These numbers of essential genes predicted by our models

were higher compared to those predicted for generic cell-or tissue specific models. This was

Fig 3. Six model clusters are distinguished according to the models’ robustness towards environmental changes. Heatmaps

display results for one model from each cluster (and subcluster). Lines in the heatmaps indicate the constraints imposed on the exemplified

model. Lac = lactose, glc = glucose and gln = glutamine.

https://doi.org/10.1371/journal.pcbi.1005698.g003
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caused by the vast reduction of exchange reactions and fixed uptake and secretion fluxes,

which prevented that upon a gene knock-out, the models could switch to using different meta-

bolic fuels or pathways connected to changes in gene expression. The flux ranges and the

direction of flux of the exchange reactions were fixed, causing any reaction that was linked to

the exchanges to become essential for the model. Whether a gene was essential under changing

environmental conditions and whether cells in vivo could evade the effect by changing the

metabolic pathways used to generate energy, cannot be answered by our models. However,

models build from transcriptomic data could be used instead. Such models have previously

revealed the switch to pathways requiring higher oxygen uptake when glycolytic enzymes were

inhibited [33]. However, the condition-specific models, which are ‘frozen’ to the metabolic

properties elicited at the time, highlight inhibition of which genes necessitate changes in meta-

bolic flux and changes in gene expression.

Cancer cells use the TCA cycle in different ways [5, 8]. Reductive carboxylation involves the

TCA cycle reactions isocitrate dehydrogenase and aconitase, and occurs in the mitochondria

or the cytosol. The gene IDH1 encodes the cytosolic isocitrate dehydrogenase and the gene

IDH2 encodes the mitochondrial isocitrate dehydrogenase. Interestingly, in silico IDH2
knock-out terminated growth in four models (SK-MEL-28, SK-MEL-28-2, MALME-3-2, and

BT-549) and reduced growth in 12 additional models. A flux variability analysis (FVA)

revealed that the four models had to employ reductive carboxylation (S1M Table [34], whereas

this pathway remained optional for the other models even when constrained to experimental

growth rates (S1D Table). In agreement with an observed increase in reductive carboxylation

under hypoxic conditions [5], a reduction of the oxygen uptake rate (lb = ub = −100 fmol/cell/

hr) rendered 14 additional models dependent on reductive carboxylation (S1M Table). Fifteen

models, including the four reductive carboxylation models, belonged to PhPP cluster 4, which

was characterized by a heavily constricted solution space at low oxygen uptake rates compared

with, e.g., the cluster 4C models (Fig 3). The remainder belonged to cluster 1B. Our models

were therefore not only able to predict reductive carboxylation but also able to further repro-

duce the co-occurrence of low oxygenation and reductive carboxylation in cancer cell lines.

Phosphoglycerate dehydrogenase (PHGDH) was another essential gene shared among the four

models with obligate reductive carboxylation. Interestingly, SK-MEL-28 and MALME-3M had

previously been associated with amplifications of PGDH due to 1p12 gain [4, 35]. The correct

prediction of the dependency of SK-MEL-28 and MALME-3M on PHGDH provides addi-

tional support for the presented approach and for the predicted dependency of SK-MEL-28 on

reductive carboxylation.

Because the oxotype played an essential role in determining the phenotype and because tissues

are known to be differentially oxygenated [36], we questioned whether tissue origin impacted

the oxotype of the cancer. In total, 49 cell line model pairs had the same oxotype (Fig 4). Breast,

Fig 4. Oxotype of model pairs. Replicate models of the same cell line predominantly share the same oxotype. Only 11 model pairs have

distinct oxotypes (different oxotypes). A tissue pattern becomes apparent for the melanoma cell lines. Melanoma cell lines predominantly

have a low oxotype.

https://doi.org/10.1371/journal.pcbi.1005698.g004
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colon, and non-small cell lung cancer models were spread across oxotypes. Leukemia, prostate,

renal, and CNS cell line models predominantly depended on high oxygen uptake rates. In con-

trast, melanoma cell lines were clearly separated from the other cell lines by predominantly

relying on low oxygen uptake rates (Fig 4). Thus, the oxotypes enabled us to distinguish mela-

noma cell lines from other cancer cell lines.

Validation of the emerging tissue pattern

Most melanoma models were predicted to be glycolytic and having a low oxotype (Fig 4, S1J

and S1K Table). A reverse flux through the TCA cycle was essential for a small subset of mela-

noma models without additional constraints limiting the oxygen uptake. To validate that mela-

nomas indeed use the mitochondrial isocitrate dehydrogenase, we analyzed protein

abundance and RNA expression data from the Human Protein Atlas [37]. IDH1 protein abun-

dance was low or not detectable in normal skin cell types (hypergeometric p (x = 5) = 0.047,

Table 1, 1), skin cancer, and melanoma. In comparison, IDH2 protein levels were medium in

normal skin cell types (hypergeometric p (x = 5) = 0.006, Table 1, 2) and detected in more than

50% of the skin cancers and melanomas (Table 1). Thus, the data supported a prevalence of

IDH2 for normal skin cell types, skin cancers, and melanoma at the protein level.

