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Epigenetic modifications confer stable transcriptional patterns in the brain and both normal and 

abnormal brain function involve specialized brain regions. We examined DNA methylation by 

whole genome bisulfite sequencing in neuronal and non-neuronal populations from four brain 

regions (anterior cingulate gyrus, hippocampus, prefrontal cortex, and nucleus accumbens) as well 

as chromatin accessibility in the latter two. We find pronounced differences in CpG and non-CpG 

differentially methylated regions (CG- and CH-DMRs) only in neuronal cells across regions. 

While neuronal CH-DMRs were highly associated with differential gene expression, CG-DMRs 

were consistent with chromatin accessibility and enriched for regulatory regions. These CG-DMRs 

comprise ~12 Mb of the genome that is highly enriched for genomic regions associated with 

heritability of neuropsychiatric traits including addictive behavior, schizophrenia, and neuroticism, 

suggesting a mechanistic link between pathology and differential neuron-specific epigenetic 

regulation in distinct brain regions.

INTRODUCTION

Distinct cognitive functions and behaviors are often correlated with particular regions and/or 

cell types in the brain; much of disease-based brain research is focused on identifying the 

anatomical structures that mediate normal function, e.g. the hippocampus in memory, the 

prefrontal cortex in cognition, and the nucleus accumbens in addictive behavior. Further, 

many neuropsychiatric diseases preferentially affect individual neuronal subpopulations 

present in particular brain regions. The epigenome is particularly important in maintaining 

cellular identity and responding to environmental perturbations1; therefore, mapping the cell 

type- and brain region-specific transcriptional and epigenetic landscapes is necessary for 

identifying functional genomic differences that contribute to disease phenotypes. Recent 

transcriptome analyses have revealed extensive differences between non-cerebellar human 

brain regions2 and between distinct neuronal3 and glial4 subpopulations in mice. Substantial 

transcriptional heterogeneity also exists among single cells profiled in mammalian cortical 

regions5–7. Single cell DNA methylation8 within a single brain region has only recently been 

measured and the specific locations and functional consequences of methylation changes 

among cell types remain underexplored.

In contrast to gene expression, few if any DNA methylation differences among 

phenotypically normal non-cerebellar human brain regions have been reported 9–11. DNA 

methylation is known to be altered in patients with neuropsychiatric disease, including 

schizophrenia12, Alzheimer’s13, and major depressive disorder14. The only whole genome 

bisulfite (WGBS) analyses across multiple human brain regions9,15 found very few 

differences among cortical tissues. The apparent lack of epigenetic diversity among brain 

regions is surprising given the known transcriptional diversity. Importantly, large-scale –

omics12,16 as well as case-control17 studies are predominately conducted using bulk tissues 

comprised of neuronal and non-neuronal cell populations at variable proportions. While the 

authors of these studies acknowledge the confounding potential due to cellular 

heterogeneity, a robust reference of sorted populations from multiple brain regions would 

greatly improve current computational deconvolution strategies.
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In contrast to mice3,18,19, few studies have examined DNA methylation between cellular 

subpopulations isolated from human brain tissue20. Neurons are easily distinguished from 

non-neurons (astrocytes, oligodendrocytes, microglia, and epithelial cells) using the nuclear 

neuronal marker, NeuN. DNA methylation differences between these two broadly defined 

populations have been widely reported21,22 and have been assessed genome-wide within a 

single brain region across development22 and in the context of several neurodegenerative 

diseases23. Still, a comprehensive analysis of brain region-specific DNA methylation has not 

been performed using sorted nuclei isolated from human tissues.

Here, we addressed this knowledge gap by analyzing the DNA methylation landscape (both 

CpG and non-CpG) using WGBS in fractionated neuronal and non-neuronal nuclei (n=45) 

and bulk tissues (n=27) isolated from four post-mortem brain regions: dorsolateral prefrontal 

cortex (BA9), anterior cingulate gyrus (BA24), hippocampus (HC), and nucleus accumbens 

(NAcc). We also examined both gene expression (n=20) and chromatin accessibility (n=22) 

in NAcc and BA9 nuclei. Importantly, we find that regions of differential methylation, 

specifically within the neuronal population, are highly enriched for heritability of 

schizophrenia, addictive behavior, and neuroticism.

RESULTS

Cell type heterogeneity obscures epigenetic differences between brain regions

We mapped the DNA methylation landscape using whole-genome bisulfite sequencing 

(WGBS) of four human post-mortem brain regions: dorsolateral prefrontal cortex (BA9), 

anterior cingulate cortex (BA24), hippocampus (HC), and nucleus accumbens (NAcc) 

(Supplementary Table 1). We isolated neuronal and non-neuronal nuclei based on the 

neuronal marker NeuN using fluorescence-activated nuclear sorting (FANS) followed by 

WGBS in a total of 45 samples from 6 donors (Supplementary Table 2; Supplementary 

Figure 1a,b) and also generated data from 27 bulk tissue samples. We observed substantial 

variation in the proportion of NeuN+ nuclei among brain regions, within the same brain 

region between individuals, and even among samplings from the same tissue specimen 

(Supplementary Figure 1c). Several factors contribute to this variability including nuclei loss 

or damage during sample processing, unequal subsampling of tissue specimens, and 

differences in post-mortem intervals though only within HC and NAcc (Supplementary 

Figure 1d; p = 0.025 from linear mixed model). This finding emphasizes the inherent 

challenge in accounting for cellular heterogeneity in complex solid tissues that, unlike blood 

and other peripheral tissues, cannot be repeatedly sampled.

Neuronal DNA methylation (CpG [mCG] and non-CpG [mCH]) in the NAcc was distinct 

from BA9 and HC (Supplementary Figure 1e). We also confirmed previous observations21,22 

of higher global mCG and mCH (p < 2.2 × 10−16, for both) in neuronal compared to non-

neuronal nuclei (Supplementary Figure 1e,f). Interestingly, NAcc neuronal nuclei had higher 

global levels of mCG, but lower levels of mCH than the other brain regions. Principal 

component analysis (PCA) of autosomal DNA methylation reveals clear segregation of cell 

types (neuronal from non-neuronal nuclei) and brain regions within the neuronal population 

(Figure 1a) that is not observed in analysis of bulk tissue (Supplementary Figure 2a, 

Supplementary Table 3). Segregation by brain region becomes even more apparent upon 
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separate analysis of neuronal nuclei (Supplementary Figure 2b) and joint analysis of bulk 

tissues and sorted nuclei allows better resolution of brain region-specific differences among 

the bulk samples (compare Supplementary Figures 2a,c). In contrast, separate analysis of 

non-neuronal nuclei reveals segregation of samples by donor rather than tissue 

(Supplementary Figure 2d) similar to previous findings10.

Consistent with the PCA results, we find a high correlation among bulk tissues and non-

neuronal nuclei (Supplementary Figure 2e). Further, correlation within an individual is much 

lower than within sample type (NeuN+, NeuN-, or bulk tissue) (Supplementary Figure 3a). 

While the non-neuronal population is also composed of several distinct cell types, we found 

that these samples had the least between-sample variability and smallest effect size (1%, 

proportion of CpGs with absolute mean difference >10%) with bulk tissue samples having 

the greatest variability and the neuronal population having the greatest effect size (3–12%) 

(Supplementary Figure 3b,c). While our results cannot exclude the possibility of brain 

region-specific methylation in rare non-neuronal populations, they indicate that sample-to-

sample variability in cell type composition is not confounding our assertion that non-

neuronal samples show little brain region-specific methylation. This finding contrasts with 

the regional transcriptome differences in astrocytes that have been observed in mice24, but is 

consistent with the relatively consistent composition of glial subpopulations across multiple 

brain regions25. Our data indicate that the neuronal populations contain the relevant 

functional variability in DNA methylation between brain regions and are consistent with the 

recent characterizations of cell type-specific gene expression, and methylation signatures of 

sorted neuronal nuclei and among distinct neuronal populations in both mouse and 

humans5–8.

Neuronal nuclei display brain region-specific DNA methylation profiles

To identify differentially methylated regions (DMRs), we extended our previously published 

statistical method26 to accommodate multi-group comparisons while accounting for the 

variation between biological replicates. This new method allows us to simultaneously 

compare all 45 samples and identify regions of differential methylation between any two 

groups.

mCG—We found substantial (>10%) mean methylation differences among all four brain 

regions in the NeuN+ population (Figure 1b) in addition to the previously reported21,22 “cell 

type” differences between neuronal and non-neuronal nuclei (Supplementary Figure 4a). We 

identified 97,924 autosomal cell type CG-DMRs of which 21,802 are novel21,22,27, and 

19,072 large blocks of differential mCG [family-wise error rates (FWER) ≤ 5%] with 

neurons being primarily hypermethylated, consistent with their global hypermethylated 

status21,22 (Supplementary Figure 1e, Supplementary Tables 4–7). These cell type CG-

DMRs clearly distinguish NeuN+ from NeuN- nuclei and are present at the promoters of 

many cell type-specific genes (Supplementary Figure 4a,b).

