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Background: Patients with head and neck squamous cell carcinoma (HNSCC) undergoing radical chemo-radiation (CRT)
frequently receive transfusion with packed red cells (PRCT) during radiotherapy on the basis that PRCT increases tumour
oxygenation and overcomes hypoxia-induced radio-resistance. This is likely to be a significant oversimplification given the fact
that tumour hypoxia is the result of several intrinsic and extrinsic factors, including many that are not directly related to serum
haemoglobin (Hb). Therefore, we have studied the effect of PRCT on tumour oxygenation in a prospective cohort of patients who
developed low Hb during radical CRT for HNSCC.

Methods: This was a prospective study of 20 patients with HNSCC receiving radical CRT undergoing PRCT for Hbo11.5 g dl� 1.
Patients underwent pretransfusion and posttransfusion intrinsic susceptibility-weighted (SWI) MRI and dynamic contrast-enhanced
(DCE) MRI. Blood samples were obtained at the time of MRI scanning and two further time points for measuring Hb and a panel of
serum cytokine markers of tumour hypoxia. 3D T2* and Ktrans maps were calculated from the MRI data for primary tumours and
cervical lymph node metastases.

Results: PRCT produced no change (11 patients) or reduced (1 patient) T2* (tumour oxygenation) in 12 of the 16 (75%) evaluable
primary tumours. Three of the four patients with improved tumour oxygenation progressed or had partial response following
treatment completion. There were variable changes in Ktrans (tumour perfusion or vessel permeability) following PRCT that were of
small magnitude for most tumours. Pre- and Post-PRCT levels of measured cytokines were not significantly different.

Conclusions: This study suggests that PRCT during radical CRT for HNSCC does not improve tumour oxygenation. Therefore,
oncologists should consider changing practice according to NICE and American Association of Blood Banks guidelines on PRCT
for anaemia.

The presence of tumour hypoxia is associated with an adverse
prognosis in patients with head and neck squamous cell
carcinomas (HNSCC) (Nordsmark et al, 2005). Similarly, low

pretreatment haemoglobin (Hb) is associated with poor outcome
for patients with HNSCC (Lee et al, 1998; Prosnitz et al, 2005).
Low Hb has been shown to correlate with poor tumour
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oxygenation (Becker et al, 2000) and many clinicians take the view
that anaemia and tumour hypoxia are causally linked. Therefore,
packed red cell transfusions (PRCT) are frequently used to correct
anaemia (Hbo11.5 g dl� 1) during radical chemo-radiation (CRT)
for HNSCC and other squamous cell carcinomas (Becker et al,
2000). However, in a retrospective analysis of 169 patients treated
with CRT at our institution, PRCT was found to be a negative
prognostic factor for relapse-free and overall survival (Bhide et al,
2009). Detrimental effects of PRCT have also been observed in
patients having radical radiotherapy or surgery for non-HNSCC
tumours (Busch et al, 1993; Varlotto and Stevenson, 2005; Lim
et al, 2008).

Attempting to minimise tumour hypoxia during CRT by giving
PRCT assumes that low Hb accurately predicts tumour hypoxia
and that increasing Hb will reliably reduce its presence. This is
likely to be a significant oversimplification given the fact that
tumour hypoxia is the result of several intrinsic and extrinsic
factors, including many that are not directly related to Hb
(Koukourakis et al, 2004). Therefore, we have studied the effect of
PRCT on tumour oxygenation in a prospective cohort of patients
who developed low Hb during radical CRT for HNSCC.

Intrinsic susceptibility-weighted (SWI) MRI characterised the
oxygenation status within the tumour before and after PRCT.
T2* measured by SWI MRI is proportional to the total amount of
deoxy-Hb in an imaging voxel and, by extension, the tissue partial
pressure of oxygen. This parameter provides information on the
oxygenation status of tumour tissue and previous research has shown
that, in head and neck tumours, a change in T2* can enable
calculation of the corresponding change in pO2. (Panek et al, 2016).

It is also possible that PCRT may deliver more than just Hb to
the patient. For example, a unit of packed red cells may also
contain cytokines and chemokines that may mediate effects on
tumour and normal tissue vasculature that may influence tumour
oxygenation. Therefore, we also measured circulating levels of
biologically relevant cytokines/chemokines before and after PRCT.

