
Practical Model Selection for Prospective Virtual Screening
Shengchao Liu,†,‡,∇ Moayad Alnammi,†,‡,∇ Spencer S. Ericksen,§ Andrew F. Voter,∥ Gene E. Ananiev,§

James L. Keck,∥ F. Michael Hoffmann,§,⊥ Scott A. Wildman,§ and Anthony Gitter*,#,†,‡

†Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
‡Morgridge Institute for Research, Madison, Wisconsin 53715, United States
§Small Molecule Screening Facility, University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53792, United States
∥Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
53706, United States
⊥McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
#Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin 53792, United States

*S Supporting Information

ABSTRACT: Virtual (computational) high-throughput
screening provides a strategy for prioritizing compounds for
experimental screens, but the choice of virtual screening
algorithm depends on the data set and evaluation strategy. We
consider a wide range of ligand-based machine learning and
docking-based approaches for virtual screening on two
protein−protein interactions, PriA-SSB and RMI-FANCM,
and present a strategy for choosing which algorithm is best for
prospective compound prioritization. Our workflow identifies
a random forest as the best algorithm for these targets over
more sophisticated neural network-based models. The top
250 predictions from our selected random forest recover 37 of
the 54 active compounds from a library of 22,434 new
molecules assayed on PriA-SSB. We show that virtual screening methods that perform well on public data sets and synthetic
benchmarks, like multi-task neural networks, may not always translate to prospective screening performance on a specific assay
of interest.

1. INTRODUCTION

Drug discovery is time consuming and expensive. After a
specific protein or mechanistic pathway is identified to play an
essential role in a disease process, the search begins for a
chemical or biological ligand that can perturb the action or
abundance of the disease target in order to mitigate the disease
phenotype. A standard approach to discover a chemical ligand
is to screen thousands to millions of candidate compounds
against the target in biochemical- or cell-based assays via a
process called high-throughput screening (HTS), which
produces vast sets of valuable pharmacological data. Even
though HTS assays are highly automated, screens of thousands
of compounds sample only a small fraction of the millions of
commercially available drug-like compounds. Cost and time
preclude academic laboratories and even pharmaceutical
companies from blindly testing the full set of drug-like
compounds in HTS assays. Thus, there is a crucial need for
an effective virtual screening (VS) process as a preliminary step
in prioritizing compounds for HTS assays.
Virtual screening comprises two categories: structure-

based1,2 and ligand-based methods.3,4 Structure-based methods
require that the target protein’s molecular structure is known

so that the 3D interactions between the target and each
chemical compound (binding poses) may be predicted in silico.
These interactions are given numeric scores, which are then
used to rank compounds for potential binding to the target.
These methods do not require or typically make use of
historical screening data in compound scoring. In contrast,
ligand-based methods require no structural information about
the target. They use data generated from testing molecules in
biochemical or functional assays of the target to fit empirical
models that relate compound attributes to assay outcomes.
For targets with abundant assay data or where a druggable

binding site is not well defined, such as the targets considered
here, ligand-based methods are generally superior to structure-
based methods.5−7 Confronted with the variety of ligand-based
model building methods (e.g., regression models, random
forests, support vector machines, etc.),8 compound input
representations, and performance metrics, how should one
proceed with VS on a new target? The Merck Molecular
Activity Challenge9 incited the development of many ligand-
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based deep learning VS methods,10−14 as recently re-
viewed.15,16 These methods are often assessed with cross-
validation on existing HTS data, but there is presently little
experimental evidence on the best option for prioritizing new
compounds given a fixed screening budget.
We critically evaluated a collection of VS algorithms that

include both structure-based and ligand-based methods, with a
focus on the subset of quantitative structure−activity relation-
ship ligand-based methods that use machine learning to predict
active compounds for a target based on initial screening data.
We present a VS workflow that first uses available HTS
training data to systematically prune the specific versions of the
algorithms and calculate their cross-validation performance on
a variety of evaluation metrics. Based on the cross-validation
results and analysis of the various evaluation metrics, we
selected a single virtual screening algorithm. The selected
method, a random forest model, was the best option for
prioritizing a small number of compounds from a new library,
as verified by experimental screening. These model selection
and evaluation strategies can guide VS practitioners to select
the best model for their target even as the landscape of
available VS algorithms continues to evolve.

2. METHODS
2.1. Data Sets. Our case studies were on new and recently

generated data sets17,18 for the targets PriA-SSB and RMI-
FANCM. The PriA-SSB interaction is important in bacterial
DNA replication and is a potential target for antibiotics.19 The
RMI-FANCM interaction is involved in DNA repair that is
induced in human cancer cells to confer chemoresistance to
cytotoxic DNA-cross-linking agents, making it an attractive
drug target.20 We previously screened these targets with a
library of compounds obtained from Life Chemicals, Inc. (LC)
in different assay formats. In addition, we screened new LC
compounds on the PriA-SSB target to evaluate our VS models.
The four data sets derived from these screens are described
below and summarized in Table 1.

2.1.1. PriA-SSB AlphaScreen. PriA-SSB was initially
screened using an AlphaScreen (AS) assay in a 1536-well
format18 on 72,423 LC compounds at a single concentration
(33.3 μM), with data reported as % inhibition compared to
controls. We refer to these continuous values as a “PriA-SSB %
inhibition”. Those compounds that tested above an activity
threshold (≥35% inhibition) and passed PAINS chemical
structural filters21,22 were retested in the same AS assay. PAINS
filters are not a technical necessity of any VS method, and
some analyses have shown they are imperfect filters of
nonspecific pan assay interference.23 Nevertheless, they are a
common requirement for publication of HTS and medicinal
chemistry projects. We did not remove compounds detected
by PAINS filters from the data set but rather flagged them and

labeled them as inactive. Compounds that were confirmed in
the AS retest screen (≥35% inhibition) were marked as actives,
creating the binary data set PriA-SSB AS.