Given the large methylation differences among NeuN+ nuclei, we repeated our differential 

methylation analysis on the NeuN+ and NeuN- samples separately and compared the results 

to those generated from bulk tissues. We identified 13,074 autosomal neuronal (NeuN+) 
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CG-DMRs between brain regions containing >1% of all CpGs analyzed (FWER <5%) 

(Figure 1b). These neuronal CG-DMRs, as for the cell type CG-DMRs, were enriched in 

regulatory regions that have been 1) defined by H3K27ac in human brain regions28, 2) 

identified as permissive enhancers across many cell types and tissues29, and 3) identified 

using a map of chromatin states in 4 brain regions15 and in regions of open chromatin 

(Figure 1c). In contrast, we found few autosomal CG-DMRs among NeuN- nuclei (114 CG-

DMRs) or bulk tissues (71 CG-DMRs) from these brain regions (Supplementary Tables 4, 

8–9). These findings demonstrate that methylation differences between neurons from distinct 

brain regions are masked by the substantial variation in cellular heterogeneity across 

samples.

Several patterns emerged upon hierarchical clustering of methylation levels over neuronal 

CG-DMRs, similar to those seen in cancer/normal comparisons30 (Figure 1d). The largest 

clusters (group 1 and 2) consisted of symmetric methylation differences enriched for 

regulatory regions (Figure 1e). The other group consisted primarily of CG-DMRs 

representing shifts in methylation boundaries and was enriched in promoters, CpG islands 

(CGI), and shores. These CG-DMRs (group 3) represent the smallest fraction of our 

neuronal CG-DMRs, but their enrichment is similar to CG-DMRs we previously identified 

as a consequence of oncogenic transformation of B cells using the Epstein-Barr virus31. 

These data suggest that methylation is altered in specific ways depending on the genomic 

feature, with focal increases/decreases in methylation at regulatory regions and more subtle 

spreading/shrinking of methylation boundaries at promoter-associated features.

Recent single cell analyses have clearly shown that epigenetic and transcriptional profiles 

reflect distinct neuronal subpopulations with distinct functions5,8. Therefore, it is 

unsurprising that the neuronal compositions of the brain regions we have analyzed are 

reflected in their DNA methylation profiles (Supplementary Figure 2b). Unlike NAcc 

[composed primarily of inhibitory GABAergic medium spiny neurons (MSNs)], HC, BA9, 

and BA24 are very heterogeneous containing both excitatory and inhibitory 

subpopulations5,8. The majority of neuronal CG-DMRs (11,895) distinguish the NAcc from 

the other brain regions. Using the Genomic Regions Enrichment of Annotations Tool 

(GREAT)32 we found that regions of hypomethylation in NAcc were enriched in categories 

highly relevant to MSN function: dopamine receptor signaling pathway (q-value = 2.59 × 

10−24), adenylate cyclase-activating dopamine receptor signaling pathway (q-value = 3.55 × 

10−18), and synaptic transmission – dopaminergic (q-value = 5.21 × 10−5) (Supplementary 

Table 10). Examples of hypomethylated genes include those encoding markers of 

GABAergic neurons (BCL11B and DARPP-32) (Figure 1F) and dopamine receptors (DRD1 
and DRD3) (Supplementary Figure 4c). In contrast, regions of hypermethylation were 

enriched in multiple brain development categories (q-values < 1 × 10−11) (Supplementary 

Table 10).

Given the overwhelming differences between the NAcc and the other brain regions, we 

hypothesized that neuronal CG-DMRs among BA9, BA24, and HC could be obscured. 

Therefore, we repeated our analysis using only the neuronal samples from these regions 

resulting in identification of 208 autosomal neuronal CG-DMRs including 25 CG-DMRs 

unique to this analysis (Supplementary Figure 4d), Supplementary Tables 4, 11). Again, we 
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find clusters of CG-DMRs representing boundary shifts and focal changes such as that 

shown in the promoter of SATB2 (Supplementary Figure 4c).

Previous studies have identified large blocks of differential methylation during brain 

development and cancer/normal comparisons16,30. We also identify 1,808 blocks of 

differential mCG among neurons from our 4 brain regions; the majority (964) of which have 

≥ 10% mean methylation difference (Supplementary Table 4; Supplementary Table 12). 

Interestingly, 23% of these blocks cover the entirety of a protein coding gene including 

BCL11B (Figure 1f) and GABRB2 (Supplementary Figure 4f; Supplementary Table 12).

mCH—In addition to mCG, neurons and embryonic stem cells also have extensive non-CpG 

methylation (mCH). While mCH and mCG are spatially correlated33,34, there is evidence to 

suggest they can have independent functions in the brain19,22. In agreement with previous 

reports, we detected the highest methylation levels in the CA context (~10%) of our NeuN+ 

samples (Supplementary Figure 1f). mCH clearly distinguished NAcc from the other tissues 

by PCA, similar to mCG (Figure 2a). In addition, we observed segregation of CA and CT 

contexts but high concordance of signal between strands and methylation levels in the two 

contexts are linearly related (Supplementary Figure 5). This suggests a single underlying 

signal in mCH which is reflected in both contexts and strands.

We further extended our previously published statistical method used to identify CG-

DMRs26 to map differential mCH. Using this method, which for the first-time accounts for 

biological variability between samples, we identified a large number of CH-DMRs (covering 

a total of 40 Mb) (Supplementary Table 13). We visualized the similarities between mCH in 

different contexts and strands by generating a mC z-score for each CH-DMR (Figure 2b 

shows CA-DMRs on the forward strand, Supplementary Figure 6 for other strands and 

contexts). This analysis indicates that strand and context are paired within an individual for 

NAcc samples, with some separation in the other brain regions, presumably due to the larger 

overall similarity of methylation. Finally, we observe 93% of CT-DMRs overlap CA-DMRs. 

Given these findings, we merged contexts and strands and termed these CH-DMRs for the 

analyses below.

CH-DMRs are highly enriched in neuronal CG-DMRs (with 15% overlapping a neuronal 

CG-DMR or block) and the two marks are highly concordant in these regions 

(Supplementary Figure 6d). However, CH-DMRs are more enriched over differentially 

expressed genes (DEGs) (identified between NeuN+ samples from NAcc and BA9, and 

discussed in a later section) and their promoters compared to neuronal CG-DMRs (Figure 

2c). RGS9, which encodes a member of the regulator of G-protein signaling family, is shown 

as an example gene that is highly upregulated in NAcc neurons (60-fold) and has CH-DMRs 

covering the majority of the gene body along with multiple CG-DMRs (Figure 2d).

Differential chromatin accessibility and methylation intersect at brain region-specific 
neuronal regulatory regions

We measured gene expression (via RNA-seq) and chromatin accessibility (via ATAC-seq35) 

in neuronal and non-neuronal populations between BA9 and NAcc from 6 additional donors 

(Supplementary Table 1). We identified 2,952 differentially expressed genes (DEGs) 
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between these neuronal populations and only one between non-neuronal nuclei (FDR < 5%) 

(Figure 3a, b; Supplementary Tables 14–16). Genes expressed at a higher level in NAcc (n = 

1,473) were enriched in gene ontology categories of particular relevance to MSN function: 

regulation of catecholamine secretion (q-value = 8.6 × 10−4), striatum development (q-value 

= 1.8 × 10−3), and opioid signaling pathway (q-value = 5.4 × 10−5) (Supplementary Table 

17). In contrast, genes expressed at a higher level in BA9 (n = 1,479) were enriched in 

categories related to more general neuronal functions: neuron development (q-value = 9.53 × 

10−30), small GTPase mediated signal transduction (q-value = 1.57 × 10−11), and axon 

guidance pathway (q-value = 4.12 × 10−13).

Chromatin accessibility distinguished cell types and brain regions via PCA (Figure 3c); 

although, in contrast to DNA methylation, clustering of samples based on correlation 

distance across all open chromatin regions (OCRs) did not distinguish brain regions within 

the neuronal cell type (compare Supplementary Figure 2e to Supplementary Figure 7a). 