Radiotherapy fractions delivered between pre- and post-PRCT
MRI scans and cytokines present in PRCT may potentially have
affected the tumour perfusion and vascular permeability. This, in
turn, may have influenced tumour oxygenation and this was
assessed using dynamic contrast-enhanced (DCE) immediately
after SWI MRI.

MATERIALS AND METHODS

A prospective longitudinal cohort study was performed in patients
with stages III–IV (Edge and Compton, 2010) HNSCC undergoing
radical CRT. All patients required PRCT during treatment owing
to a fall in Hb to o11.5 g dl� 1. All patients had MRI-assessable
disease of 42 cm in diameter. Twelve healthy volunteers provided
control serum samples. The study was approved by the institu-
tional board and National Research Ethics Committee (no.12/LO/
0631).

Treatment. All but one patient received induction chemotherapy
(IC) followed by radical CRT (cisplatin 100 mg m� 2 days 1 and 29)
according to institutional protocols (described in Supplementary
Section). All patients were planned using simultaneous integrated
boost intensity-modulated RT (SIB-IMRT) techniques (Miah et al,
2015) delivering 65 Gy in 30 fractions over 6 weeks to the primary
tumour and involved lymph nodes, and 54 Gy in 30 fractions to
prophylactically treated nodal regions.

MRI data acquisition. Patients were imaged on either a 3-T
Philips Achieva or a 3-T Siemens Skyra MRI scanner using an
eight-channel phased-array head coil. Anatomical coronal and
axial T2W images were acquired first to assess the extent of the
disease. SWI MRI was obtained using 2D GRE (Gradient Echo)

(matrix 240, FOV: 240� 240, 24� 2.5 mm slices, FA¼ 60,
TR¼ 1000 ms, TE: 4.6–39.1, delta 6.9 ms). DCE MRI was obtained
using a 3D Spoiled GRE (TE/TR: 4.5/2.3 ms, matrix 160, FOV:
240� 240, 24� 2.5 mm slices, SENSE/GRAPPA parallel imaging:
Philips (Amsterdam, Netherlands)/Siemens (Munich, Germany)).
A series of 10 proton density-weighted volumes (flip angle,
FA¼ 31) was initially acquired, followed by 100 T1W acquisitions
(FA¼ 161) obtained sequentially with 3.5 s temporal resolution.
Gadolinium-based contrast was injected intravenously at the start
of the tenth dynamic scan as a bolus through a peripherally placed
cannula using an automatic injector (0.2 ml per kg body mass,
2 ml s� 1 injection rate, Dotarem, Guerbet, France) and followed by
a saline flush (20 ml at 2 ml s� 1).

DCE data were analysed using the software package MRIW
(Institute of Cancer Research, London, UK) (d’Arcy et al, 2006)
with the extended Kety model (Tofts et al, 1999) and a population-
based arterial input function (Orton et al, 2008). The volume
transfer constant between blood plasma and extracellular extra-
vascular space (Ktrans) was calculated for each voxel and displayed
as a functional map. Signal changes on the multiple gradient echo
images were used to calculate 3D T2* relaxivity maps. SWI data
processing was performed using the in-house MATLAB software
(MathWorks, Natick, MA, USA).

Anatomical posttransfusion MRI images were manually co-
registered to pretransfusion images using rigid body manipulation
within the Pinnacle (Philips Radiation Oncology Systems, Fitch-
burg, MA, USA) Radiotherapy Treatment Planning System
(RTPS). The resulting transformation matrices were then applied
to the posttransfusion MRI parametric maps. Gross tumour
volumes (GTV) for primary tumours and cervical lymph node
metastases within the SWI and DCE MRI FOV were delineated
on co-registered anatomical MR images by a head and
neck oncologist (LW) and a radiologist (AR) using Pinnacle
(Supplementary Figure S1). 3D voxel-wise data from within the
primary and nodal GTVs of the co-registered pretransfusion and
posttransfusion Ktrans and T2* parametric maps were exported
from Pinnacle for quantitative analysis using the in-house software
written in R (R Core Team, 2013) and MATLAB.