2.1.2. PriA-SSB Fluorescence Polarization. Compounds
that had PriA-SSB % inhibition ≥ 35% and passed the PAINS
filters were also tested in a fluorescence polarization (FP) assay
as a secondary screen. Those compounds with FP inhibition ≥
30% were labeled as actives, creating the binary data set PriA-
SSB FP, with all other compounds in the screening set labeled
inactive.

2.1.3. RMI-FANCM Fluorescence Polarization. The RMI-
FANCM interaction was initially screened with a subset of
49,796 compounds from the same LC library as PriA-SSB.17

This FP assay was run at a single compound concentration (32
μM). We refer to these continuous values as “RMI-FANCM %
inhibition”. Those compounds that demonstrated activity ≥ 2
standard deviations (SD) above the assay mean and passed
PAINS filters were marked as actives in the binary data set
RMI-FANCM FP.

2.1.4. PriA-SSB Prospective. For prospective testing, we
experimentally screened an additional 22,434 compounds after
the VS methods predicted their activity. We removed
compounds that were already included in the 72,423 LC
compounds in the PriA-SSB AS data set to ensure there was no
overlap between the prospective screen compounds and those
used to train VS models. As with the initial library, the PriA-
SSB AS assay was used in the same 1536-well format at a single
concentration (33.3 μM) to test the additional 22,434 LC
compounds. Actives were defined with the same criteria used
for the binary data set PriA-SSB AS. Compounds with at least
35% inhibition that passed the PAINS filters were retested with
the AS assay. Those with at least 35% inhibition in the AS
retest were labeled as actives, creating the binary data set PriA-
SSB prospective.
Because secondary screens and structural filters were used to

define the active compounds, there was no single primary
screen % inhibition threshold that separated the actives from
the inactives. Some compounds exhibiting high % inhibition
values were labeled as inactive because they did not satisfy the
structural requirements or were not active in the secondary
screen.

2.1.5. PubChem BioAssay. To help learn a better chemical
representation with multi-task neural networks, we considered
other screening contexts from which to transfer useful
knowledge. We used a subset of 128 assays (AIDs) from the
PubChem BioAssay (PCBA)24 repository. This data set was
used in previous work on multi-task neural networks.14 This
subset contained assays for which the assays were developed to
probe a specific protein target and dose−response measure-
ments were obtained for each compound (see Part A in the
Supporting Information for other assay query filters). Potency
and curve quality are factored into a PubChem Activity Score.
Regardless of the assay, compounds with a PubChem Activity
Score of 40 or greater (range 0−100) were assigned a
PubChem Bioactivity outcome (label) of “Active”. Com-
pounds with PubChem Activity Scores of 1−39 were labeled
“Inconclusive”, and those with 0 were labeled “Inactive” (Parts
B and C, Supporting Information).

2.2. Compound Features. Ligand-based virtual screening
methods require each chemical compound to be represented in
a particular format as input to the model. We adopted two
common representations. All of the ligand-based algorithms
except the Long Short-Term Memory (LSTM) neural network

Table 1. Summary Statistics for the Four Binary Data Sets

Stage Data set
% inhibition
threshold

#
actives

#
inactives

Cross-
validation

PriA-SSB AS ≥35% 79 72,344
PriA-SSB FP ≥30% 24 72,399
RMI-FANCM FP ≥ mean + 2 SD 230 49,566

Prospective PriA-SSB
prospective

≥35% 54 22,380
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used 1024-bit Morgan fingerprints25 with radius 2 generated
with RDKit version 2016.03.4.26 These circular fingerprints are
similar to ECFP4 fingerprints,27 though with a slightly different
implementation. For LSTM networks, we used the Simplified
Molecular Input Line Entry System (SMILES) representa-
tion,28 where the characters were treated as sequential features.
2.3. Virtual Screening Models. We selected a variety of

existing virtual screening approaches for our benchmarks and
prospective predictions. These included ligand-based super-
vised machine learning approaches, structure-based docking,
and a chemical similarity baseline. Table 2 summarizes the
types of training data used by each algorithm.

2.3.1. Ligand-Based Neural Networks. Deep learning is a
machine learning approach that encompasses neural network
models with multiple hidden layer architectures and the
techniques for training these models. It represents the state of
the art for many predictive tasks, which has generated extensive
interest in deep learning for biomedical research, including
virtual screening.15,16 We evaluated multiple types of
established neural network architectures for virtual screening.
2.3.1.1. Single-Task Neural Network (STNN). A single-task

neural network (Figure 1(a)) makes a single prediction for a
single target (also referred to as a task). We trained a separate
model for each of the PriA-SSB AS, PriA-SSB FP, and RMI-

FANCM FP data sets, taking each compound’s Morgan
fingerprint as the input features. We trained the neural
networks using Keras29 with the Theano backend.30 The
single-task neural networks were trained on each task to
predict either the binary activity label in the classification
setting (STNN-C) or the continuous % inhibition in the
regression setting (STNN-R). Because the STNN-R models
were trained directly on the % inhibition, they do not depend
on the PAINS filters. These neural networks used two hidden
layers with 2000 hidden units each, Adam optimization,31 0.25
dropout rate, and other hyperparameters described in Tables
S2 and S3.

2.3.1.2. Multi-Task Neural Network (MTNN). Multi-task
neural networks make different predictions for multiple targets
or tasks but share knowledge by training the first few hidden
layers together. Each of our multi-task neural networks
included one target task (PriA-SSB AS, PriA-SSB FP, or
RMI-FANCM FP) and 128 tasks from PCBA. We only trained
multi-task neural networks in the classification setting
(MTNN-C). The MTNN-C models used two hidden layers
with 2000 hidden units each, Adam optimization, 0.25 dropout
rate, and other hyperparameters described in Table S2.