Similar to previous reports36, 163,026 of the 283,812 open chromatin regions tested were 

differentially accessible (FDR < 5%) between NeuN+ and NeuN- nuclei, termed cell type 

differentially accessible regions (DARs) (Supplementary Figure 7b; Supplementary Table 

18). We further identified 68,021 “neuronal” DARs (only 13 identified among non-neuronal 

nuclei) between NAcc and BA9 (FDR < 5%) (Figure 3d, e; Supplementary Tables 19–21). 

OCRs were enriched over multiple features including gene centric features such as 

promoters and exons and depleted in intergenic and “open sea” regions (Figure 3f). In 

contrast, neuronal DARs lacked strong enrichment for any specific genomic feature, with the 

exception of neuronal CG-DMRs.

Given this enrichment of neuronal CG-DMRs in DARs, we further investigated the overlap 

between these features using the 12,895 CG-DMRs identified between NAcc and BA9 

neurons. Only 10% of DARs overlapped CG-DMRs, and conversely 55% of CG-DMRs 

overlapped DARs. This was true even when restricted to the most divergent DARs (absolute 

fold change > 2, 12% overlap CG-DMRs). The direction of change in DARs and CG-DMRs 

is highly concordant with 99.9% of neuronal CG-DMRs having higher methylation when the 

region is less accessible, consistent with earlier reports in mice3. Further, we observed 

consistent methylation differences near all DARs (Figure 3g) and some degree of change in 

accessibility surrounding CG-DMRs (Figure 3h). Together, these data suggest that these 

distinct epigenetic modalities are weakly dependent, and that which of these modalities 

exhibit the strongest change can vary, likely due to genome location.

Differential mCH is more strongly correlated with differential gene expression than either 
mCG or chromatin accessibility

We next investigated the relationship between differential expression of protein coding 

genes, differential methylation, and differential accessibility. An inverse relationship 

between global genic cytosine methylation and gene expression in neurons is well-

established (Supplementary Figure 8a) and this relationship is maintained when correlating 

differential methylation and differential expression between NAcc and BA9 (Supplementary 

Figure 8b). Likewise, differential accessibility and expression are positively correlated 

(Supplementary Figure 8c). CG-DMRs that overlap DARs revealed a stronger correlation 

Rizzardi et al. Page 7

Nat Neurosci. Author manuscript; available in PMC 2019 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with gene expression than CG-DMRs alone, which was not the case with CA-DMRs 

(Supplementary Figure 8d,e).

Both DARs and DMRs preferentially occur within DEGs, with CG-DMRs and DARs near 

the TSS and CA-DMRs and CG-blocks are distributed across the gene body (Figure 4a). 

Additionally, CA-DMRs have the strongest correlation with expression over gene bodies 

followed by CG-blocks (Figure 4b). Interestingly, as a larger portion of the gene body is 

covered by a CA-DMR, that gene is more likely to be differentially expressed (Figure 4c). 

This is not the case for DARs, CG-DMRs, or CG-blocks. We also find that protein coding 

genes with CA-DMRs tend to have a lower average expression across all neuronal samples 

(0.58 vs 1.83 RPKM, respectively; p-value < 2.2 × 10−16; Mann-Whitney) even when 

differentially expressed (0.78 vs 2.03 RPKM, respectively; p-value < 2.2 × 10−16; Mann-

Whitney). This finding is consistent with a previous report19, and our own data, showing that 

lowly expressed genes have higher levels of mCA than highly expressed genes 

(Supplementary Figure 8f). Together, these data support and extend previous assertions that 

among accessibility, mCG and mCH, mCH is the best predictor of gene expression3 and 

further, that differential mCH specifically occurs over the gene bodies of DEGs consistent 

with the recent finding that mCA serves to fine-tune gene expression of lowly expressed 

genes19.

Differential epigenomics identify transcription factors driving tissue-specific gene 
expression

We hypothesized that neuronal DAR/CG-DMRs could identify transcription factor (TF) 

binding motifs actively involved in regulating brain region-specific neuronal function. Using 

Haystack37 we find that these regions were enriched in immediate-early genes (IEGs), a 

class of TFs influenced by synaptic activity with important roles in regulating neuronal 

function38 (Figure 4d; Supplementary Table 22). Several of these IEGs have been implicated 

in schizophrenia39 and bipolar disorder40 or play known roles in addiction41. DNA 

methylation influences binding of a diverse set of TFs42, many of which were enriched in 

regions of differential methylation and accessibility (Figure 4d, blue bar). Additionally, 

many TFs whose motifs were enriched were also differentially expressed between NAcc and 

BA9 neurons (Figure 4d, red bar). When we restrict our analysis to those neuronal DAR/CG-

DMRs that overlap promoters, we again detect enrichment for IEGs, specifically those 

encoding AP-1 family members (JUN, FOS, JDP2) (Figure 4e).

Using our neuronal DARs, we employed a method that uses the accessibility of known TF 

binding sites in gene promoters and enhancers to calculate the importance of each TF for the 

observed gene expression profile43,44. A positive regression coefficient indicates that the 

presence of a binding site for a particular TF predicts the target gene to be upregulated in 

NAcc vs BA9, and vice versa (Figure 4f; Supplementary Table 23). MECP2, in particular, 

has a negative correlation coefficient (Figure 4f) and is recruited to gene bodies by mCA to 

restrain transcription of lowly expressed genes19. Several TFs identified are known 

regulators of neuronal function (NFIX, MECP2, ARX, DLX1, ZBTB33/KAISO) while 

others have not been previously implicated in adult neuronal regulation (TEAD2, 

ARID5A/B, ZNF354C/hKID3) (Figure 4f). Eight of these TFs were also differentially 
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expressed between NAcc and BA9 (Figure 4f, bold). Taken together, our data show that 

differential methylation and accessibility mark regions of the genome that are regulated by 

synaptic activity-responsive TFs and suggest that these TFs regulate different targets in 

neurons from distinct brain regions.

Differential epigenomics identify regions of genetic importance for psychiatric disorders 
and behavioral-cognitive traits

The regions we identified using differential epigenomics, particularly the CG-DMRs and 

DARs, have characteristics typical of regulatory elements, as expected21,22,36. Multiple 

studies have provided evidence that disease-associated genetic variation is enriched in 

regulatory elements active in physiologically relevant cell types45,46. We therefore asked 

whether our differential epigenetic features were linked with neurological, psychiatric, and 

behavioral-cognitive phenotypes (brain-linked traits).

We used stratified linkage disequilibrium score regression (SLDSR45) to identify genomic 

features strongly associated with brain-linked traits. SLDSR partitions the heritability of a 

trait across a set of overlapping genomic features using summary statistics from a genome-

wide association study (GWAS). We considered eight brain-derived genomic features: five 

‘differential’ features identified in our above analyses and three previously published ‘non-

differential’ features (Methods). For each feature-trait combination, SLDSR reports a ‘z-

score’, indicating whether the feature explains heritability beyond that explained by other 

features in the model, and an ‘enrichment score’ relating the heritability explained by the 

feature relative to that expected for a feature containing an equal number of SNPs. At least 

one of the eight brain-derived features explained a significant proportion of heritability for 

13 of 27 brain-linked traits while none explained a significant proportion of heritability for 

any negative control trait (Figure 5b; Supplementary Figure 9; Supplementary Tables 24, 

25). The neuronal CG-DMRs have much higher enrichment scores than any of the non-

differential features (Figure 5a), explaining additional heritability in 6/13 traits including 

schizophrenia and neuroticism, although their size (20–40× smaller) results in more 

uncertain estimates (Supplementary Figure 9b).

We then performed a more stringent analysis of the five differential features by testing them 

against a baseline model that included the three non-differential brain-specific features. We 

found that when using this stringent approach, only CG-DMRs still contributed significantly 

(with a 14-fold enrichment) to the explained heritability of a brain-linked trait 

(schizophrenia; z-score adjusted p-value = 0.013; Figure 5c,d; Supplementary Figure 10a,b).

Finally, we removed regions found by our differential approach from the non-differential 

features and repeated the analysis. This ensured that the heritability associated with a region 

common to two sets of brain-specific features is exclusively assigned to the differential 

feature. This approach highlights the trade-offs of using the highly specific differential 

features compared to the more general maps of brain regulatory regions, as evidenced by the 

much larger size of the non-differential features. Based on this analysis, the neuronal CG-

DMRs are significantly associated with the heritability of schizophrenia, ADHD, BMI, IQ, 

and neuroticism (Figure 5f; Supplementary Figure 11a), with a 10–16-fold enrichment 

(Figure 5e; Supplementary Figure 11b).
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Together, these data support the hypothesis that the genetic signal associated with 

neuropsychiatric traits is mediated through epigenetically distinct regions among neurons 

from diverse brain regions, particularly CG-DMRs. These analyses further demonstrate the 

power of using differential methods to precisely identify key regulatory regions, while also 

highlighting that, from a genetic perspective, CH-DMRs may be less interesting than CG-

DMRs.