Serum markers of tumour hypoxia. Peripheral blood samples were
collected before (at the time of pretransfusion MRI) and 24 (at the
time of posttransfusion MRI), 48 and 72 h after PRCT and on two
separate days during the same week from healthy volunteers. Three to
five milliliters of transfusate that remained in the bag after transfusion
was collected for analysis. Blood samples were processed according to
established standard operating procedures (Supplementary Material).
A panel of 20 cytokines derived from a meta-gene signature
established by (Winter et al, 2007; Byers et al, 2010) was measured
in serum and transfusate by magnetic multiplex bead assay. The panel
comprised: eotaxin, osteopontin (OPN), vascular endothelial growth
factor (VEGF), interleukin (IL) IL-1b, IL-4, IL-8, IL-10, IL-12, IL-18,
interferon (IFN-a), Gro-a, stromal cell-derived factor 1a (SDF1a),
basic fibroblast growth factor (FGFb), tumour necrosis factor (TNF-
a), transforming growth factor beta (TGF-b), platelet-derived growth
factor (PDGF), granulocyte colony-stimulating factor (GCSF),
hepatocyte growth factor (HGF), macrophage migration-inhibitory
factor (MIF-1), and leptin. Multiplex magnetic bead assay kits were
provided by Bio-Rad Laboratories (Bio-Rad, Hercules, CA, USA).
Assays were performed in 96-well format according to the
manufacturer’s instructions. Cytokine concentrations were calculated
based on a standard curve derived by performing eight serial dilutions
of a protein standard in assay diluents. Serum samples were tested in
duplicate, each sample was diluted 1 : 4 and 50ml was added to each
well, and the mean values were calculated.

Statistics. Voxelwise MRI parameter data were analysed using R.
Histograms of T2* and Ktrans were plotted for each of the primary
and lymph node tumours before and after infusion, and summary
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statistics were calculated. Bland–Altman limits of agreement
(LOA) for T2* (2.9 ms) and log10 Ktrans (0.14 min� 1) were
determined based on separate reproducibility studies by (Panek
et al, 2016) for T2* and unpublished work by Panek et al for Ktrans

(see Supplementary Figure S2). We also plotted changes of T2*
together with changes of volume transfer constant between blood
plasma and extracellular extravascular space, to investigate whether
MR relaxation time changes might be linked to vascular alterations
induced by vasoactive cytokines present in PRC. Only changes of
magnitude greater than the respective LOA were deemed to be
statistically significant. Unpaired Wilcoxon tests were used to
compare median serum protein concentrations between groups
and paired Wilcoxon tests to compare differences in median serum
cytokine concentrations.

RESULTS

Twenty patients were recruited to the study (Table 1). The primary
tumour was located in the oropharynx in 15 patients (75%), of
which 10 (66%) were human papillomavirus infection (HPV)
positive. Seventeen patients (85%) had Hb within the gender-
specific laboratory normal reference ranges (men: 13.0–17.0 g dl� 1;
women: 12.0–15.0 g dl� 1) at pretreatment. At the time of PRCT, all
patients had measureable disease. Seventeen (85%) patients had
measurable primary tumours, and 13 (65%) patients had 19
measurable involved cervical LN metastases (range 1–3,
Supplementary Table S1).

Anaemia and PRCT. Seventeen patients (85%) developed anae-
mia during treatment and three remaining patients were anaemic
at presentation (Table 2). Patients were transfused at a median of
11 fractions of chemo-radiation (range 2–23 fractions). One
patient (number 3; Table 3) developed symptomatic anaemia
following two cycles of IC and, therefore, underwent PRCT
immediately prior to starting chemo-radiation. Median Hb at
the time of pretransfusion MRI scanning was 10.0 g dl� 1 (range
9.4–11.4 g dl� 1). A median of 2 units (range 1–3 units) of PRCs
were transfused, resulting in an increment in Hb to a median of
12.3 g dl� 1 (range 11.3–14.4 g dl� 1) at the time of the posttransfu-
sion MRI scan (Table 2).