2.3.1.3. Single-Task Atom-Level LSTM (LSTM). The LSTM
is one of most prevalent recurrent neural network models,32

which has been applied previously in virtual screening.33 An
LSTM assumes there exists a sequential pattern in the input
string. We used a one hot encoding of the SMILES strings as
input for the LSTM model. In a one hot encoding, each
character in a SMILES string is replaced by a binary vector.
The binary vector has one bit for each possible unique
character in all SMILES strings. At each position in a SMILES
string, the bit corresponding to the character at that position is
set to 1, and all other bits are set to 0. We trained the LSTM
model to predict the binary activity labels. The LSTM models
used one or two hidden layers with 10 to 100 hidden units
each, Adam optimization, 0.2 or 0.5 dropout rate, and other
hyperparameters described in Table S4. The compounds in the
cross-validation stage used SMILES generated by OpenEye
Babel version 3.3. The compounds in the prospective screen
were processed separately and used SMILES from RDKit
version 2016.03.4.26

Table 2. Summary of Virtual Screening Methods and Which
Labels Each Model Used during Traininga

Model
Continuous %
inhibition

Binary
label

PCBA binary
labels

Dock
CD
STNN-C √
STNN-R √
MTNN-C √ √
LSTM √
IRV √
RF √
Similarity baseline √
aThe docking and consensus docking models do not train on the
PriA-SSB or RMI-FANCM data sets.

Figure 1. Neural network structures. The neural networks map the input features (e.g., fingerprints) in the input (bottom) layer to intermediate
chemical representations in the hidden (middle) layers and finally to the output (top) layer, which makes either continuous or binary predictions.
Panel (a) has only one unit in the output layer. Panel (b) has multiple units in the output layer representing different targets, one for our new target
of interest and the others for PCBA targets.
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2.3.1.4. Influence Relevance Voter (IRV). IRV34,35 is a
hybrid between k-nearest neighbors and neural networks. Each
compound’s predicted value is a nonlinear combination of the
similarity scores from its most closely related compounds in
the training data set. We used Morgan fingerprints as the input
and trained separate IRV models for each data set. The IRV
models used 5 to 80 neighbors and other hyperparameters
described in Table S5.
2.3.2. Ligand-Based Random Forest (RF). Random

forests36 are ensembles of decision trees that are often used
as a baseline in virtual screening benchmarks.37,38 We used
scikit-learn39 to train a random forest classifier for each binary
label with Morgan fingerprints as features. The RF models
used 4000 to 16,000 estimators, 1 to 1000 minimum samples
at a leaf node, a bound on the maximum number of features,
and other hyperparameters described in Table S6.
2.3.3. Protein−Ligand Docking. 2.3.3.1. Target Prepara-

tion. Our structure-based VS approach involved the docking-
based ranking of the LC library to the holo-form of PriA using
the crystal structure (PDB: 4NL8),40 in which it is bound to a
C-terminal segment of an SSB protein. A missing loop in this
structure was added from the apo-form (PBD: 4NL4), though
this is not near the SSB binding site. The docking search space
was limited to 8 Å from the coordinates of the cocrystallized
SSB C-terminal tripeptide.
For RMI-FANCM, the RMI protein was built from both the

A and B chains from the structure (PDB: 4DAY).41 The
docking search space was defined by the central five residues of
the MM2 peptide (PDB: 4DAY chain C), Val-Thr-Phe-Asp-
Leu, also with an 8 Å bounding box.
2.3.3.2. Compound Preparation. LC library compounds

were assigned 3D coordinates and Merck Molecular Force
Field partial charges using OpenEye OMEGA and Mol-
charge.42 Compounds in the LC library with ambiguous
stereochemistry were enumerated in all possibilities, and the
best resulting docking score was retained for each.
2.3.3.3. Docking (Dock) and Consensus Docking (CD). We

ran eight different docking programs and generated nine
docking scores as a broad comparison to the ligand-based
methods under consideration. The docking programs and
names we use for their scores are AutoDock version 4.2.643

(Dock_ad4), Dock version 6.744 (Dock_dock6), FRED
version 3.0.145 (Dock_fred), HYBRID version 3.0.145

(Dock_hybrid), PLANTS version 1.246 (Dock_plants),
rDock version 2013.147 (Dock_rdocktot and Dock_rdockint),
Smina version 1.1.248 (Dock_smina), and Surflex-Dock
version 3.04049 (Dock_surflex). In addition, we calculated
consensus docking scores using three traditional approaches
(CD_mean, CD_median, and CD_max) and two versions of
the Boosting Consensus Score (CD_efr1_opt and CD_rocau-
c_opt).50 The consensus docking methods were developed
without any knowledge of the PriA-SSB or RMI-FANCM assay
data. Compounds with missing scores due to preparation or
docking failures were not considered during evaluation.
2.3.4. Chemical Similarity Baseline. We introduced a

compound ranking method based on chemical structure
similarity to serve as a baseline for the ligand-based VS
methods. The active compounds in the training set were used
as seeds for similarity searching through all test set compounds.
The test set compounds were ranked by their maximum
Tanimoto similarity to any of the training set actives with
MayaChemTools51 using Morgan fingerprints from RDKit
version 2013.09.1. Unlike the ligand-based machine learning

algorithms, the similarity baseline does not consider inactive
compounds in the training set.
In addition, all compounds were clustered by two separate

approaches to describe chemical series. Chemical similarity-
based hierarchical clusters on Morgan fingerprints using
Ward’s clustering are described as SIM. Maximum common
substructure clusters, used to group molecules with similar
scaffolds, are described as MCS. JKlustor was used for both
types of clustering (JChem version 17.26.0, ChemAxon).