DISCUSSION

This work represents the most comprehensive dataset to date of whole genome bisulfite 

sequencing across neuronal and non-neuronal populations and bulk tissues from multiple 

human brain regions. We have identified 12 Mb of differential mCG and 40 Mb of 

differential mCH among neuronal nuclei isolated from four brain regions implicated in 

neuropsychiatric disorders. We have further correlated these methylation changes to changes 

in both chromatin accessibility (118 Mb of differential accessibility) and gene expression 

(2,952 DEGs) in two of the tissues examined (NAcc and BA9). These data are made 

available as the ‘BrainEpigenomeHub’ UCSC track hub, available from http://

genome.ucsc.edu/cgi-bin/hgHubConnect (direct link: http://genome.ucsc.edu/cgi-bin/

hgTracks?

hgS_doOtherUser=submit&hgS_otherUserName=chmalee&hgS_otherUserSessionName=h

g19_brainEpigenome) that can be used as a resource of normal epigenetic states and 

variation in the human brain to advance neuroepigenetics.

Our findings have four main implications important for the field of neuroepigenetics. First, 

differential methylation among brain regions appears to be driven by the neuronal cell 

population. While the non-neuronal fraction can be divided into distinct subpopulations, we 

show through our analysis of sample-to-sample variability that this heterogeneity cannot 

account for the remarkable consistency of non-neuronal methylation across the human brain. 

Importantly, we have demonstrated that the ratio of neuronal to non-neuronal nuclei is 

highly variable both among brain regions and between samples taken from a single brain 

region, even within a single individual. While the need to account for cellular heterogeneity 

is widely appreciated, these results should be of immense value in improving and 

benchmarking current computational deconvolution strategies applied to studies of human 

brain tissues.

Second, this study illustrates the power and specificity of differential epigenetics across 

brain regions, particularly the ability of differential mCG to identify regulatory elements and 

the ability of differential mCH to identify differential transcription. While differential 

chromatin accessibility alone showed little enrichment in any particular genome feature, the 

specificity for regulatory elements (particularly for regions marked by brain-specific 

H3K27ac) increased nearly five-fold when combined with differential mCG.

Third, we find that regions of differential mCG and chromatin accessibility in neurons are 

enriched in binding sites for transcription factors regulated by synaptic activity (e.g. FOS, 

JUN, MEF2C) (reviewed in47), several possessing methylation sensitivity42. These data are 

consistent with a link between synaptic activity and epigenetic modification of transcription 
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factor binding sites. In addition, some transcription factors we identified play known roles in 

neurodevelopment, but have not previously been implicated in adult neuronal function (e.g. 
HMGA1). These findings further illustrate the importance of differential epigenetic analysis 

in understanding normal neuronal function and provide novel targets for further 

investigation.

Finally, we show that tissue-specific differential mCG in the neuronal population has a five-

fold greater enrichment for the heritability of neuropsychiatric diseases than the more 

generally defined regulatory genomic fraction identified in the human brain by 

ChromHMM, and is contained within only 12 Mb of the human genome. While the majority 

of neuronal CG-DMRs (9,033/13,074; 69%) are found within genes, they primarily occur in 

intronic regions (7,669; 58.6%) that frequently harbor regulatory elements. Importantly, 

many of these differentially methylated genes have been repeatedly implicated in 

schizophrenia and other neuropsychiatric disorders. For example, we identified differential 

methylation in 19 of 36 schizophrenia GWAS-derived genes analyzed in a previous 

expression study48 (CACNA1C, CACNB2, CACNA1I, GPM6A, GRAMD1B, SATB2, 
MEF2C, GRIN2A, MAD1L1, BCL11B, TCF4, TLE1, TLE3, PODXL, ZNF536, KCNV1, 
MMP16, MAN2A1, and GALNT10). Further, CG-DMRs are present in 56 (Supplementary 

Table 26) of the 237 genes recently shown to have differentially expressed features in 

prefrontal cortex schizophrenia vs control samples49. Clearly, these 12 Mb of regional 

differential methylation constitute critical sequences for future epigenetic analyses of 

neuropsychiatric diseases. It will be interesting to determine whether a subset of these 

regions are particularly associated with individual disorders and whether these associations 

are brain region-specific. These observations are consistent with the idea50 that tissue-

specific epigenetic patterning is frequently disrupted in human disease.

METHODS

Experimental Methods

Human Postmortem Brain Samples—Fluorescence-activated nuclear sorting (FANS) 

was performed on flash-frozen postmortem dorsolateral prefrontal cortex (BA9), 

hippocampus (HC), nucleus accumbens (NAcc), and anterior cingulate gyrus (BA24) from 

six individuals not affected with neurological or psychiatric disease. These samples 

underwent nuclei extraction and sorting as described below for subsequent DNA 

methylation analysis. Additionally, neuronal nuclei were isolated from the nucleus 

accumbens (NAcc) and dorsolateral prefrontal cortex (BA9) of 6 different individuals for 

RNA-seq and ATAC-seq analysis. To underscore the importance of cell sorting, we also 

prepared DNA from unsorted material from the four brain regions above (BA9, n=9; HC, 

n=7; NAcc, n=7; BA24, n=5). The majority of individuals were matched between sorted and 

unsorted, but not all. No statistical methods were used to pre-determine sample sizes, but our 

sample sizes are similar to those reported in previous publications20,24. All samples were 

obtained from the University of Maryland Brain and Tissue Bank which is a Brain and 

Tissue Repository of the NIH NeuroBioBank (Supplementary Table 1). We have complied 

with all relevant ethical regulations. The research described here was classified as not human 

subjects research (NHSR) by the Johns Hopkins Institutional Review Board (IRB00061004). 
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Data collection and analyses were not performed blind to tissue of origin and randomization 

was performed at the library preparation stage.

Nuclei Extraction, FANS, and DNA Isolation—Total nuclei were extracted via sucrose 

gradient centrifugation as previously described29 with the following changes. For WGBS 

analysis, a total of 2 × 250 mg of frozen tissue per sample was homogenized in 5 mL of lysis 

buffer (0.32 M sucrose, 10 mM Tris pH 8.0, 5 mM CaCl2, 3 mM Mg acetate, 1 mM DTT, 

0.1 mM EDTA, 0.1% Triton X-100) by douncing 50 times in a 40 mL dounce homogenizer. 

Lysates were combined and transferred to a 38 mL ultracentrifugation tube and 18 mL of 

sucrose solution (1.8 M sucrose, 10 mM Tris pH 8.0, 3 mM Mg acetate, 1 mM DTT) was 

dispensed to the bottom of the tube. The samples were then centrifuged at 28,600 rpm for 2 

h at 4°C (Beckman Optima XE-90; SW32 Ti rotor). After centrifugation, the supernatant 

was removed by aspiration and the nuclear pellet was resuspended in 500 uL staining mix 

(2% normal goat serum, 0.1% BSA, 1:500 anti-NeuN conjugated to AlexaFluor488 

(Millipore, cat#: MAB377X) in PBS) and incubated on ice. Unstained nuclei and nuclei 

stained with only secondary antibody served as negative controls. The fluorescent nuclei 

were run through a Beckman Coulter MoFlo Cell Sorter with proper gate settings using 

Summit v4.3.02 software (Supplementary Figure 1). A small portion of the NeuN+ and 

NeuN− nuclei were re-run on the sorter to validate the purity which was greater than 95%. 

Immuno-negative (NeuN−) and -positive (NeuN+) nuclei were collected in parallel. For 

DNA extraction, sorted nuclei were pelleted by adding 2 mL of sucrose solution, 50 uL of 1 

M CaCl2, and 30 uL of Mg acetate to 10 mL of nuclei in PBS. This solution was incubated 

on ice for 15 min, then centrifuged at 3,000 rpm for 20 min. The nuclear pellets were flash 

frozen in liquid nitrogen and stored at −80°C. DNA was extracted from the frozen nuclear 

pellets using the MasterPure DNA Extraction kit (Epicentre, Madison, Wisconsin, USA) 

following the manufacturer’s instructions. For ATAC-seq and RNA-seq, nuclei were 

processed as described below.