Reductive carboxylation has been associated with the loss of the von Hippel-Lindau tumor

suppressor (VHL) in renal cancer cell lines [38]. HIF1α protein is no longer degraded, which

is associated with the expression of glucose transporters and glycolytic enzymes [39, 40]. Since

the process of HIF stabilization is connected to hypoxia, this process has also been referred to

as pseudo-hypoxia [5]. To validate the predicted glycolytic phenotype and the low ‘oxotype’,

we analyzed HIF1α and VHL protein, and RNA levels. HIF1α protein abundance was low in

normal skin tissue (hypergeometric p(x = 5) = 0.019, Table 1, 3) and low or medium in the

majority of skin cancers and melanomas (Table 1). HIF1α RNA expression was overall high in

human melanoma and epidermoid carcinoma cell lines (Table 2).

The VHL protein detection was unreliable in all normal skin cell types (Table 1). Interest-

ingly, VHL protein was not detected in skin cancers or in melanomas (Table 1). The absence

of VHL was even more distinctive in skin cancers as compared to renal cancers where VHL

levels were medium or high in 7 out of 12 patient samples (Table 1). Moreover, RNA expres-

sion was low in two melanoma cell lines, an epidermoid carcinoma, an immortalized normal

Table 1. Protein abundance data from the human protein atlas supports the predicted tissue pattern. The footnotes indicate which cell types or cell

lines were considered in the hypergeometric tests. The hypergeometric probabilities (1,2,3) are provided in the main text.

Cell line VHL IDH1 IDH2 HIF1α
Normal skin fibroblasts Uncertain Not detected1 Medium2 Low3

Normal skin

keratinocytes

Uncertain Not detected1 Medium2 Low3

Normal skin

Langerhans

Uncertain Not detected1 Medium2 Low3

Normal skin

melanocytes

Uncertain Not detected1 Medium2 Low3

Normal skin epidermal

cells

Uncertain Not detected1 Medium2 Low3

Skin cancer (patients) 12x Not detected 1x Low, 10x Not detected 2 x High, 5x Medium, 5x Not

detected

2x Medium, 6x Low, 4x Not

detected

Melanoma (patients) 12x Not detected 1x Low, 11x Not detected 1x High, 4x Medium, 2x Low, 5x Not

detected

4x Medium, 4x Low, 4x not

detected

Renal cancer (patients) 7x Medium, 4x Low, 1x Not

detected

1x High, 1x Low, 10x Not

detected

4x Medium, 1x Low, 7x Not

detected

1x Medium, 3x Low, 7x Not

detected

https://doi.org/10.1371/journal.pcbi.1005698.t001
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keratinocyte cell lines (hypergeometric p(x = 4) = 0.044, Table 2, 1), and A549 cells, which

were predicted to be low oxotype (Table 2). Hence, the lack of VHL emerged as a prominent

feature of normal skin and melanoma.

Representation of the genotype-phenotype relationship. Reductive carboxylation has

been observed in renal cancers with VHL mutations under normal oxygen conditions [38].

The NCI-60 cell line 786-O carried a VHL mutation [41]. If correctly predicting the genotype-

phenotype relationship, our 786-O models should predict reductive flux through the TCA

cycle. We predicted that the two 786-O models could carry reverse flux through the IDH2 and

forward flux through the IDH1. Hence, the models allowed the metabolic phenotype that

would be expected for 786-O cells (S1N Table)). However, the constraints were not determin-

ing enough to enforce reductive carboxylation. Reductive carboxylation is associated with

hypoxia in cancer cells and the loss of VHL is associated with the hypoxic-like response and

the metabolic pathways are rewired accordingly [5]. Hence, we next explored if the expected

phenotype could be achieved by limiting the oxygen uptake flux. Cell line specific oxygen

uptake rates were not provided by [15] but restricted to the same upper limit in all models

(see methods section). As a consequence, the 786-O models could consume high oxygen

uptake fluxes (786-O VO2,median = −992.49 U, and 786-O-2 VO2,median = −992.59 U). We lim-

ited the oxygen uptake flux in the 786-O models to the minimum (786-O VO2,min = −153.03 U,

and 786-O-2 VO2,min = −151.16 U, S1O Table). As a consequence, the models predicted a

net reverse flux through IDH2, i.e., the 786-O models could no longer carry flux through

IDH1 and IDH2 flux had to be backwards (786-O Vaconitase,min,max = −19.56 U, and

786-O-2 Vaconitase,min,max = −17.27 U, S1O Table). Hence, after restricting the oxygen uptake,

the 786-O models were obliged to net reductive carboxylation. Taken together, the metabolo-

mic constraints were not restrictive enough to limit the 786-O models to the expected pheno-

type, i.e., reverse IDH2 flux. This result underlines the value of measurements of oxygen

consumption for the prediction of cancer cell phenotypes.

The common denominator of the different cancer phenotypes. Despite predicting what

dissociates the cancer models, the condition-specific models can also be used to identify com-

mon traits. The in silico gene knock-out analysis yielded 55 genes that were essential to all 120

models. Many of the model genes are associated with more than one reaction and disabling

Table 2. RNA expression data from the human protein atlas revealed low levels of VHL and high levels of HIF1α in skin cell lines that are not part of

the NCI-60 panel. The predicted phenotypes are listed for all NCI-60 cell lines in the data set. None of the skin cancer cell lines in the data set was a NCI-60

cell line. CNS = Central nervous system.