2.4. Evaluation Metrics. Given our goal of developing VS
methods that enable very small, cost-effective, productive
screens, we considered how evaluation metrics weight early
active retrieval. All of the VS algorithms produce a ranked list
of compounds, where compounds are ordered by the
probability of being active, the continuous predicted %
inhibition, the docking score, or a comparable output value.
For a ranked list of compounds, we can threshold the ranked
list and consider all compounds above the threshold as positive
(active) predictions and those below the threshold as negative
(inactive). Classification models output class probabilities.
Regression models, docking, and the similarity baseline output
different types of continuous scores. Thresholding on the
compound rank is equivalent to thresholding on the class
probability or continuous score because for each rank there is a
corresponding probability or score. By comparing those
predictions to the experimentally observed activity, we can
compute true positive (TP), false positive (FP), true negative
(TN), and false negative (FN) predictions for the ranked list at
that threshold. We explored several options for summarizing
how well each algorithm ranks the known active compounds.
Because most of the compounds have only single-replicate
measurements of % inhibition, we focus on evaluating active
versus inactive compounds instead of correlation with the %
inhibition.
The area under the receiver operating characteristic curve

(AUC[ROC]) has been recommended for virtual screening
because it is robust, interpretable, and does not depend on
user-defined parameters.52 The ROC curve plots the relation-
ship between true positive rate (TPR, also known as sensitivity
or recall) and false positive rate (FPR, equivalent to 1 −
specificity), which are defined in eq 1. As the FPR goes to
100%, all ROC curves converge, whereas early active retrieval
(a more meaningful characteristic of VS performance) can be
assessed in the low FPR region of the ROC curve, which
exhibits greater variability across VS methods. Thus, we also
considered the Boltzmann-enhanced discrimination of receiver
operating characteristic (BEDROC).53 It emphasizes the early
part of the ROC curve through a scaling function α, which we
set to 10 for our purposes of early enrichment up to 20%. We
used the BEDROC implementation from the CROC Python
package.54

=
+

=
+

TPR
TP

TP FN
, FPR

FP
FP TN (1)

=
+

=
+

Recall
TP

TP FN
, Precision

TP
TP FP (2)

Area under the precision-recall curve (AUC[PR]) is another
common metric (eq 2). AUC[PR] has an advantage over
AUC[ROC] for summarizing classifier performance when the
class labels are highly skewed, as in virtual screening where
there are few active compounds in a typical library. AUC[PR]
evaluates a classifier’s ability to retrieve actives (recall) and
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which of the predicted actives are correctly classified
(precision) as the prediction threshold varies. We used the
PRROC R package’s “auc.integral”55 to compute AUC[PR].
Another VS metric is enrichment factor (EF), which is the

ratio between the number of actives found in a prioritized
subset of compounds versus the expected number of actives in
a random subset of same size. In other words, it assesses how
much better the VS method performs over random compound
selection. Let R ∈ [0%,100%] be a predefined fraction of the
compounds from the total library of compounds screened.

=
#

# ×
R

R
EF

 active in top ranked compounds
 actives in entire libraryR

(3)

=
{# # × }

# ×
R

R
EF

min  actives, total  compounds
 actives in entire libraryRmax,

(4)

EFmax,R represents the maximum enrichment factor possible
at R. Difficulty arises when interpreting EF scores because they
vary with the data set and threshold R. We defined the
normalized enrichment factor (NEF) as

=NEF
EF

EFR
R

Rmax, (5)

Because NEFR ∈ [0,1], it is easier to compare performance
across data sets and thresholds. Here, 1.0 is the perfect NEF.
Furthermore, we can create an NEF curve as NEFR versus R ∈
[0%,100%] and compute the area under that curve to obtain
AUC[NEF] ∈ [0,1]. However, most models tend to exhibit
similar late enrichment behavior. We are typically interested in
early enrichment behavior so we computed AUC[NEF] using
R ∈ [0%,20%].
Finally, we considered the metric nhits, which is simply the

number of actives found in a selected number of tested
compounds (e.g., how many hits or actives were found in 250
tested compounds). This metric represents the typical desired
utility of a screening process: retrieve as many actives as
possible in the selected number of tested compounds (denoted
as ntests). We compared nhits at various ntests to the different
evaluation metrics to identify which metrics best mimic the
nhits utility.

2.5. Pipeline. Our virtual screening workflow contains
three stages: (1) Tune hyperparameters in order to prune the
model search space. (2) Train, evaluate, and compare models
with cross-validation to select the best models. (3) Assess the
best models’ ability to prospectively identify active compounds
in a new set.
In contrast to most other virtual screening studies, the

experimental screen was not conducted until after all models
were trained and evaluated in the cross-validation stage (Figure
2). For the first two stages, we first split the PriA-SSB AS, PriA-
SSB FP, and RMI-FANCM FP data sets into five stratified
folds as described in Part B in the Supporting Information.

2.5.1. Hyperparameter Sweeping Stage. Hyperparameters
are model configurations or settings that are set by an expert as
opposed to the weights or parameters that are learned or fit
during model training. For most of the ligand-based machine
learning models, the hyperparameter space was too large for
exhaustive searches using the full data set. Therefore, we
applied a grid search on a predefined set of hyperparameters in
a smaller data set and pruned those that performed poorly. We
performed a single iteration of training on the first four folds of
PriA-SSB AS to avoid overfitting. The hyperparameters
considered are listed in Part D in the Supporting Information.