Whole genome bisulfite sequencing (WGBS)—WGBS single indexed libraries were 

generated using NEBNext Ultra DNA library Prep kit for Illumina (New England BioLabs, 

Ipswich, MA, USA) according to the manufacturer’s instructions with modifications. 400 ng 

gDNA was quantified by Qubit dsDNA BR assay (Invitrogen, Carlsbad, CA, USA) and 1% 

unmethylated lambda DNA (cat#: D1521, Promega, Madison, WI, USA) was spiked in to 

measure bisulfite conversion efficiency. Samples were fragmented to an average insert size 

of 350 bp using a Covaris S2 sonicator. Size selection was performed using AMPure XP 

beads and insert sizes of 300–400 bp were isolated (0.4x and 0.2x ratios). Samples were 

bisulfite converted after size selection using EZ DNA Methylation-Gold Kit (cat#: D5005, 

Zymo, Irvine, CA, USA) following the manufacturer’s instructions. Amplification was 

performed after the bisulfite conversion using Kapa Hifi Uracil+ (cat#: KK282, Kapa 

Biosystems, Boston, USA) polymerase using the following cycling conditions: 98°C 45s / 

8cycles: 98°C 15s, 65°C 30s, 72°C 30s / 72°C 1 min. Final libraries were run on 2100 

Bioanalyzer (Agilent, Santa Clara, CA, USA) High-Sensitivity DNA assay; samples were 

also run on Bioanalyzer after shearing and size selection for quality control purposes. 

Libraries were quantified by qPCR using the Library Quantification Kit for Illumina 

sequencing platforms (cat#: KK4824, KAPA Biosystems, Boston, USA), using 7900HT 
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Real Time PCR System (Applied Biosystems). Libraries were sequenced with the Illumina 

HiSeq2500 using 125 bp paired-end single indexed run and 10% PhiX spike-in.

Assay for transposase-accessible chromatin using sequencing (ATAC-seq)—
NeuN+ and NeuN− nuclei were isolated as previously described and 100,000 nuclei were 

used for ATAC-seq library preparation as per standard protocols38. Briefly, 2X lysis buffer 

(10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630) was added 

to sorted nuclei to reach a final concentration of 1X and incubated 20 min on ice followed by 

centrifugation for 10 min as previously described. The transposition reaction was incubated 

for 1 h at 37°C (Nextera DNA library prep kit; cat #:FC-121–1031, Illumina). After PCR 

amplification of libraries and column clean up via the Qiagen MinElute PCR purification kit 

(cat#:28004, Qiagen, Valencia, CA, USA), an additional clean up with AMPure XP beads 

(0.8x ratio) was performed twice with 80% ethanol washes before quantification using a 

DNA High Sensitivity chip on a 2100 BioAnalyzer (Agilent, Santa Clara, CA, USA). 

Libraries were sequenced with the Illumina HiSeq4000 using 70 bp paired-end single 

indexed run with a 5% PhiX spike-in.

RNA sequencing (RNA-seq)—RNA isolated from bulk tissue was assessed and only 

tissues with a RIN ≥ 4 were used for nuclei isolation. NeuN+ and NeuN− nuclei were 

isolated as previously described with the addition of 20 U/mL RNAse Inhibitors (cat#: 

N8080119, Applied Biosystems) to the lysis buffer, sucrose solution, and antibody solution 

while protease inhibitor cocktail (cat#: 50-751-7359, Amresco) was added to the lysis buffer 

only. Approximately 200,000 nuclei were sorted directly into RLT buffer + 150 mM 2-

mercaptoethanol and RNA was isolated using the Qiagen RNeasy Kit (cat #:74106, Qiagen, 

Valencia, CA, USA). Nuclear RNA quality was assessed by running samples on a Total 

RNA Pico Chip on a 2100 BioAnalyzer (Agilent, Santa Clara, CA, USA). RNA-seq libraries 

were created using 2.5 ng input RNA with the SMARTer® Stranded Total RNA-Seq Kit - 

Pico Input Mammalian (cat#: 635005, Takara Bio, Mountain View, CA, USA) following the 

manufacturer’s instructions for degraded RNA samples. Libraries were sequenced with the 

Illumina HiSeq4000 using 70 bp paired-end single indexed run with 5% PhiX spike-in.

Computational Methods

Annotation—The hg19 build of the human reference genome was used for all analyses. 

Only analyses of autosomal data are reported. Genes, exons, introns, and UTRs were taken 

from GENCODE v19 (http://www.gencodegenes.org/releases/19.html)51. Gene bodies were 

defined by taking the union over all transcripts (transcription start site to transcription end 

site) for each gene. Promoters were defined as 4 kb centered on the transcription start site.

CpG islands were downloaded from UCSC (http://genome.ucsc.edu/)52,53. A GRanges 

object was created defining CpG shores as 2 kb flanking CpG islands and CpG shelves as 2 

kb flanking CpG island shores. Open sea regions are parts of the genome which are neither 

CpG islands, shores or shelves.

The 15-state ChromHMM model for 7 adult brain tissues (E071, E074, E068, E069, E072, 

E067, E073) from the Roadmap Epigenomics Project15 was downloaded using the R/

Bioconductor AnnotationHub package (v2.6.4).
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Whole genome bisulfite sequencing (WGBS)

Mapping and quality control of WGBS reads—We trimmed reads of their adapter 

sequences using Trim Galore! (v0.4.0) (http://www.bioinformatics.babraham.ac.uk/projects/

trim_galore/) and quality-trimmed using the following parameters: trim_galore -q 25 

--paired ${READ1} ${READ2}. We then aligned these trimmed reads to the hg19 build 

of the human genome (including autosomes, sex chromosomes, mitochondrial sequence, and 

lambda phage (accession NC_001416.1) but excluding non-chromosomal sequences) using 

Bismark54 (v0.14.3) with the following alignment parameters: bismark --bowtie2 -X 

1000 −1 ${READ1} −2 ${READ2}. Supplementary Tables 2 and 3 summarize the 

alignment results. Using the reads aligned to the lambda phage genome, we estimated that 

all libraries had a bisulfite conversion rate > 99%.

We then used bismark_methylation_extractor to summarize the number of reads 

supporting a methylated cytosine and the number of reads supported a unmethylated 

cytosine for every cytosine in the reference genome. Specifically, we first computed and 

visually inspected the M-bias28 of our libraries. Based on these results, we decided to ignore 

the first 5 bp of read1 and the first 10 bp of read2 in the subsequent call to 

bismark_methylation_extractor with parameters: --ignore 5 --ignore_r2 10. 

The final cytosine report file summarizes the methylation evidence at each cytosine in the 

reference genome.

Smoothing WGBS—We used BSmooth to estimate CpG methylation levels as previously 

described28. Specifically, we ran a ‘small’ smooth to identify small DMRs (smoothing over 

windows of at least 1 kb containing at least 20 CpGs) and a ‘large’ smooth to identify large-

scale blocks (smoothing over windows of at least 20 kb containing at least 500 CpGs). 

Following smoothing, we analyzed all CpGs that had a sequencing coverage of at least 1 in 

all samples (n = 45 for sorted data, n = 27 for unsorted data).

We also adapted BSmooth to estimate CpA and CpT methylation levels in NeuN+ samples. 

Unlike CpGs, CpAs and CpTs are not palindromic, so were analyzed separately for each 

strand, for a total of 4 strand/dinucleotide combinations:

• mCA (forward strand)

• mCA (reverse strand)

• mCT (forward strand)

• mCT (reverse strand)

For each dinucleotide/strand combination we ran a single ‘small-ish’ smooth to identify 

DMRs (smoothing over windows of at least 3 kb containing at least 200 CpAs or CpTs). 

Following smoothing, we analyzed all CpAs and CpTs regardless of sequencing coverage.

Identification of small DMRs and large-scale blocks—We ran separate analyses to 

identify 6 types of differentially methylated regions:

1. CG-DMRs: Using data from the ‘small’ smooth of CpG methylation levels
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2. CG-blocks: Using data from the ‘large’ smooth of CpG methylation levels

3. CA-DMRs (forward strand): Using data from the ‘small-ish’ smooth of CpA 

methylation levels on the forward strand

4. CA-DMRs (reverse strand): Using data from the ‘small-ish’ smooth of CpA 

methylation levels on the reverse strand

5. CT-DMRs (forward strand): Using data from the ‘small-ish’ smooth of CpT 

methylation levels on the forward strand

6. CT-DMRs (reverse strand): Using data from the ‘small-ish’ smooth of CpT 

methylation levels on the reverse strand

Previously, we have used BSmooth to perform pairwise (two-group) comparisons33. In the 

present study, we had up to 8 groups to compare: 4 brain regions (BA9, BA24, HC, NAcc) 

and, for the sorted data, 2 cell types (NeuN+, NeuN−). Rather than running all 28 pairwise 

comparisons, we extended the BSmooth method to handle multi-group comparisons, which 

we refer to as the F-statistic method.