Cells Cancer Predicted phenotype VHL HIF1α
A-431 Skin (human epidermoid carcinoma) Low1 High

SK-MEL-30 Skin (human melanoma) Low1 High

HaCaT Skin (immortalized, non-tumorigenic human keratinocyte) Low1 Medium

WM-115 Skin (human melanoma) Low1 High

A549 Lung Glycolytic Low High

K-562 Leukemia Glycolytic Medium Low

HL-60 Leukemia OxPhos Medium Low

MOLT-4 Leukemia OxPhos Medium Medium

PC-3 Prostate OxPhos Medium High

RPMI-8226 Leukemia OxPhos Medium Low

MCF-7 Breast OxPhos Low Medium

U-251 MG CNS OxPhos Low High

Normal Skin Medium Medium

Normal Kidney Medium High

https://doi.org/10.1371/journal.pcbi.1005698.t002
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flux through only some of these reactions renders the model unable to grow. Disabling indi-

vidual reactions associated with the 55 essential genes at a time let to the identification of 16

reactions that were essential for all models (S1P Table).

The models were built by imposing constraints that forced them to consume or secrete

metabolites. Additionally, we enforced a minimal growth constraint during the model build-

ing. Hence, those genes and reactions that the models needed to comply with because of the

imposed constraints are expected to be essential. From the set of 16 essential reactions, four

reactions were essential also in the unconstrained model. Additional nine reactions directly

involved metabolites that were part of the biomass composition or the uptake and secretion

profiles that had been integrated with the models. Three essential reactions comprised a path

leading to the production of succinyl-CoA by propionyl-CoA carboxylase for the TCA cycle.

Interestingly, itaconic acid inhibits this enzyme in bacteria [42], and has been suggested as can-

cer growth modifier, because of its impact on substrate level phosphorylation and to mito-

chondrial energy generation [43]. Itaconic acid production, which is induced by IRG1

expression, is produced by tumor cells originating from macrophages and related cell types

[44, 45]. On the contrary, toxicity of a polymer containing itaconic acid, fumaric acid, and 1,

4-butanediol specifically designed as drug delivery vehicle with inherent anticancer activity

has been observed for the human breast cancer cell line MCF-7 [46]. Taken together, the pre-

diction of the common essential reaction set highlighted propionyl-CoA carboxylase as poten-

tial target to interfere with the different metabolic phenotypes.

Discussion

Biochemical and molecular biological methods increasingly generate large omics data sets,

which require adequate methods to facilitate their interpretation. Herein, we integrated pub-

lished metabolomic data into the network context to obtain condition-specific metabolic mod-

els for the NCI-60 cell lines. The metabolic models were generated to be consistent with the

measured data and known human biochemistry. We used this compendium of metabolic

models to explore the metabolic strategies followed by various cancer cell types. Our main

results are as follows: (1) minExCard enabled the integration of quantitative extracellular meta-

bolomic data while using the context of the metabolic model to complete metabolic exchange

profiles; (2) distinct biochemical routes were utilized by the different cancer models to supply

the cells with energy; (3) most notably, the models were divided into oxotypes, which distin-

guished the allowable oxygen uptake rates of the models and distinguished melanoma from

other cancers; and (4) the predicted tissue pattern was supported by protein and RNA levels of

melanoma cell lines and primary melanoma tissue. Taken together, our study furthers the

interpretation of extracellular metabolomic profiles in the context of metabolic models and

provides biological insight into the metabolism of NCI-60 cancer cell lines that could not have

been drawn from the data alone.

Primary cells and cell lines are often cultivated in medium enriched with serum, whose com-

position is usually unknown, thus removing the possibility to limit metabolite uptake fluxes

using known medium composition and metabolite concentrations, as it is possible with defined

medium. Additionally, targeted approaches usually quantify a limited, pre-defined set of metab-

olites. In this study, we addressed these challenges of integrating the extracellular metabolomes

of cancer cell lines. Our novel method minExCard predicted a completed metabolome for each

sample and enabled us to exclude many metabolite exchanges along with the associated path-

ways, resulting in individually reduced condition-specific metabolic cell line models (Fig 1). We

opted for the minimal set of additional metabolites to ensure that the model was sufficiently

constrained, yet satisfied a minimal growth phenotype, given the known metabolite exchange
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profile and the topology of the metabolic model. Gene expression data confirmed the expres-

sion of extracellular enzymes and transport proteins for the added exchange metabolites in the

MCF-7 cells (see S1 Text, S1A Table). The completion of the metabolome distinguishes our

approach from the frequent application of uptake and secretion rates as constraints in metabolic

models, e.g., [23]. A biomass objective function can be assumed for proliferating cancer cells

[47]. The quality of the condition-specific metabolic cell line models was assured through the

ability of the vast majority of the models to grow at experimental growth rates. Individual mod-

els were limited to the experimentally reported growth rates just based on the applied con-

straints or grew consistent with experimental growth rates when comparing against the median

predicted growth rates obtained from the sampling analysis (S1N Table).