2.5.2. Cross-Validation Stage. To identify which VS
algorithms are likely to have the best performance in a
prospective screen, we applied a traditional cross-validation
training strategy on data sets PriA-SSB AS, PriA-SSB FP, and
RMI-FANCM FP after reducing the hyperparameter combi-
nations to consider. Selecting the best model is nontrivial.
Ideally, the best model would have dominant performance on
all evaluation metrics, but this is rarely observed with existing
models. Each evaluation metric prioritizes different perform-
ance characteristics. Our cross-validation results illustrate
which models consistently perform well over different metrics,
the correspondence of metrics relative to a desired utility
(nhits), and how to choose models and evaluation metrics in
order to successfully identify active compounds in a
prospective screen.
Cross-validation is commonly used to avoid overfitting when

there are few training samples. We split the training data into
five folds: four folds for training and one for testing. Models
like RF and IRV that do not require a hold-out data set for

Figure 2. Initially, 258 neural network and random forest models were evaluated to eliminate poorly performing hyperparameter combinations.
The models with the best hyperparameters advanced to cross-validation along with IRV and docking-based methods for a total of 35 models. Cross-
validation identified a random forest as the best overall model. The VS methods and similarity baseline then predicted active compounds in the
PriA-SSB prospective data set. After the predictions were finalized, we experimentally screened the compounds to evaluate the predictions. Black
text denotes ligand-based machine learning models. Red text denotes docking-based models, which did not train on the target-specific HTS data.
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early stopping used four folds for training. The neural networks
perform early stopping based on a hold-out set, so we
iteratively selected one of the four training data folds for this
purpose. This led to a nested cross-validation with 5 × 4 = 20
trained neural networks.
2.5.3. Prospective Screening Stage. Our prospective screen

used a library of 22,434 new LC compounds that were not
present in the PriA-SSB AS training set. We used each VS
model to prioritize 250 of these compounds that are most
likely to be active. This emulates virtual screening on much
larger compound libraries, in which only a small fraction of all
computationally scored compounds can be tested experimen-
tally. When models assigned the same score to multiple
compounds, we broke ties arbitrarily to obtain exactly 250
compounds.
After finalizing the models’ predictions, we screened all

22,434 compounds in the wet lab and assigned actives based
on a 35% inhibition threshold and structural filters (the PriA-
SSB prospective data set). Finally, we evaluated how many of
the experimental actives each VS method identified in its top
250 predictions, the number of distinct chemical clusters
recovered, and the number of active compounds that were not
in the top 250 predictions from any of the VS algorithms. The
prospective screen allowed us to assess how well the cross-

validation results generalized to new compounds and further
verified our conclusions from the retrospective cross-validation
tests.

2.6. Data and Software Availability. Code implement-
ing our ligand-based virtual screening algorithms is available at
https://github.com/gitter-lab/pria_lifechem and archived on
Zenodo (DOI: 10.5281/zenodo.1257673). This GitHub
repository also contains additional Jupyter notebooks to
reproduce the visualizations and analyses. Our new PriA-SSB
HTS data are available on PubChem (PubChem
AID:1272365) along with the existing RMI-FANCM HTS
data (PubChem AID:1159607). A formatted version of this
data set for training virtual screening algorithms is available on
Zenodo (DOI: 10.5281/zenodo.1257462).

3. RESULTS

3.1. Cross-Validation Results. In the cross-validation
stage, we assessed 35 models: eight neural networks (STNN-C
(Table S7), STNN-R (Table S8), MTNN-C (Table S9), and
LSTM (Table S10)), five IRV (Table S11), eight RF (Table
S12), and 14 from docking (Dock) or consensus docking
(CD). When there are multiple versions of a model that use
different hyperparameters, we distinguish them with alphabetic
suffixes such as “_a” and “_b”. Tables S7−S12 describe the

Figure 3. Evaluation metric distributions on PriA-SSB AS over the cross-validation folds. The metrics are (a) AUC[ROC], (b) AUC[PR], (c)
AUC[BEDROC], and (d) NEF1% as described in Section 2.4. Unlike the ligand-based models, the docking methods do not train on the PriA-SSB
AS training folds and are applied directly to the test fold during cross-validation (see Section 4).
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hyperparameters associated with these suffixes. We highlight
the PriA-SSB AS data set as a representative example, but the
VS workflow is applicable for all tasks.
3.1.1. Comparing Virtual Screening Algorithms. We tested

all 35 models on three data sets, and the results for four
evaluation metrics on the PriA-SSB AS data set are shown in
Figure 3. Part F of the Supporting Information contains the
results for PriA-SSB FP and RMI-FANCM FP. The PriA-SSB
AS performance using AUC[ROC] was comparable for many
models. All models except LSTM, some IRV models, and
docking were above 0.8 AUC[ROC]. Some of the other
evaluation metrics better stratify the ligand-based VS methods.
Random forest was the best model, especially for the most-
relevant metrics that prioritize early enrichment. We also ran
the chemical similarity-based method for PriA-SSB AS and
confirmed that random forest outperformed this simple
baseline.
Random forest was again the best overall method for the

RMI-FANCM FP data set (Part F, Supporting Information).
On the PriA-SSB FP data set, STNN-R achieved the highest
scores over the majority of the metrics (Part F, Supporting
Information). The other types of VS models were effectively
tied for most metrics (Part G, Supporting Information).
3.1.2. Evaluation Metrics. Given a fixed evaluation metric,

we could compare two models with a t test to assess if one
statistically outperforms the other. However, we needed to
make such comparisons repeatedly between each pair of
models and required a statistical test that accounts for multiple
hypothesis testing. Due to unequal variances and sample sizes
(Figure 3), we used Dunnett’s modified Tukey−Kramer test
(DTK)56,57 for pairwise comparison to assess whether the
mean metric scores of two models were significantly different.
Using DTK results for each metric, we scored each model based
on how many times it attained a statistically significantly better
result than other models (Part G, Supporting Information).
For most metric-target pairs, many models have the same rank
because DTK does not report a significant difference.
In a prospective screen, our goal is to maximize the number