Serum cytokine concentrations. Median serum cytokine concen-
trations for volunteers and patients are shown in Table 3. There
were no significant differences in the concentrations measured for
volunteers on separate days. Measured serum concentrations for
eight of the cytokines (IL-1b, IL-4, IL-8, IL-12, IFN-a, TNF-a,
TGF-b and GCSF) were below the level of detection for both
volunteers and patients, resulting in usable serum cytokine
concentration data for only 12 of the 20 measured cytokines
(Eotaxin, FGFb, GRO-a, HGF, IL-10, IL-18, Leptin, MIF, OPN,
PDGF, SDF1a, VEGF). There were no statistically significant
changes in median serum concentrations for any of the cytokines
when measured at the time of pretransfusion and posttransfusion
MRI scans (Table 3). Each of the 12 serum cytokines measurable in
both patients and volunteers were also measurable in PRC
transfusate (Table 3). The level of MIF in the transfusate was
significantly higher than in volunteer serum (Po0.0001). The
concentrations of OPN (Po0.001) and MIF (P¼ 0.02) in the
patients’ sera were significantly higher than in volunteers both
before and after the transfusion.

MRI parameters of tumour hypoxia. Pre- and post-PRCT T2*
and Ktrans were evaluable for primary tumours in 16 patients and
for LN metastases in 13 patients. These are summarised in Table 2
(statistically significant net changes) and Supplementary Table S1
(median voxel-wise changes). Scatterplots showing change in
median T2* versus change in log10 median Ktrans for primary
tumours and lymph nodes are detailed in Figures 1 and 2,
respectively. Only changes of magnitude greater than the respective
LOA are statistically significant. As seen in Figure 1, improved
tumour oxygenation in primary tumours was observed in four
patients (nos. 1, 12, 15 and 19). Figure 2 shows that similar changes
in tumour oxygenation were not observed in the lymph nodes in
these four patients. Similarly, no change in primary tumour
oxygenation was observed in two patients (nos. 4 and 6) for whom
involved lymph nodes showed improved oxygenation, demonstrat-
ing a differential response in primary tumours and lymph nodes to
PCRT. No change in primary tumour oxygenation was observed in
11 patients (no. 2–6, 8, 10, 13, 14, 18 and 20). Reduced primary
tumour oxygenation and perfusion was observed in one patient
(no. 17).

No statistically significant associations were found between
median T2* or median Ktrans and the median serum concentrations
of any of the measured cytokines for either primary tumours or
LNs. Therefore, neither the radiation delivered between pre- and
post-PRCT scans nor the cytokines present in the transfusate
altered perfusion or vascular permeability in the tumour to a
degree sufficient to affect tissue oxygenation.

Treatment outcomes. Treatment outcomes at 3 months post-
CRT are summarised in Table 2. Complete clinical and radiological
responses (CR) to CRT at this time were achieved for 11 out of 20
(55%) patients, but the remaining 9 out of 20 (45%) patients had
evidence of persistent or progressive disease (PD). Three of the
four patients (nos. 12, 15 and 19) who demonstrated improved
primary tumour oxygenation (Figure 1) had PD (Table 2).

Table 1. Summary of patient and tumour characteristics
Number of patients 20

Age (years), median (range) 62 (53–70)

Sex (%)
Female 6 (30)
Male 14 (70)

Primary site (%)
Oropharynx 15 (75)
Hypopharynx/larynx 4 (20)
Sinonasal 1 (5)

HPV status for oropharynx (%)
Positive 10 (66)
Negative 5 (34)

T-stage (%)
1 1 (5)
2 7 (35)
3 7 (35)
4 5 (25)

N-Stage (%)
0 3 (15)
1 2 (10)
2 15 (75)

Induction chemotherapy (%)
Cisplatin/5-FU 8 (40)
Carboplatin/5-FU 5 (25)
TPF 6 (30)
None 1 (5)

Concomitant chemotherapy (%)
Cisplatin 9 (45)
Carboplatin 11 (55)

Hb at first presentation (%)
o11.5 g dl�1 3 (15)
411.5 g dl�1 17 (85)

Abbreviations: Hb¼ haemoglobin; HPV¼ human papillomavirus; TPF¼docetaxel, cisplatin,
5-fluorouracil; 5-FU¼ 5-fluorouracil.
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Therefore, the observed magnitude of improved tumour oxygena-
tion following PRCT did not translate into improved treatment
outcomes in these patients.