A high variation in the published metabolomic data [15] with respect to uptake and secre-

tion profiles for the same cell lines was noted at the beginning of this study, motivating us to

create individual models for each replicate. These models yielded also different phenotypes

despite belonging to the same cell line (see S1 Text). Variability has been previously observed

within clonal cell populations, where noise in gene and protein expression is connected to

structural and behavioral differences [48, 49]. Emerging tissue specific patterns could be

observed and they were most distinguishable for melanoma cell lines (Fig 4). In particular, we

identified phenotypes ranging from highly glycolytic to those almost completely relying on

oxidative phosphorylation (Fig 2). Moreover, the energetic classification provided a better

distinction of the glycolytic models (Fig 2B and 2C, energetic classification), and the environ-

mental response stratification was better at distinguishing the OxPhos models (Figs 2E and 3,

S1 Text). This diversity of metabolic strategies is in agreement with the increasing number of

studies that highlight diverse metabolic pathways to play a role in cancer cell proliferation, and

that could be targeted during cancer treatment [3, 15]. Moreover, tissue origin and the

sequence of environmental factors and oncogenes that occur during the transformation, might

influence in which ways the metabolism is altered and gives rise to the different phenotypes

[8]; this was reflected in our cancer cell line models (Fig 2). Specifically, hypoxia is believed to

drive transformation [8], and tumor cells are exposed to temporal fluctuations in oxygenation

[14]. Cells exposed to variable oxygenation would consequently be expected to display meta-

bolic flexibility to withstand fluctuations, whereas cells originating from tumor regions with a

constant nutrient supply would not necessarily require such flexibility. Our models were classi-

fied into three distinct oxotypes (Figs 3 and 4) that may have arisen from distinct oxygenation

conditions during tumor development and progression.

The low oxotype and the glycolytic phenotype was a distinctive feature of the modeled mel-

anoma cell lines. Almost one third of the models depending on a reverse flux through the

reductive carboxylation under hypoxic conditions were melanoma models and all melanoma

models could carry a non-zero, reverse flux through these reactions (S1M Table). This distinc-

tive feature combined with the ability to deal with hypoxic stress is interesting since skin tissue

is at least partially hypoxic [39, 50]. The hypoxic environment of the skin might support the

transformation of skin cells [40] and might further promote the glycolytic phenotype in skin

tumors. Jain et al. suspected unique metabolic behavior in melanoma cells based on the unique

release of adenosine and inosine [15]. However, data clustering did not yield a distinction of

the melanoma cell lines from other cancer cell lines [15]. Adenosine secretion, as observed by

Jain et al., has been reported under hypoxic conditions [51], supporting the predicted low oxo-

type, or psydohypoxia [5], as a common feature of the NCI-60 melanoma cell lines.

Using published protein and RNA expression data, the predicted tissue pattern could be

validated (Tables 1 and 2). For instance, reductive carboxylation has previously been described

as common feature of melanoma cell lines [52, 53]. Differences on the importance of IDH1 as

compared to IDH2 have been reported for various cancer cell types [5, 52, 54]. Based on our
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simulations, a reverse flux through IDH2 was required in some of the melanoma models. In

support of this in silico result, IDH2 but not IDH1 expression could be measured on the pro-

tein level in normal skin cells and melanoma (Table 1). Additionally, IDH2 downregulation

decreased growth, angiogenesis, and increased apoptosis in tumors formed by melanoma cells

injected into mice as compared to IDH2 wild-type melanoma cells [55, 56]. However, in this

study, the effect of IDH2 downregulation was attributed to diminished mitochondrial

NADPH production [55].

In further support of the distinctive tissue patterns of the melanoma cell lines, VHL was not

detectable at protein levels in skin cancer or melanoma, and only low RNA expression levels

were detected in melanoma cell lines that were not part of the NCI-60 panel (Tables 1 and 2).

Lack of VHL, which usually marks HIF-1α for proteosomal destruction [57], could promote

a pseudo-hypoxic or low ‘oxotype’ and a glycolytic phenotype in melanoma through HIF1α
stabilization and increased expression of, e.g., the Glut-1 transporter and glycolytic enzymes

[39, 40]. VHL is not frequently mutated in skin cancer as compared to, e.g., renal cancers. Nev-

ertheless, the loss of VHL was shown to increase HIF levels and expression of genes with HRE

elements, e.g., VEGF, GLUT-1, ALD-A, and PFK-L, which are associated with a glycolytic phe-

notype, when melanoma cells were injected into mice [58]. Additionally, loss of VHL was con-

nected to increased skin vascularization, which is known to contribute to growth and

angiogenesis, potentially through iNOS and EPO signaling, in many cancers including mela-

noma [58, 59]. Hence, even though VHL is not frequently mutated in melanoma, low expres-

sion and lack of protein could promote the glycolytic phenotype we predicted for melanoma.

Taken together, our condition-specific models predicted metabolic commonality among

the condition-specific melanoma models. Moreover, the available data supported that the pre-

dicted tissue pattern may also be valid for other melanoma cell lines, primary melanoma and

other skin cancers.

Metabolic models are often generated from transcriptomic or proteomic data [47, 60], or

considering metabolomic data as subordinate source of information. Yet, metabolite concen-

tration changes reveal the consequences of post-transcriptional and post-translational regula-

tion, hence metabolomic data are the closest information source to the metabolic phenotype.

In this study, we built condition-specific models that were consistent with the measured uptake

and secretion profiles covering a large number of metabolites (n between 95 & 105). As a con-

sequence, these models exhibited a limited flexibility in the uptake and secretion of the mea-

sured metabolites, while most unmeasured metabolites were considered to be not exchanged

by the cells with the medium. The limited flexibility prevents us to answer the question if cells

could in vivo evade the effect of the gene knock out by redirecting the metabolic fluxes in a way

that would impact the uptake and secretion pattern. In comparison, an assessment of essential

genes in changing environmental conditions can be performed using cell-type specific models

which are generated from transcriptomic or proteomic data sets. In an earlier study, Yizhak

et al have generated cell-type specific models for the NCI-60 cell lines using transcriptomic

data [33]. These models could secrete lactate at the experimentally reported secretion rate, we

based our models on. Yizhak et al have also reported an increasing oxygen uptake as a conse-

quence of inhibiting glycolytic enzymes in two lung cancer cell lines [33]. In contrast, our mod-

els of the same cell lines predicted a decreasing oxygen uptake when glucose uptake was

decreased (Fig I in S1 Text) [33]. This difference in prediction could be explained by the con-

stant lactate secretion flux that we enforced throughout the in silico experiment. Unfortunately,

glucose/glutamine uptake was not measured in the experiments of Yizhak et al. [33], which

would have enabled a better comparison of the results from these two studies.