of active compounds identified by a VS algorithm given a fixed
budget (number of predictions). We wanted to determine
which of the VS evaluation metrics best aligns with nhits. Thus,
we compared the model ranking induced by each metric with
the model ranking induced by nhits for a varying number of
tests.
To score the evaluation metrics, we used Spearman’s rank

correlation coefficient based on the model rankings induced by
the metric of concern versus nhits at a specific ntests. We then
ranked the metrics based on their correlation with nhits (Part H,
Supporting Information). The metric ranking varies depending
on ntests and the target. Some metrics overtake one another as

we increase ntests. For PriA-SSB AS, NEFR consistently placed
in the top ranking correlations when R coincided with ntests.
This is evident when we focus on a single metric and see the
top ranking metrics for ntests ∈ [100,250,500,1000,2500]. Only
for a large enough ntests do metrics like AUC[ROC] that
evaluate the complete ranked list become comparable. This
suggests that if we know a priori how many new compounds
we can afford to screen, then NEFR at a suitable R is a viable
metric for choosing a VS algorithm during cross-validation in
the hopes of maximizing nhits.

3.1.3. Selecting the Best Model. Based on these results, we
selected the VS screening models that are most likely to
generalize to new compounds and identify actives in our
experimental screen of 22,434 new compounds. We focused on
PriA-SSB for the prospective screen using models trained on
PriA-SSB AS because the assay was more readily available for
us to generate data for the new compounds.
Table 3 compares model selection based on evaluation

metric means alone versus the DTK+Mean approach for
multiple evaluation metrics on the three tasks. The complete
model rankings for means only and DTK+Mean can be found
in Part I in the Supporting Information. DTK+Mean ranks
models by statistical significance and uses the mean value only
for tie-breaking. Both strategies selected the same models for a
fixed evaluation metric, except for AUC[PR] on all three tasks
(Table 3). This is mainly due to DTK not detecting
statistically significant differences among the models’ evalua-
tion scores, so tie-breaking by means selected the same models
as ranking by means. Recall that PriA-SSB FP has fewer actives
than PriA-SSB AS and RMI-FANCM FP (Table 1). Similar RF
and STNN-C models were selected for PriA-SSB AS and RMI-
FANCM FP. However, PriA-SSB FP prioritized STNN-R
models exclusively.
In our prospective screen, each model prioritizes 250 top-

ranked compounds, approximately 1% of the new LC library.
In this setting where each model has a fixed budget for the
predicted compounds, NEFR is a suitable metric. Therefore, we
used NEF1% with DTK+Means to choose the best models from
each class. The best-in-class models were RandomForest_h,
SingleClassification_a, SingleRegression_b, MultiClassifica-
tion_b, LSTM_b, IRV_d, and ConsensusDocking_efr1_opt,
with RandomForest_h being the strongest model overall (Part
I, Supporting Information).

3.2. Prospective Screening Results. After selecting the
best model from each class based on cross-validation and the
NEF1% metric, we retrained the models on all 72,423 LC
compounds to predict PriA-SSB inhibition using the same
types of data shown in Table 2. This provided a single version
of each model instead of one for each cross-validation fold. All
models then ranked 22,434 new LC compounds that were

Table 3. Top-Ranked Models by Means versus DTK+Mean on the Three Tasks. Evaluation metric means were computed over
all cross-validation foldsa

Best by Mean Model Best by DTK+Mean Model

Metric PriA-SSB AS PriA-SSB FP RMI-FANCM FP PriA-SSB AS PriA-SSB FP RMI-FANCM FP

AUC[ROC] RF_d STNN-R_a RF_h RF_d STNN-R_a RF_h
AUC[BEDROC] RF_h STNN-R_b RF_h RF_h STNN-R_b RF_h
AUC[PR] RF_g STNN-R_a RF_h STNN-C_b STNN-R_b STNN-C_b
AUC[NEF] RF_h STNN-R_b RF_h RF_h STNN-R_b RF_h
NEF1% RF_h STNN-R_b RF_h RF_h STNN-R_b RF_h

aThe prospective screening was only performed on PriA-SSB. Model names are mapped to their hyperparameter values in Part E of the Supporting
Information.
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provided without activity labels. We selected the top 250
ranked new compounds from each model. Then, we
experimentally screened all 22,434 new compounds to assess
PriA-SSB % inhibition and defined actives based on a 35%
inhibition threshold and PAINS filters. The new binary data set
PriA-SSB prospective contained 54 actives.
Table 4 presents how many of the 54 actives were identified

by each best-in-class virtual screening method and the

chemical structure similarity baseline. For context, randomly
selecting 250 compounds from the PriA-SSB prospective data
set is expected to identify less than one active based on the
overall hit rate. Parts J and K of the Supporting Information
show the VS models’ PriA-SSB prospective performance for
the other evaluation metrics.
Table 4 also lists the number of distinct chemical clusters

identified by each method, with the goal of identifying as many
diverse active compounds as possible. The 22,434 compounds
form 124 SIM and 714 MCS clusters or chemical series. Of
these, the 54 experimental actives represent 27 SIM and 35
MCS clusters. Commonly, virtual screening is followed by a
medicinal chemistry effort that would be expected to identify
other members of these clusters.
In general, the number of distinct chemical clusters captured

in the top 250 predictions is correlated with the number of
actives (Table 4), meaning that the methods selected
structurally diverse hits. The similarity baseline identified
compounds from roughly half of the SIM or MCS clusters.
With the exception of docking, each of the methods in Table 4
found at least one cluster not present in the baseline. The
machine learning techniques are not limited to finding only the
chemotypes that are present in the training set (Part M,
Supporting Information).
The ligand-based VS methods recovered many of the same

actives as the chemical similarity baseline, but they also found
actives that were missed by the baseline (Figure 4). There was
a group of 11 active compounds that were identified by most
ligand-based methods, including the baseline model. The
compounds identified were not the most potent, either within
their cluster or overall, nor did any of the methods exhibit any
correspondence between the number of compounds identified
from a cluster and their potency.