Correlations between MRI parameters and blood Hb. The relation-
ships between change in blood Hb and change in median T2* and
median Ktrans for primary tumours and cervical LN metastases are
summarised in Figures 3A and B. There was no significant correlation

between change in Hb and change in primary tumour median T2*
following PRCT (Kendall’s tau � 0.286, P¼ 0.13).

DISCUSSION

In this study, we have used SWI MRI to characterise the change in
oxygenation status within tumours before and after PRCT. As T2*

Table 2. Summary of outcome data 3 months after RT with median Ktrans and T2* changes after blood transfusion

Primary Lymph nodes

Patient no. Subsite/staging
HPV

status

Hb before
transfusion

(g dl�1)

Hb after
transfusion

(g dl�1)

Significant
median T2*

change

Significant
median Ktrans

change

Significant
median T2*

change

Significant
median Ktrans

change

Outcome 3
months
after RT

1 T3N1 OPC � ve 9.4 10.6 m No No NA CR

2 T2N1 OPC þ ve 10.5 13.7 No No No, k m, No CR

3 T2N2b OPC þ ve 9.7 13.2 No No k No CR

4 T2N2a OPC þ ve 9.9 14.1 No m m No CR

5 T4N0 HypoPC Unk 11.3 12.6 No No — — PD

6 T4N2c Larynx Unk 9.8 11.3 No No No,m, m No,m, m PD

7 T3N2c Larynx Unk 10.2 11.7 No NA k NA CR

8 T3N0 OPC � ve 9.5 11.5 No No — — CR

9 T3N2b OPC þ ve 10.3 12.6 — — k No CR

10 T4N2c OPC þ ve 10.2 11.3 No No — — PD

11 T1N2c OPC � ve 9.5 14.4 — — No, k No,m PD

12 T3N2b OPC � ve 10.6 11.7 m No k m PD

13 T4N0 Ethmoid Unk 9.7 12.6 No No — — PD

14 T2N2c OPC þ ve 9.5 12.1 No m k No CR

15 T3N2c OPC þ ve 11.4 12.3 m m — — PD

16 T2N2a OPC þ ve 10.4 12.3 NA NA k k CR

17 T2N2b Larynx Unk 11.4 12.5 k k NA NA PD

18 T4N2c OPC þ ve 9.7 11.4 No No No k CR

19 T2N2b OPC � ve 10.1 11.8 m m No, No No,k PD

20 T3N2b OPC þ ve 9.7 11.5 No No No m CR

Abbreviations: CR¼ complete remission; Hb¼ haemoglobin; HPV¼ human papillomavirus; NA¼ insufficient or poor quality data for analysis; PD¼persistent or progressive disease;
RT¼ radiation therapy.

Table 3. Summary of median serum concentration (pg ml�1) of the panel of hypoxia-associated cytokines for healthy volunteers and
patients and the median concentration (pg ml�1) of the same panel of cytokines in the PRC transfusate

Patients

Volunteers Transfusate MRI 1 (pretransfusion) MRI 2 (posttransfusion)

Cytokine Median Min. Max. Median Min. Max. Median Min. Max. Median Min. Max.
Eotaxin 27.0 4.4 78.5 10.8 3.3 83.4 36.6 4.7 9965.4 24.9 15.7 10 114.6

OPN 5178.2 2466.9 11 483.2 2095.6 486.5 24 578.2 13 258.0 1853.7 18 647.8 12 632.9 2024.0 21 178.8

HGF 47.9 24.1 124.4 14.0 4.28 4426.8 65.6 18.7 9714.8 60.3 14.4 7418.6

MIF 26.9 11.8 77.5 799.5 20.6 5461.3 38.0 10.9 761.9 47.5 15.7 612.6

GROa 21.3 12.6 54.0 14.6 1.54 24.9 18.6 0.0 102.8 14.9 0.0 55.1

PDGF 958.9 280.7 1469.2 5.8 0.8 470.6 472.9 12.5 1161.4 387.0 21.2 1467.6

VEGF 11.3 3.5 47.6 7.6 1.3 33.9 23.6 1.9 264.3 28.2 7.4 274.0

SDF1a 182.1 98.8 241.1 13.7 4.62 161.5 126.7 41.6 405.4 112.0 69.0 495.2

FGFb 5.4 0.0 11.3 5.6 0.6 34.0 2.7 0.8 9.3 4.1 0.5 11.4

Leptin 646.8 71.8 6886.2 218.5 17.9 3237.4 1965.5 55.7 14 519.1 856.8 84.0 7469.6