If metabolomic and transcriptomic data were individually sufficient one may expect similar

models for the cell lines and comparable phenotypic predictions. However, this is not the case
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and highlights the complementarity and importance of using multiple omics data sets to derive

condition- and cell-type specific models to investigate the condition-specific and general cell-

type specific metabolic properties. The methods we used to integrate the metabolomic data are

readily available and can be used to further investigate the cellular phenotypes [61, 62].

Conclusion

We opted to build our models solely from metabolomic data, without consideration of the

genotypic and other omics data, to evaluate whether such models could provide novel biologi-

cal insights. This approach was particularly interesting for connecting the melanoma cell lines

with the reverse flux through the IDH2 and psydohypoxia [5].

However, when only constrained based on the metabolomic data, our 786-O models pre-

dicted net reductive carboxylation was optional, which stood in contrast to net reverse flux

observed for these cells. Limiting the oxygen uptake in the models to the minimum emphasized

the reverse flux in the TCA cycle. Overall, this highlights that oxygen consumption in an experi-

ment determines the observable metabolic phenotype, in addition to the growth medium com-

position (or environmental condition). Addition of, e.g., transcriptomic data could further

define the phenotype [62]. There is no shortage in transcriptomic data for the NCI-60 cell lines.

However, since the models build herein are condition-specific, the data used should originate

from the same experiment to resemble the metabolic phenotype displayed in the experiment.

The presented computational modeling approach is applicable to many cellular systems

and represents a valuable starting point to investigate metabolic strategies of individual cell

lines as well as to envision clinical applications. Further development of this approach could

help realize personalized clinical applications utilizing metabolomic data. Immortalized cell

lines, such as the NCI-60 cell lines, have a limited clinical relevance since they are monoclonal

and accumulate mutations due to the high passage numbers [63]. One way to increase the clin-

ical relevance of our work would be to extend the presented work to omics data generated

from patient-derived primary tumor cells. Methods exist to cultivate primary tumor cells, or

selected sub-populations of the same, e.g., tumor-initiating stem cells; and to retain phenotype

and genotypes using tissue-specific supplements and environmental conditions [63]. Extracel-

lular metabolomic data or multiple omics data derived from such personalized cell cultures

could then be used in conjunction with the presented approach to gain a better understanding

of an individual’s cancer, and to predict appropriate treatment strategies.

Materials and methods

The procedures for preparation, data integration, and phenotypic analysis have been summa-

rized in great detail elsewhere [61]. The MetaboTools contains the matlab code used for this

work [61].

The global model

The global model constitutes a subset of Recon 2 [20]. This subset is the same as that used in a

previous study [62]. Units (U) are given in fmol/cell/hr. The MetaboTools function setMedium-
Constraints was used to apply the following constraints to the global model [61]. Essentially,

infinite constraints were set to lb = −2,000 U and ub = 2,000 U. All exchange reactions in the

model were initially set to lb = −2,000 U and ub = 2,000 U. Subsequently, constraints were

set for exchange reactions of ions (lb = −100 U), vitamins (lb = −1 U), essential amino acids

(lb = −10 U) and compounds such as water or protons (lb = −100 U). Oxygen uptake was con-

strained to lb = −1,000 U and ub = 0 U. This range was defined based on reported oxygen

uptake rates of a cancer cell line (2.85 � 10-6ml O2/105cells/min = 646.013 U [64]). Additionally,
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the lower bounds of the superoxide anion and hydrogen peroxide exchanges (i.e., uptake flux)

were set to zero to prevent the generation of models that did not require oxygen uptake.

Reaction fluxes are usually in units of mmol/gDW/hr. Here, however, the metabolite uptake

and secretion profiles were mapped in the unit fmol/cell/hr [15]. We assumed a unitary cell

weight of 10-12 g, which was in the range of the dry weight (3.645 � 10-12 g) that we calculated

for lymphocytes in an earlier study [62]. In that study, the dry weight was inferred from the

dry mass (range 35–60 ng [65]) and cellular volume (4000 μm3 [66]) of the human osteosar-

coma cell line U2OS, which we related to the cell volume of lymphocytes (243 μm3) [67]. By

calculating 4000/243 = 16.46, 60 pg/16.46 = 3.645 pg (3.645 � 10-12 g) [62]. According to

1mmol/gdw = 1012fmol/1012 cells, no biomass scaling was necessary. The lower bound (lb) of

the biomass objective function was fixed to a minimal value of 0.008 U to match the lb defined

for the slowest growing cell line in the data set (HOP-92, 88 hrs) [27], ensuring that the model

building resulted in functional models with non-zero growth. S1Q Table lists the reactions and

constraints of the global model.