For the F-statistic method, we constructed a design matrix with a term for each group (e.g., 

BA9_neg for NeuN− cells from BA9, BA9_pos for NeuN+ cells from BA9, etc.). For each 

CpX (CpG, CpA, or CpT), we then fitted a linear model of the smoothed methylation levels 

against the design matrix. To improve standard error estimates, we thresholded the residual 

standard deviations at the 75% percentile and smoothed these using a running mean over 

windows containing 101 CpXs. We then combined the estimated coefficients from the linear 

model, their estimated correlations, and the smoothed residual standard deviations to form F-

statistics to summarize the evidence that methylation differs between the groups at each of 

the CpXs.

Next, we identified runs of CpXs where the F-statistic exceeded a cutoff and where each 

CpX was within a maximum distance of the next. Specifically, we used cutoffs of F = 4.62 

for CG-DMRs, F = 22 for CG-blocks (following32), and F = 42 for CA-DMRs and CT-

DMRs, and required that the CpXs were within 300 bp of one another for DMRs and 1000 

bp of one another for blocks. For blocks, we also required that the average methylation in 

the block varied by at least 0.1 across the groups. These runs of CpXs formed our candidate 

DMRs and blocks. Each candidate DMR and block was summarized by the area under the 

curve formed when treating the F-statistic as a function along the genome (areaStat).

We used permutation testing to assign a measure of statistical significance to each candidate 

DMR/block. We randomly permuted the design matrix, effectively permuting the sample 

labels, and repeated the F-statistic analysis with the same cutoffs using the permuted design 

matrix, resulting in a set of null DMRs/blocks for each permutation. We performed 1000 

such permutations. We then asked, for each candidate DMR/block, in how many 

permutations did we see a null DMR/block anywhere in the genome with the same or better 

areaStat as the candidate DMR/block; dividing this number by the total number of 

permutations gives a permutation P-value for each DMR/block. Since we are comparing 

each candidate block/DMR against anything found anywhere in the genome in the 

permutation set, we are also correcting for multiple testing by controlling the family-wise 
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error rate. Those candidates DMRs/blocks with a permutation P-value ≤ 0.05 form our set of 

DMRs/blocks.

Annotation of small CG-DMRs and CG-blocks—The F-statistic approach allows us 

to jointly use all samples for the identification of differentially methylated regions. However, 

it does not tell us which group(s) are hypomethylated or hypermethylated for the region. To 

assign such labels to our F-statistic CG-DMRs and CG-blocks, we used a post-hoc analysis 

for specific pairwise comparisons of interest: NeuN+ vs. NeuN−; NeuN+ cells in NAcc vs. 

NeuN+ cells in BA9, BA24, and HC; NeuN+ cells in NAcc vs. NeuN+ cells in BA9. We 

identified CG-DMRs and CG-blocks using the original t-statistic method of BSmooth; an F-

statistic CG-DMR was assigned a label (e.g., hypermethylated in NeuN+ and 

hypomethylated in NeuN−) if the corresponding t-statistic CG-DMR or CG-block 

overlapped at least 50% of the F-statistic CG-DMR or CG-block. This procedure does not 

change the coordinates of the CG-DMR/CG-block and means an F-statistic CG-DMR/CG-

block may be assigned multiple labels. No such analysis was performed for CA-DMRs or 

CT-DMRs due to computational costs.

Subset analyses of CG-DMRs and CG-blocks—We found, as expected, that the 

differences between NeuN+ and NeuN− samples dominated our results (98,420 / 100,875 F-

statistic CG-DMRs and 19,072 / 20,373 F-statistic CG-blocks were assigned the label, NeuN
+ vs NeuN−; Supplementary Tables 4, 5 and 6). To better focus on the differences between 

brain regions within a given cell type (NeuN+ or NeuN−), we repeated the F-statistic 

analysis using just the NeuN+ or NeuN− samples (Supplementary Tables 8, 9, 12). We again 

found that one group dominated: 11,895 / 13,074 F-statistic NeuN+ CG-DMRs were specific 

to NAcc. To better focus on the differences between the remaining brain regions, we 

repeated the analysis using just the BA9, BA24, and HC NeuN+ samples (Supplementary 

Table 11).

Novel NeuN+ vs NeuN− CG-DMRs—Three published datasets of NeuN+ vs NeuN− 

methylation differences23,24,29 were used for comparison with our CG-DMRs. Data from 

Montano et al. was generated from our own lab and is accessible through GEO series 

accession number GSE48610. Differentially methylated sites from Kozlenkov et al. were 

obtained by request directly from the authors. CG-DMRs from Lister et al. were obtained 

from http://brainome.ucsd.edu/BrainMethylomeData/CG_DMR_lists.tar.gz and converted to 

hg19 using the UCSC liftOver tool55. As three different platforms were used to measure 

methylation (CHARM, 450K, and WGBS, respectively), we combined the differentially 

methylated CpGs from the autosomes of each study and compared to the differentially 

methylated CpGs within our NeuN+ vs NeuN− CG-DMRs. Sites that were unique to our 

NeuN+ vs NeuN− CG-DMRs were reported as novel.

Assay for transposase-accessible chromatin using sequencing (ATAC-seq)

Mapping and quality control of ATAC-seq reads—We trimmed reads of their adapter 

sequences using trimadap (v0.1, https://github.com/lh3/trimadap/archive/0.1.zip) with the 

following parameters: trimadap-mt −3 CTGTCTCTTATACACATCTCCGAGCCCACGAGA $

{READ1}; trimadap-mt −3 CTGTCTCTTATACACATCTGACGCTGCCGACGA ${READ2}. We 
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then aligned these trimmed reads to the hg19 build of the human genome (including 

autosomes, sex chromosomes, mitochondrial sequence, unplaced sequence, and unlocalized 

sequence) using Bowtie256 (v2.2.5) with alignment parameters: bowtie2 -X 2000 --

local --dovetail. Potential PCR duplicate reads were marked using MarkDuplicates 

from the Picard library (http://broadinstitute.github.io/picard/; v2.2.1). Supplementary Table 

21 summarizes the alignment results for the 22 libraries.

Identifying differentially accessibly ATAC-seq regions (DARs)—Peaks were called 

in each condition (NAcc_pos, NAcc_neg, BA9_pos, and BA9_neg) using MACS57 (v2.1.0). 

Specifically, data from each condition were combined into a metasample formed by using all 

non-duplicate-marked reads with a mapping quality > 30 and then processed using: macs2 

callpeaks --nomodel --nolambda --call-summits -t ${BAMS[@]}. We took the 

‘narrowPeaks’ produced by MACS and filtered out those regions overlapping the ENCODE 

mappability consensus blacklist regions (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/

encodeDCC/wgEncodeMapability/) and the blacklist for ATAC-seq created by Buenrostro et 

al.38 (https://sites.google.com/site/atacseqpublic/atac-seq-analysis-methods/

mitochondrialblacklists-1). We took this filtered list as our condition-specific sets of open 

chromatin regions (OCRs).

To perform the differential analysis, we first took the union of condition-specific OCRs on 

the autosomes to construct an ‘overall’ set of OCRs. This ‘overall’ set of OCRs contained 

853,053 regions (630 Mb). For each sample, we then counted the number of fragments 
(fragment = start of read1 to end of read2) overlapping each of the ‘overall’ OCRs using the 

summarizeOverlaps() function in the GenomicAlignments R/Bioconductor package58 

(v1.10.0). Specifically, we only counted those fragments where both reads had a mapping-

quality score > 30, reads not marked as potential PCR duplicates, and those where any part 

of the fragment overlapped exactly one peak.

We then analyzed these data using the voom method, originally designed for differential 

expression analysis of RNA-seq data59. Briefly, the read counts were transformed to counts 

per million (cpm) and only those 283,812 / 853,053 peaks with at least 1 cpm for at least 5 

samples (the size of the smallest group of samples) were retained. These 283,812 peaks were 

used in all downstream analyses of differential accessibility described in the main text. We 

normalized these counts using TMM60, then used edgeR61 (v3.16.5) and limma62 (v3.30.7) 

to transform these counts to log2-cpm, estimate the mean-variance relationship, and compute 

appropriate observation-level weights ready for linear modelling.

In our design matrix, we blocked on donor (donor1, …, donor6) and included a term for 

each group (e.g., BA9_neg for NeuN− cells from BA9, BA9_pos for NeuN+ cells from BA9, 

etc.). We ran surrogate variable analysis63 using the sva (v3.22.0) R/Bioconductor package 

and identified 4 surrogate variables. We ultimately decided to include all 4 surrogate 

variables in the linear model. Using the empirical Bayes shrinkage method implemented in 

limma, we tested for differential accessibility of peaks in three comparisons: (1) NAcc vs. 