IL-18 11.2 6.7 33.3 7.1 2.0 23.3 13.9 5.6 603.8 14.0 5.7 660.5

IL-10 0.0 0.0 19.8 0.8 0.0 4.2 0.8 0.0 2177.35 0.3 0.0 1436.6

Abbreviations: FGFb¼basic fibroblast growth factor; GROa¼growth regulated alpha protein; HGF¼ hepatocyte growth factor; IL¼ interleukin; MIF¼migration-inhibitory factor; MRI¼magnetic
resonance imaging; OPN¼osteopontin; PDGF¼platelet-derived growth factor; PRC¼packed red cell; SDF1a¼ stromal cell-derived factor 1a; VEGF¼ vascular endothelial growth factor.
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is proportional to the total amount of deoxy-Hb in an imaging
voxel (Ogawa et al, 1990) and, by extension, the tissue partial
pressure of oxygen, this parameter provides information on the
oxygenation status of tumour tissue (Panek et al, 2016). An
absolute measurement of tumour oxygen partial pressure using
SWI MRI poses a serious challenge as it requires knowledge on
additional confounding factors, such as blood volume and tissue
hematocrit (Zhang et al, 2014). In addition, local magnetic field
inhomogeneity induced by air–tissue boundaries or the presence of
metallic implants can also affect T2* susceptibility measurements.
In this study, changes in T2* rather than absolute values were used.
By measuring T2* before and after PRCT, the effect of factors other
than change in Hb should be controlled, leaving change in tissue
deoxy-Hb as the main factor driving change in T2*. The variation
of T2* due to different patient positioning and MR system
optimisation (i.e., iterative local field shimming) were taken into
account adopting 3T repeatability thresholds calculated in a cohort
of HNSCC patients (Panek et al, 2016). It would be interesting to
extend such analysis to hypoxia-specific PET markers (Lopci et al,
2014), which could help to identify severely hypoxic regions of
HNSCC tumours. Similarly, MR imaging could be used to identify

avascular parts of tumour, such as necrotic lymph nodes, with
impaired delivery of a PET tracer.

This study demonstrates that tumour oxygenation remained
stable (11 out of 16) or was significantly reduced (1 out of 16)
following PRCT in 12 out 16 (75%) evaluable patients (Figure 1).
In addition, for three of the four patients with improved tumour
oxygenation following PRCT, this did not translate into improved
outcome (nos. 12, 15, and 19, Table 3). For the four primary
tumours with a significant increase in median T2* after PRC
transfusion, the median increase was 4.3 ms (range 3.3–8.4)
corresponding to an approximate increase in median tumour
tissue oxygen tension of the order of 4 mm Hg (Panek et al, 2016).
The overall magnitudes of these observed increases in median T2*
are relatively small and correspond to changes in tissue pO2 that
are unlikely to be of radiobiological significance and would not
therefore be expected to influence treatment outcome.

In addition, it is possible that anaemia and hypoxia act
independently and that tumours with a more aggressive adverse
phenotype cause anaemia via activation of catabolic pathways,
increased secretion of inflammatory cytokines, extracorpuscular
haemolysis and reduction in the level of haematopoetic precursors
(Hoff, 2012). The CR rate of 55% in patients who developed
anaemia was inferior to CR rates of B75% that we have previously
reported in an unselected group of patients (Bhide et al, 2008;
Miah et al, 2015). This supports the assertion that patients who
develop anaemia may have more aggressive tumours with poor
prognosis. The transitory reversal of anaemia using PRCT is
unlikely to reverse the biology underlying the anaemia and
improve treatment outcomes.