The metabolomic data

We used published metabolomic data [15]. There were two quantitative extracellular metabo-

lomic profiles for each of the NCI-60 cell lines. These profiles defined the uptake and secretion

rates of 115 metabolites [15]. From the entire set of detected metabolites, we used only the cali-

brated (quantitative) uptake and secretion fluxes. Fluxes were provided in the unit fmol/cell/hr

(U) and were incorporated as such into the model. Throughout the manuscript, fluxes are

reported in the unit fmol/cell/hr (U).

Identification of missing reactions

Metabolite identifiers in the data were mapped to the metabolite abbreviations in the global

model. The metabolite aminoisobutyrate was not part of the global model and was excluded.

We identified the existing metabolite exchange reactions based on the metabolite abbrevia-

tions. If there was no exchange reaction in the model but if the metabolite itself was part of the

model, a new exchange reaction was added to the model. In addition to the exchange reactions,

transport reactions need to be present in the model to account for transport of metabolites

between the extracellular space and the cytosol of the model. Transport reactions need to be

added for all metabolites for which we added exchange reactions. These transport reactions

were identified from the literature. If no transporter for the metabolite could be identified, we

added a diffusion reaction. The additions that we made to the model based on the metabolo-

mic data comprised 44 transport and 37 exchange reactions (S1R Table). The global model

used to generate the cancer models comprised 3,935 reactions and 2,833 metabolites.

The Integration of the metabolomic data was performed as detailed in a protocol that pro-

vides extensive support (including workflows, code, and tutorials) for the data integration,

model generation, and model analysis, carried out in this study [61].

Constraint-based modeling

Consider the optimization problem

min yðvÞ

s:t: S � v ¼ 0;

lb � v � ub;

ð1Þ
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where v 2 Rn is a vector of reaction rates, θ(v) is a scalar valued objective function and S 2
Rm�n is the stoichiometric matrix consisting ofmmetabolites and n reaction rates as defined

by the metabolic reconstruction. The lower and upper bounds, lb and ub 2 Rn respectively,

constrain the sign and magnitude of the reaction rate, with the convention that a net forward

rate is positive. In flux balance analysis (FBA [68]), the objective is to minimize θ(v): = cT � v, a

linear sum of reaction rates, where c 2 R is a parameter vector that specifies the linear contri-

bution of each reaction rate to the objective function. When minimizing a single reaction rate,

every entry of c is zero, except one. Typically, there is an infinite number of optimal reaction

rate vectors that produce an optimal value of the objective function. To obtain a unique flux

vector, we first solve Problem (1) with θ(v): = cT � v, then fix the rate of the previously opti-

mized reaction and again solve Problem (1) except with yðvÞ :¼ 1

2
vT � v. This procedure

returns a unique reaction rate vector that minimizes the square of the Euclidean norm of

the reaction rates, subject to optimality with respect to the original objective function [21]. In

flux variability analysis (FVA), one uses linear optimization to compute the minimal and maxi-

mal rate of each reaction, subject to θ(v): = cT � v being minimal as computed in Problem (1)

[34].

Addition of quantitative constraints

The presence of an exchange and transport reactions does not ensure that a metabolite can be

consumed or secreted by the model because anabolic and/or catabolic pathways may not be

present or unknown [20]. We used the MetaboTools function prepIntegrationQuant to gener-

ate individual uptake and secretion profiles for each sample in the data set: To identify the sub-

set of metabolites that the model could consume and secrete, we performed FBA while

enforcing small uptake (ub = −0.0001 U) or secretion (lb = 0.0001 U) for all mapped metabo-

lite exchanges. All metabolites that could not be consumed (14) or secreted (14) by the model

were discarded (S1S Table). Among them was homoserine 4-hydroxybenzoate, which could be

neither consumed nor secreted by the model. Therefore, data for 112 metabolites could be

mapped. Note that these 112 metabolites included those that could only be consumed, only be

secreted, or by both consumed and secreted (S1S Table). The identification of metabolites that

are not part of a metabolic reconstruction is common, and pathways for these metabolites

need to be added in future releases of the human metabolic model [20], which served as a start-

ing point (see also above). If the uptake of a metabolite was possible in the global model but

secretion was not, only metabolite secretion was discarded from the metabolic profiles, while

uptake remained present, and vice versa.

After the sets of ‘qualitatively’ feasible metabolite exchanges were identified, we mapped the

sets of metabolite uptake and secretions of a sample to the global model using the MetaboTools

function setQuantConstraints [61]: We mapped a minimum of 95 and a maximum of 105

exchanges to the models (S1T Table). These exchanges were split into uptake and secretion.

The number of metabolite uptakes mapped to the model ranged between 34 and 58, and the

number of secretions enforced in the model varied between 42 and 67. We imposed each

detected, quantitative flux x as a constraint to the bounds of the respective metabolite exchange

reaction while considering a 20% allowance around x (lb = 0.8xU and ub = 1.2xU). The con-

straint pairs for one sample were mapped to the global model one by one. After constraints

were placed on one exchange reaction, FBA was performed to check if the model was still able

to grow. Although the global model was able to perform all qualitative metabolite exchanges

that were mapped, certain quantities or combinations of constraints could still render the

model infeasible. In case of infeasibility, the original bounds of the model were restored, and

we proceeded to the next set of constraints. Quantitative constraints rendered 27 preliminary

Metabolic heterogeneity of the NCI-60 cell lines

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005698 August 14, 2017 16 / 23

https://doi.org/10.1371/journal.pcbi.1005698


cell line models infeasible (Fig 1A). Of these 27 models 25x2, 1x1, and 1x4 exchange con-

straints were restored during the data integration (S1B Table).