Table 4. Number of Active Compounds in the Top 250
Predictions from the Seven Selected Models and the
Chemical Similarity Baseline Compared to the Number of
Experimentally Identified Activesa

Model Actives
Actives not in

baseline
SIM

clusters
MCS
clusters

Experimental 54 − 27 35
Similarity
baseline

31 − 14 17

CD_efr1_opt 0 0 0 0
STNN-C_a 21 2 11 13
STNN-R_b 28 8 14 18
LSTM_b 1 1 1 1
MTNN-C_b 27 3 13 17
RF_h 37 7 17 22
IRV_d 29 4 15 18
aThese selected models are the best in each algorithm category from
cross-validation. The last two columns correspond to the number of
distinct chemical clusters from similarity or maximum common
substructure clustering that are represented among the 54 actives. The
consensus docking model CD_efr1_opt ranks the PriA-SSB
prospective compounds without using information from the PriA-
SSB AS training data. Prospective performance for all VS models is in
Part L of the Supporting Information.

Figure 4. UpSet plot showing the overlap between the top 250 predictions from the selected VS models and the chemical similarity baseline on
PriA-SSB prospective. The plot generalizes a Venn diagram by indicating the overlapping sets with dots on the bottom and the size of the overlaps
with the bar graph.58 Altogether, the combined predictions from the best-in-class VS methods and the baseline found 43 of the 54 actives.
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The similarity baseline included one active compound that
was excluded from the top 250 compounds from RF (Figure
4), but RF recovered a different member from this active
compound’s SIM cluster (Part M, Supporting Information).
Only the RF model recovered more active compounds in its
top 250 predictions than the chemical similarity baseline,
including two unique actives not identified by any other model.
Therefore, cross-validation with NEF1% as the metric
successfully identified the best PriA-SSB model before the
prospective screen.
3.2.1. Trained Models are Target Specific. As a control, we

retrained the best RF model on randomized data to confirm
that its strong prospective performance was due to meaningful
detected patterns among the active compounds instead of
biases in the data set. Similar to y-scrambling or y-
randomization,59 we randomly permuted the binary activity
labels in the PriA-SSB AS data set, retrained the RF_h model
on the randomized data, and evaluated the classifier on the
PriA-SSB prospective data set. This procedure was repeated
100 times with different y-scrambling performed each time.
The number of active compounds in the top 250 predictions
for these 100 runs is summarized in Figure S30. The mean
number of actives was 0.83, and 55 of the runs found zero
actives. The best y-scrambled run found only 10 actives, far less
than the 37 actives when RF_h was trained on the real data.
In addition, we assessed the performance of all models

trained on RMI-FANCM FP instead of PriA-SSB AS for
making PriA-SSB prospective predictions on the new 22,434
compounds. As expected, the RMI-FANCM FP models
perform poorly on PriA-SSB prospective (Table S29),
indicating that the best PriA-SSB AS models have learned
compound properties that are specific to PriA-SSB.

4. DISCUSSION
We followed a VS pipeline with the goal of maximizing the
number of active compounds identified in a prospective screen
with a limited number of predictions. From an initial pool of
structure-based and ligand-based models, we pruned models in
a hyperparameter search stage and conducted cross-validation
with multiple evaluation metrics. We used DTK+Means with
the NEF1% metric to select the best models based on the cross-
validation results and experimentally evaluated their top 250
prospective predictions from a new library of 22,434
compounds. The single best model from our pool, which
was RandomForest_h for PriA-SSB AS, was also the top
performing model on PriA-SSB prospective. Therefore, our
overall pipeline successfully identified the best prospective
model.
Metrics like AUC[ROC] can compare models in general,

regardless of cost or other additional constraints.52 However,
for virtual screening in practice, one typically only
experimentally tests a small fraction of all available compounds.
In this setting, metrics like EF that capture early enrichment
are preferable. In our prospective screen, STNN-R_a had
higher AUC[ROC] than RF_h (Part J, Supporting Informa-
tion), but the random forest found eight more active
compounds in its top 250 predictions (Part L, Supporting
Information). Our study suggests that EFR, or its normalized
version NEFR, are the preferred metrics for identifying the best
target-specific virtual screening method that maximizes nhits
when there is a budget for experimental testing. Other metrics
like AUC[ROC] or AUC[PR], which is more appropriate for
problems where the inactive compounds far outnumber the

actives,60 may still be reasonable for benchmarking virtual
screening methods on large existing data sets where the entire
ranked list of compounds is evaluated.38

Some recent studies3,37,61 reported that deep learning
models substantially outperform traditional supervised learning
approaches, including random forests. Our finding that a
random forest model was the most accurate in both cross-
validations, and our prospective screen does not refute those
results. Rather, it reinforces that the ideal virtual screening
method can depend on the training data available, target
attributes, and other factors. Therefore, careful target-specific
cross-validation is important to optimize prospective perform-
ance. One cannot assume that deep learning models will be
dominant for all targets and all virtual screening scenarios. We
also recommend hyperparameter exploration for all models,
including traditional supervised learning methods. For
example, our best random forest model contained 8000
estimators, whereas a previous benchmark considered at
most 50 estimators.3

Ramsundar et al.14 showed that performance improved in
multi-task neural networks as they added more training
compounds and tasks. Furthermore, the degree of improve-
ment varied across the data sets and was moderately correlated
with the number of shared active compounds among the
targets within a single data set. Task-relatedness also affects the
success of multi-task learning but is difficult to quantify.62,63