Previous studies have demonstrated that pro-inflammatory
cytokines are present in leucocyte-depleted and non-depleted
blood and that their concentration increases with storage time
(Benson et al, 2012). We hypothesised that PRC transfusate might
contain physiologically significant concentrations of vasoactive and
pro-inflammatory cytokines that could influence tumour hypoxia,
vasculature and growth, independent of changes in blood Hb. Our
data demonstrate that vasoactive and pro-inflammatory cytokines
are present in PRC, in agreement with previous studies. MIF was
the only cytokine that was present in PRC in significantly greater
concentration than in serum from healthy volunteers (Table 3).
However, there was no statistically significant change in the
concentration of any of the measured serum cytokines following
PRCT, including MIF.

We specifically investigated the possibilities that cytokines
present in PRCT, or radiotherapy fractions delivered between
pre- and post-PRCT MRI scans, might affect tumour perfusion
and/or vascular permeability, by calculating tumour Ktrans from
DCE MRI. Only small changes in median Ktrans across PRCT,
for both primary tumours and LNs, were observed (Table 2;
Figures 1 and 2). Cytokines present in the PRCT, or radiotherapy
fractions delivered between pre- and post-PRCT MRI scans, are
therefore unlikely to have resulted in changes in tumour
vasculature and/or vessel permeability. Therefore, we can conclude
that it is unlikely that PRCT results in administration of
biologically significant quantities of cytokines that might enhance
tumour growth or alter tumour vasculature and vessel perme-
ability. The median Ktrans values were in agreement with a range of
values reported for stage IV HNSCC in the literature (Chawla et al,
2011; Shukla-Dave et al, 2012; Bernstein et al, 2014).

Our study included small patient numbers. However, it included
a spectrum of HNSCC tumour profiles encountered in clinical
practice for radical non-surgical treatment, such as oropharyngeal
(HPV positive and negative), laryngeal and hypopharyngeal
cancers. In addition, we have attempted to minimise bias by using
LOA set by previous studies on MRI reproducibility (Panek et al,
2016) to determine the clinical relevance of observed changes in
MRI parameters and by using adequate controls when analysing
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show Bland–Altman limits of agreement.
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the cytokine data. In this study, we have only studied the effect of
PRCT on changes in tumour oxygenation and have not modelled
the other effects of PRCT on the tumour and the patient.

Many institutions follow a policy of using PRCT to maintain Hb
levels 412 g dl� 1 during radical treatment for HNSCC and other
tumour types under the assumption that this mitigates hypoxia-
induced radio-resistance. This is based on older studies that have
correlated low Hb with reduced tumour oxygenation and adverse

outcomes (Tarnawski et al, 1997; Stadler et al, 1999; Becker et al,
2000). Our data obtained using modern imaging and molecular
techniques do not support the hypothesis that PRCT improves
oxygenation and tumour outcomes. Given the existing clinical data
demonstrating lack of benefit for PRCT in HNSCC patients (Hoff
et al, 2011; Hoff, 2012), our data add significant weight to concerns
that current clinical practice of routine PRCT during radical
treatment for HNSCC to enhance tumour oxygenation may be
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Figure 3. Barplots summarising the relationship between changes in median T2*, median Ktrans, and blood cHb before and after PRC transfusion
for primary tumours (A) and LNs (B).
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futile. Importantly, however, our study has demonstrated that
PRCT does not contain biologically significant quantities of
cytokines that could promote tumour growth. PRCT, therefore,
may be administered for other clinical indications and should be
carried out as per relevant expert guidelines, such as those of NICE
and American Association of Blood Banks guidelines on PRCT for
anaemia (Murphy et al, 2001; Carson et al, 2012). These guidelines
do not recommend routine PRCT for HbX10 g dl� 1. The only
definite indication for PRCT is Hbo7 g dl� 1 or Hbo8 g dl� 1 in
patients with reduced tolerance for anaemia (aged 465 years and
with preexisting cardiovascular and/or respiratory disorders). In
addition, change in clinical practice would help mitigate the impact
of projected future shortages of blood products (as predicted by
NHS Blood and Transplant) as well as preventing unnecessary
exposure of patients to the risks associated with PRCT.

Hypoxia-induced treatment resistance is still a problem in
HNSCC management and alternative strategies such as hypoxic
sensitisers such as nimorazole or vascular-targeting agents should
be explored (Overgaard, 2011; Nyflot et al, 2015) using a
personalised targeted strategy based on molecular hypoxic
signatures (Betts et al, 2013; Tawk et al, 2015).
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