Model building

Although 464 of the reactions in the global model can exchange metabolites across the bound-

ary of a cell, the exchange of only 115 metabolites was actually quantified in the metabolomic

profiles that we employed. The incompleteness of the metabolic profiles results from limits to

the scope of individual metabolomic platforms, e.g., oxygen uptake rates that were not

reported. This issue was compounded due to the use of fresh medium that was undefined with

respect to small molecules, e.g., fresh medium containing serum. In the preliminary model,

removing all but the metabolite exchanges (corresponding to measured, exchanged metabo-

lites) always led to a model that did not admit a feasible steady-state flux. We hypothesized

that the metabolic profiles were likely to be an incomplete representation of the total number

of metabolites exchanged with the medium. Therefore, we developed a novel method, deemed

minExCard, that takes a preliminary metabolic model as the input and predicts a steady-state

flux vector with the minimum cardinality for the reactions corresponding to the missing

exchanges. That is, it predicts a minimal number of missing exchange reactions that are

required to be active to permit a feasible steady state flux (S1O Table).

minExCard. There is currently no polynomial time algorithm used to find an exact solu-

tion to the problem of minimizing the cardinality of a vector (subject to linear constraints).

However, subject to certain conditions, the solution to this problem is, with high probability,

equivalent to the minimal one-norm solution [69]. Without a loss of generality, we convert all

net reactions into a pair of unidirectional reactions and assume that the rate of each unidirec-

tional reaction is non-negative. Let ve denote a vector of all missing unidirectional exchange

reaction rates in the preliminary model, and let |ve| denote the cardinality of the missing

exchange reaction vector for a feasible steady-state flux. The linear optimization problem

min 1T � ve

s:t: S Se½ � �

v

ve

2

4

3

5 ¼ 0

lb � v � ub

0 � ve

ð2Þ

will return the optimal flux vectors v? and v?e , such that jv?e j approximates the smallest possible

cardinality of any ve that satisfies the constraints. For the preliminary model, the number of

linearly independent equality constraints, i.e., rank([S Se]) = 2746. Of the 120 preliminary

models, the largest number of active inequality constraints on non-exchange reactions was 39.

This leaves a maximum of 2707 = 2746 − 39 independent constraints, which is an order of

magnitude greater than 28, which was previously the largest jv?e j obtained for any of the pre-

liminary models. A high ratio of the number of independent constraints to the cardinality of

the linear optimization solution is used in similar settings to guarantee, with high probability,

that a one-norm approximation recovers the actual minimal cardinality solution [69]. To

ensure that the elimination of any one reaction where ve 6¼ 0 would result in Problem (2)

becoming infeasible, we conducted FVA on the exchange reactions and repeated minExCard

if needed. This procedure for minimizing the cardinality of missing exchanges was applied to

all 120 models. Thereafter, the sets of unused exchange reactions, specific to each model were
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omitted. Finally, all other net, non-exchange reactions that did not admit a non-zero flux were

omitted via the application of a previously reported function (identifyBlockedRxns,

epsilon = 1e-4) within the FASTCORE software package for the reconstruction of context-spe-

cific metabolic networks [70]. The number of exchanges added to the model due to minE-

xCard varied between 13 and 28 (S1B and S1U Table). The minExCard is embedded in the

MetaboTools function setQuantConstraints or can be called directly by the function generate-
CompactExchMode [61].

Analysis

Growth rates. A minimal biomass growth requirement (minGrowth = 0.008) was speci-

fied as the input for the model generation using setQuantConstraints and resided in the models

throughout the analysis. Cell line specific growth rates [27], which agreed with [15], were

added as constraints only to analyze the ability of the models to realize experimental growth

rates. An alternative set of NCI-60 growth rates (http://dtp.nci.nih.gov/docs/misc/common_

files/cell_list.html) did not yield different results.

Flux split ratios and ATP yield. Flux splits can be used to investigate metabolism in a

metabolite-centric view [71]. Flux split analysis identifies the contribution of each model reac-

tion producing ATP to the total amount of ATP produced [71]. Herein, we calculated flux

splits to obtain information on the distinct production strategies of the cancer cell line models

for ATP and cofactors (NADH, NADPH, and FADH2). The MetaboTool function predict-
FluxSplits was used [61]: The flux splits were calculated based on the flux vectors identified

through optimizing ATP production for each model (parsimonious FBA). The advantage of

using parsimonious FBA over “normal” FBA is that it provides a unique solution, whereas

“normal” FBA returns one of many alternate optimal solutions, which may differ depending

on the chosen solver and linear programming method. In parsimonious FBA the objective is

maximized while minimizing the the euclidean norm of internal reaction fluxes (and hence

the flux through loop reactions (S1V Table) and considering the applied uptake and secretion

flux constraints. All reaction fluxes producing the metabolite i were identified: Pi,j = Si,j × vj for

all reactions j as Pi,j> 0. From the sum of production fluxes Fi = ∑Pi,j, the percent contribu-

tions were calculated: Pi� = Pi,j/Fi as specified [71]. However, prior to summarizing the total

production flux Fi, certain reactions, e.g., transport reactions, were removed. Subsequently,

the reaction with the maximal Pi� was identified as the major producer of ATP, NADH,

NADPH, and FADH2. Based on the combination of major producer reactions, the 120 models

were classified into eight different phenotypes (S1J Table). The ATP yield was defined by

dividing the FATP by the glucose uptake of each respective model. It should be noted that

although we formulated the ATP yield according to glucose uptake, the uptake of other carbon

sources, e.g., glutamine, remained possible, as no additional constraints were applied. The

MetaboTools functionmake3Dplot can be used to generate similar illustrations as presented

herein [61].