BA9 in NeuN+ cells; (2) NAcc vs. BA9 in NeuN− cells; (3) NeuN+ cells vs NeuN− cells. For 

an ATAC-seq peak to be called a differentially accessible region (DAR), it had to have a 

Benjamini-Hochberg adjusted P-value < 0.05.

Rizzardi et al. Page 17

Nat Neurosci. Author manuscript; available in PMC 2019 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://broadinstitute.github.io/picard/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/
https://sites.google.com/site/atacseqpublic/atac-seq-analysis-methods/mitochondrialblacklists-1
https://sites.google.com/site/atacseqpublic/atac-seq-analysis-methods/mitochondrialblacklists-1


RNA sequencing (RNA-seq)

Mapping and quality control of RNA-seq reads—We trimmed the first 3 bp of read1, 

which were derived from template switching oligos and not the cDNA of interest, using 

seqtk (https://github.com/lh3/seqtk; v1.2-r94) with the following parameters: seqtk 

trimfq -b 3 ${READ1}. We then quasi-mapped these trimmed reads to a FASTA file of 

protein-coding and lncRNA genes from GENCODE v19 (http://www.gencodegenes.org/

releases/19.html)51 and performed transcript-level quantification using Salmon64 (v0.7.2). 

Supplementary Table 16 summarizes these results for the 20 libraries.

Identifying differentially expressed genes (DEGs)—We used tximport65 (v1.2.0) to 

compute normalized gene-level counts from the transcript-level abundance estimates 

(scaling these using the average transcript length over samples and the library size) for 

autosomal genes (33,351 genes). Only autosomal genes with at least 1 cpm in at least 4 

libraries (the size of the smallest group of samples) were retained for downstream analysis 

(24,161 / 33,351 genes). We normalized these counts using TMM60 then used edgeR61 

(v3.16.5) and limma62 (v3.30.7) to transform these counts to log2-cpm, estimate the mean-

variance relationship, and compute appropriate observation-level weights ready for linear 

modelling.

In our design matrix, we blocked on donor (donor1, …, donor6) and included a term for 

each group (e.g., BA9_neg for NeuN− cells from BA9, BA9_pos for NeuN+ cells from BA9, 

etc.). We ran surrogate variable analysis63 using the sva (v3.22.0) R/Bioconductor package 

and identified 5 surrogate variables, some of which correlated with the date on which these 

samples were flow-sorted. We ultimately decided to include all 5 surrogate variables in the 

linear model. Using the empirical Bayes shrinkage method implemented in limma, we tested 

for differential expression of genes in three comparisons: (1) NAcc vs. BA9 in NeuN+ cells; 

(2) NAcc vs. BA9 in NeuN− cells; (3) NeuN+ cells vs NeuN− cells. For a gene to be called a 

differentially expressed gene (DEG), it had to have a Benjamini-Hochberg adjusted P-value 

< 0.05 with no minimum log2 fold change cutoff.

Enrichment of DMRs, ATAC peaks, and DARs in genomic features

Enrichment odds ratios and P-values—We formed a 2×2 contingency table of (n11, 

n12, n21, n22); specific values of (n11, n12, n21, n22) are described below. The enrichment log 

odds ratio was estimated by log2(OR) = log2(n11) + log2(n22) - log2(n12) - log2(n21), its 

standard error was estimated by se(log2(OR)) = sqrt(1 / n11 + 1 / n12 + 1 / n21 + 1 / n22), and 

an approximate 95% confidence interval formed by [log2(OR) – 2 × se(log2(OR)), log2(OR) 

+ 2 × se(log2(OR))]. We also report the P-value obtained from performing Fisher’s exact test 

for testing the null of independence of rows and columns in the 2×2 table (i.e. the null of no 

enrichment or depletion) using the fisher.test()function from the ‘stats’ package in R66.

DMRs and blocks—For DMRs and blocks, we computed the enrichment of CpXs (CpGs, 

CpAs, or CpTs, as appropriate) within DMRs inside each genomic feature (e.g., exons, 

FANTOM5 enhancers, etc.). Specifically, for each genomic feature, we constructed the 2×2 

table (n11, n12, n21, n22), where:
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• n11 = Number of CpXs in DMRs/blocks that were inside the feature

• n12 = Number of CpXs in DMRs/blocks that were outside the feature

• n21 = Number of CpXs not in DMRs/blocks that were inside the feature

• n22 = Number of CpXs not in DMRs/blocks that were outside the feature

The total number of CpXs, n = n11 + n12 + n21 + n22, was the number of autosomal CpXs in 

the reference genome. We counted CpXs rather than the number of DMRs or bases because 

this accounts for the non-uniform distribution of CpXs along the genome and avoids double-

counting DMRs that are both inside and outside the feature.

Open chromatin regions (OCRs)—For OCRs, we computed the enrichment of bases 

within OCRs inside each genomic feature. Specifically, for each genomic feature, we 

constructed the 2×2 table (n11, n12, n21, n22), where:

• n11 = Number of bases in OCRs that were inside the feature

• n12 = Number of bases in OCRs that were outside the feature

• n21 = Number of bases in the rest of the genome that were inside the feature

• n22 = Number of bases in the rest of the genome that were outside the feature

The total number of bases, n = n11 + n12 + n21 + n22, was the number of autosomal bases in 

the reference genome. We counted bases rather than number of OCRs to account for the 

variation in OCR width, the large variation in width for the ‘rest of the genome’ features, 

and to avoid double-counting OCRs that were both inside and outside the feature.

Differentially accessible regions (DARs)—For DARs, we computed the enrichment of 

bases within DARs inside each genomic feature in two ways. Firstly, for each genomic 

feature, we constructed the 2 × 2 table (n11, n12, n21, n22), where:

• n11 = Number of bases in DARs that were inside the feature

• n12 = Number of bases in DARs that were outside the feature

• n21 = Number of bases in the rest of the genome that were inside the feature

• n22 = Number of bases in the rest of the genome that were outside the feature

Secondly, for each genomic feature, we constructed the 2 × 2 table (n11, n12, n21, n22), 

where:

• n11 = Number of bases in DARs that were inside the feature

• n12 = Number of bases in DARs that were outside the feature

• n21 = Number of bases in null-regions that were inside the feature

• n22 = Number of bases in null-regions that were outside the feature

‘Null-regions’ were those OCRs that were not differentially accessible between the relevant 

condition (NAcc and BA9 in NeuN+ cells) based on the peak having a Benjamini-Hochberg 

adjusted P-value > 0.05 in the analysis of differential accessibility. By comparing to null-
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regions rather than the rest of the genome, we account for the non-uniform distribution of 

OCRs along the genome.

We counted the number of bases rather than the number of DARs to account for the variation 

in DAR width and to avoid double-counting DARs that were both inside and outside the 

feature.

Association of gene body methylation and chromatin accessibility with gene 
expression—We analyzed the relationship between gene body methylation and chromatin 

accessibility with gene expression using protein coding genes (n = 19,823). We focused on 

data from NAcc (NeuN+) and BA9 (NeuN+) samples because for these brain regions we had 

WGBS, ATAC-seq, and RNA-seq, as well as a substantial number of ‘DiffEpi’ marks 

(‘DiffEpi’ being a collective abbreviation for DMRs, blocks, and DARs).

To examine the spatial distribution of DiffEpi marks around gene bodies, we took 100 bins 

across each gene and recorded whether that bin overlapped a DiffEpi mark. We extended this 

for 2 gene body equivalents upstream of the transcription start site (TSS) and downstream of 

the transcription end site (TES) (i.e. if a gene was 1 kb long then we extended it 2 kb 

upstream of TSS and 2 kb downstream of TES) and similarly recorded whether each bin 

overlapped a DiffEpi mark. Figure 4a plots the proportion of genes with a DiffEpi mark in 

each bin as we move from upstream of the TSS, across the gene body, and downstream of 

the TES, stratified by whether the gene was differentially expressed between NAcc (NeuN+) 

and BA9 (NeuN+) samples.

We performed various analyses of the relationship between mCA (taking estimates from the 

same strand as the gene), mCG (aggregated over strand and so ‘unstranded’), and average 

chromatin accessibility (ATAC-seq reads-per-kilobase mapped (RPKM)) with gene 

expression (RNA-seq RPKM) for all protein coding genes for NAcc (NeuN+) and BA9 

(NeuN+) samples. We examined these features over gene bodies and gene promoters, as well 

as in bins along and surrounding each gene. Different types of bins were used for different 

analyses, as noted in figure captions. For some analyzes we used a fixed number of bins for 

each gene so that bin width varied according to gene width (e.g., 100 bins covering the gene 

body in Figure 4a and Supplementary Figure 8a). For other analyses, we used a fixed bin 

size (e.g., 1 kb bins upstream of TSS and downstream of TES in Figure 4b). Furthermore, 

some analyses used scaled distances upstream of the TSS and downstream of the TES (e.g., 

Figure 4a and Supplementary Figures 8a) while others used fixed distances (e.g., Figure 4b).