We observed that PriA-SSB AS, PriA-SSB FP, and RMI-
FANCM FP have no shared actives with any of the PCBA
tasks, and multi-task neural networks were not substantially
better than single-task neural networks in PriA-SSB AS cross-
validation (Figure 3). The MTNN-C model outperformed the
STNN-C model in the prospective evaluation (Table 4),
possibly because multi-task learning can help prevent over-
fitting,64 but was still considerably worse than the random
forest. Multi-task random forests can also be constructed by
using multi-task decision trees as the base learner.65 However,
these methods have not been used widely in the context of
virtual screening.
We focused on well-established machine learning models

instead of more recent deep learning models, such as graph-
based neural networks.38,66−69 This is because our main goal
was to investigate the virtual screening principles for choosing
the best model for a specific task (PriA-SSB AS) in a practical
setting instead of broadly benchmarking virtual screening
algorithms. In addition, a recent benchmark showed that
conventional methods outperformed graph-based methods on
most biophysics data sets.38

Consensus docking50 failed to recover any actives in the
PriA-SSB prospective data set, even though some of the
individual docking programs did. Specifically for the PriA-SSB
protein−protein interaction, docking is limited by the large, flat
nature of the binding site. Many compounds that are inactive
in the experimental screen have good scores and reasonable
binding poses (per visual inspection) but fail to interrupt
necessary specific interactions in the protein−protein interface.
This will the limit overall performance by pushing true actives
down the ranked list.
Our results are not intended to make general conclusions

about the performance of ligand-based versus structure-based
models. We use docking only for comparison to traditional
structure-based VS methods and do not evaluate more
sophisticated structure-based scoring functions. In addition,
the individual docking and consensus docking methods do not
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train and optimize hyperparameters on the target-specific HTS
screening data, whereas the ligand-based machine learning
methods do. A more direct comparison would be to retrain a
custom structure-based model or consensus scoring function to
include the initial HTS data, though this effort is out of scope
for this study. In addition, there are computational trade-offs
between docking and ligand-based machine learning ap-
proaches. The machine learning models require substantial
training time to select hyperparameters and fit models, but the
trained models make predictions on new compounds very
quickly. The docking programs take more time to score each
new compound but have the advantage of not requiring
training compounds.
The random forest model performed the best overall, but

there were six active compounds identified by the other
methods that the random forest missed (Figure 4). The single-
task regression neural network recovered five of those six as
well as unique active compound clusters (Part M, Supporting
Information). In addition, this regression model performed the
best on PriA-SSB FP during cross-validation (Table 3),
possibly because there are fewer binary actives in this data
set. In future work, we will explore whether ensembling
classification and regression models, potentially in combination
with structure-based VS algorithms, can further improve
accuracy.
We emphasize our prospective performance on the new LC

library, which minimizes the biases that make evaluation with
retrospective benchmarks challenging.70 There are many
sources of experimental error in HTS, and the active
compounds in the prospective evaluation must still be
interpreted conservatively. However, a VS algorithm that can
prioritize compounds with high % inhibition in primary and
retest screens is valuable for further compound optimization
even if not all of the actives confirm experimentally. Our study
provides guidelines for selecting a target-specific VS model and
complements other practical recommendations for VS
pertaining to hit identification, validation, and filtering,71 as
well as avoiding common pitfalls.72 Having established that our
best virtual screening model successfully prioritized new active
compounds in the LC library, another future direction will be
to test prospective performance on much larger, more diverse
chemical libraries.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jcim.8b00363.

Supporting text, Figures S1−S30, and Tables S1−S30.
(PDF)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: gitter@biostat.wisc.edu.

ORCID
Scott A. Wildman: 0000-0002-8598-0751
Anthony Gitter: 0000-0002-5324-9833
Author Contributions
∇S. Liu and M. Alnammi are co-first authors.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We acknowledge GPU hardware from NVIDIA, computing
resources from the University of Wisconsin-Madison Center
for High Throughput Computing, and funding from the
Center for Predictive Computational Phenotyping NIH U54
AI117924, the University of Wisconsin Carbone Cancer
Center Support Grant NIH P30 CA014520, and the
Morgridge Institute for Research. Additional support for this
research was provided by the University of Wisconsin-Madison
Office of the Vice Chancellor for Research and Graduate
Education with funding from the Wisconsin Alumni Research
Foundation. We are grateful for the assistance and feedback
from Chengpeng Wang, Haozhen Wu, and many members of
the Center for High Throughput Computing and the Gitter
lab. We thank Julio Lopes for alerting us about duplicate
compounds in a preliminary version of the PriA-SSB
prospective data set.

■ REFERENCES
(1) Cross, J. B.; Thompson, D. C.; Rai, B. K.; Baber, J. C.; Fan, K. Y.;
Hu, Y.; Humblet, C. Comparison of Several Molecular Docking
Programs: Pose Prediction and Virtual Screening Accuracy. J. Chem.
Inf. Model. 2009, 49, 1455−1474.
(2) Lionta, E.; Spyrou, G.; Vassilatis, D.; Cournia, Z. Structure-based
Virtual Screening for Drug Discovery: Principles, Applications and
Recent Advances. Curr. Top. Med. Chem. 2014, 14, 1923−1938.
(3) Korotcov, A.; Tkachenko, V.; Russo, D. P.; Ekins, S. Comparison
of Deep Learning With Multiple Machine Learning Methods and
Metrics Using Diverse Drug Discovery Data Sets. Mol. Pharmaceutics
2017, 14, 4462−4475.
(4) Tseng, Y. J.; Hopfinger, A. J.; Esposito, E. X. The Great
Descriptor Melting Pot: Mixing Descriptors for the Common Good of
QSAR Models. J. Comput.-Aided Mol. Des. 2012, 26, 39−43.
(5) Hawkins, P. C.; Skillman, A. G.; Nicholls, A. Comparison of
Shape-matching and Docking As Virtual Screening Tools. J. Med.
Chem. 2007, 50, 74−82.
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