Phenotypic phase plane analysis. The robustness of the 120 models towards environ-

mental perturbations was investigated using phenotypic phase plane analysis (PhPP) [31]. The

MetaboTools functions performPPP and illustrate_ppp were used to perform this step: Fluxes

through two exchange reactions representing metabolite uptake or secretion were fixed at dif-

ferent intervals while setting biomass production as the objective function in FBA. For each

step, the optimal value was computed and plotted in 3D. Oxygen uptake was varied in combi-

nation with either glucose uptake, glutamine uptake, or lactate secretion. All other reaction

constraints remained unchanged. The tested range was defined based on the variability of the

constraints set throughout the set of 120 models: oxygen uptake rate was initially 0 and
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decreased in steps of 20 units until an uptake rate of −1,000 U was reached. The glucose uptake

rate was initially 0 and decreased in steps of 20 units to −1,080 U (the lowest and highest glu-

cose uptake rates among the models were −38 x 0.8 = −30 U and −860 x 1.2 = −1,032 U). The

glutamine uptake rate was initially 0 U and decreased in steps of 20 units to −400 U (the lowest

and highest glutamine uptake among the models were −13.87 U x 0.8 = −11.096 U and

−304.27 U x 1.2 = −365.124 U among the models). The lactate secretion rate was initially 1,620

U and decreased in steps of 20 units to 0 U (the lowest and highest lactate secretion rates were

32.35 U x 0.8 = 25.880 U and 1,345.14 U x 1.2 = 1,614.2 U). The distinction of phenotypes was

based on the shape of the solution spaces predicted by the models (Figs G and I in S1 Text).

Gene deletion. We performed single gene deletion, using the function singleGeneDeletion
and the uniqueGene option of the COBRA toolbox for each of the 120 models [21]. The Meta-

boTool function analyzeSingleGeneDeletion was used to predict and summarize the results of

the gene deletion analysis [61], which relies on the COBRA toolbox function function single-
GeneDeletion and the uniqueGene option. Growth termination was defined as growth rate

< 5%. Reduced growth was defined as growth rate> 5% and< 95% of the maximal achievable

growth rate of the model.

Analysis of protein abundance and RNA expression data. We analyzed cancer cell line,

tumor, and normal tissue for protein and RNA expression levels of IDH1, IDH2, HIF1α, and

VHL using data from the Human Protein Atlas version 15 Ensembl version 78.38 [37]. The

hypergeometric probability for the observed RNA or protein levels was defined using R (phy-

per, http://www.R-project.org/). The data from the human protein Atlas provided protein lev-

els for 20 human tumor tissues including “skin cancer” and “renal cancer” [37]. From the 48

normal tissue protein expression data we analyzed the tissues “skin 1” and “skin 2”. RNA-seq

data of tumors included 44 cell lines and 32 tissues. RNA expression was analyzed for all skin

cancer cell lines (“A-431”, “SK-MEL-30”, “HaCaT”, “WM-115”) and all NCI-60 cell lines

(“A549”, “K-562”, “HL-60”, “MOLT-4”, “PC-3”, “RPMI-8226”, “MCF-7”, and “U-251 MG”).

We added the tissue-specific RNA expression data for “skin” and “kidney” to the table

(Table 2).

Identify mutations. cBioPortal was queried for mutations in the NCI-60 cell lines (http://

www.cbioportal.org), [41].

Sampling analysis. The sampling analysis was performed using the MetaboTools func-

tions performSampling [61]. Parameters were chosen as follows nFiles = 100; pointsPer-

File = 5000; stepsPerPoint = 2500; maxTime = 3600000; fileBaseNo = 1; warmupn = 10000.

All simulations were performed in MATLAB (MathWorks, Inc.) using the Tomlab (Tom-

lab, Inc.) linear programming solver.

Supporting information

S1 Table. A) Statistics overview. B) Experimental growth rates. C) Sampling results. D) Sanity

check of ATP production from Glucose only. E) Flux Split for ATP. F) Flux Split for NADH.

G) Flux Split for NADPH. H) Flux Split for FADH2. I) Respective affiliation to phenotypes

based on energy and cofator production strategies. J) Visual stratification of the solution

space form and size. K) Genes essential in all models. L) Lowering the oxygen uptake rate

(lb = −100 U) increased the number of models that had to use RC. M) FVA results of minimal

oxygen uptake. N) Constraints of the global model and cancer cell lines models. O) Reactions

added to the global model. P) Excluded metabolites. Q) Number of mapped uptakes and secre-

tions per model. R) Added exchanges by metabolites. S) Reactions discarded from flux split

analysis (and ATP yield).

(XLS)
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S1 Text. Fig A. Clustering of data. Fig B. Coverage of 38 subsystems varied among the 120

models. Fig C. Considering both ATP producing glycolysis reactions. Fig D. Distinction of gly-

colytic and OxPhos models. Fig E. ATP yield is not informative for the division of OxPhos

models. Fig F. Classification of the phenotypes of the phenotypic phase planes. Fig G. Addi-

tional 2D plots for Fig 2 of the main manuscript. Fig H. ATP yield does not correlate with the

maximal growth rate of the models. Fig I. Phase planes of the 120 models.

(PDF)
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