We then focused on correlating DiffEpi marks with changes in gene expression. We again 

took all protein coding genes and created 100 bins across each gene body. We identified all 

DiffEpi marks that overlapped each bin and correlated the change in methylation (mCG 

from small smooth for CG-DMRs; mCG from large smooth for CG-blocks; mCA on the 

same strand as the gene for CA-DMRs) or change in chromatin accessibility (log2FC using 

RPKM for DARs) with the change in expression of the gene (log2FC). To emphasize, only 

genes with a DiffEpi mark in that bin contribute to the correlation estimate for that bin. We 

performed a similar procedure upstream of the TSS and downstream of the TES, but here 

using a fixed bin size (1 kb).
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Finally, we used a binomial generalized additive model to estimate the probability that a 

protein coding gene is differentially expressed given that x% of the gene body is covered by 

a DiffEpi mark. The ‘gam’ function in the ‘mgcv’ package67 (v1.8–23) was used to fit the 

generalized additive model with the formula y ~ bs(x, bs = “cs”) and additional argument 

family = “binomial”. This estimated probability and its standard error are shown in 

Figure 4c, annotated with example genes.

Stratified linkage disequilibrium score regression (SLDSR)—We used stratified 

linkage disequilibrium score regression (SLDSR), implemented in the LDSC68 software, to 

evaluate the enrichment of common genetic variants from genome-wide association study 

(GWAS) signals to partition trait heritability within functional categories represented by our 

DMRs, OCRs, and DARs51. SLDSR estimates the proportion of genome-wide single 

nucleotide polymorphism (SNP)-based heritability that can be attributed to SNPs within a 

given genomic feature by a regression model that combines GWAS summary statistics with 

estimates of linkage disequilibrium from an ancestry-matched reference panel. Links to 

GWAS summary statistics are available in Supplementary Table 24. Additional files needed 

for the SLDSR analysis were downloaded from https://data.broadinstitute.org/alkesgroup/

LDSCORE/ following instructions at https://github.com/bulik/ldsc/wiki.

We ran LDSC (v1.0.0; https://github.com/bulik/ldsc) to estimate the proportion of genome-

wide SNP-based heritability of 30 traits (Supplementary Table 24) across 53 ‘baseline’ 

genomic features (24 main annotations, 500 bp windows around of each of the 24 main 

annotations, and 100 bp windows around 5 sets of ChIP-seq peaks; described in51) and eight 

brain-specific genomic features:

1. CG-DMRs (NeuN+): CG-DMRs between brain regions in NeuN+ samples (11.8 

Mb) (Supplementary Table 8)

2. CH-DMRs (NeuN+): Union of CA-DMRs and CT-DMRs between brain regions 

in NeuN+ samples (39.6 Mb) (Supplementary Table 13)

3. CG-DMRs (NeuN+ vs. NeuN−): CG-DMRs between NeuN+ and NeuN− samples 

(70.0 Mb) (Supplementary Table 5)

4. DARs (NeuN+): DARs between brain regions in NeuN+ samples (118.1 Mb) 

(Supplementary Table 19)

5. DARs (NeuN+ vs. NeuN−): DARs NeuN+ and NeuN− samples (275.8 Mb) 

(Supplementary Table 18)

6. Brain H3K27ac: A set of regions marked by H3K27ac in human brain30 (215.4 

Mb)

7. CNS (LDSC): A union of regulatory regions active in brain, previously 

considered by the authors of LDSC51 (338.8 Mb)

8. ChromHMM (union): A union of regulatory regions found by ChromHMM 

using Roadmap Epigenomics15 data (498.1 Mb). The selected brain regions and 

their Roadmap Epigenomics codes were: Brain Angular Gyrus (E067); Brain 

Anterior Caudate (E068); Brain Cingulate Gyrus (E069); Brain Germinal Matrix 
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(E070); Brain Hippocampus Middle (E071); Brain Inferior Temporal Lobe 

(E072); Brain Dorsolateral Prefrontal Cortex (E073); Brain Substantia Nigra 

(E074); Fetal Brain Male (E081); Fetal Brain Female (E082). The ChromHMM 

states selected as ‘regulatory regions’ were: Bivalent Enhancer; Bivalent/Poised 

TSS; Genic enhancers; Flanking Active TSS; Active TSS; Strong transcription; 

Enhancers. Processed ChromHMM tracks were downloaded using the 

AnnotationHub R/Bioconductor package (v1.36.2).

Collectively, we refer to features 1–5 as ‘differential features’, being the product of 

differential analyses, and features 6–8 as ‘non-differential features’, each being the union of 

regions marked by various active histone modifications present in different brain regions.

We performed three rounds of analysis:

1. ‘Baseline’: A standard SLDSR analysis, as suggested by the LDSC authors, 

whereby each of the eight brain-specific features was added one at a time to a 

‘full baseline model’ that included the 53 ‘baseline’ categories that capture a 

broad set of genomic annotations.

2. ‘Stringent’: Add each of the 5 differential features one at a time to a model that 

included the 53 baseline features and 3 brain-specific non-differential features.

3. ‘Adjusting for non-differential features (ndf) excluding differential features (df)’: 

Add each of the 5 differential features on at a time to a model that included the 3 

brain-specific non-differential features (after having excluded any regions shared 

with the brain-specific differential feature) and the 53 baseline features.

For each round of analysis, we used SLDSR to estimate a ‘coefficient z-score’ and an 

‘enrichment score’ for each feature-trait combination. A brief description of their 

interpretation is given below; we refer the interested reader to the Online Methods of 

Finucane, H.K. et al. 201527 for the complete mathematical derivation.

A coefficient z-score statistically larger than zero indicates that adding the feature to the 

model increased the explained heritability of the trait, beyond the heritability explained by 

other features in the model.

The enrichment score is defined as (proportion of heritability explained by the feature) / 

(proportion of SNPs in the feature). The enrichment score is unadjusted for the other 

features in the model, but is more readily interpretable as an effect size. It should be noted, 

however, that the enrichment score depends on the terms included in the model. Although 

the denominator of the enrichment score is constant, the numerator depends on the set of 

features in the model and how much the feature of interest overlaps the other features in the 

set. In particular, the “proportion of heritability explained by the feature” will decrease when 

another feature that overlaps it is added to the model (e.g., the enrichment scores of the 

differential features in the ‘stringent’ analysis are lower than in the ‘baseline’ analysis due to 

the differential features overlapping the non-differential features that are added to the 

baseline in the ‘stringent’ analysis).
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Particularly interesting are those feature-trait combinations with statistically significant z-

score coefficients and large enrichment scores. P-values within each trait were post-hoc 

adjusted for multiple testing using Holm’s method69 (Supplementary Table 25).

Transcription Factor Motif Enrichment—We used the Haystack (v0.4)40 

haystack_motifs module to scan for vertebrate JASPAR (2016)70 transcription factor 

binding motifs enriched in our datasets. A list of neuronal DARs that overlapped hypo- or 

hypermethylated neuronal CG-DMRs identified between NAcc and BA9 in NeuN+ nuclei 

were input into Haystack as a BED file (hyper CG-DMR/DARs, n = 14,463; hypo CG-

DMR/DARs, n = 11,734). A subset of these neuronal DAR/CG-DMRs found in promoters 

was analyzed separately (hyper CG-DMR/DARs, n = 2,618; hypo CG-DMR/DARs, n = 

1,435). All autosomal promoters were input as background for the neuronal DAR/CG-

DMRs that overlapped promoters. For the complete list of neuronal DAR/CG-DMRs, 

Haystack selected a random, CG content-matched subset of the input background to use for 

enrichment calculations. Significance was determined using a one-sided Fisher’s test.

To identify novel transcriptional regulators for the differentially expressed genes found 

between NeuN+ populations from NAcc and BA9, we first generated transcription factor-

gene scores using TEPIC49. This software utilizes epigenetic information along with 

transcription factor binding sites to generate these scores which can then be used by 

DYNAMITE48 to infer potentially important transcriptional regulators by predicting up/

down-regulation for differentially expressed genes. Using the combined TEPIC/
DYNAMITE pipeline, transcription factor affinities were computed within the DARs 

identified between NeuN+ nuclei from NAcc and BA9 (n = 68,021) using the provided 

human_jaspar_hoc_kellis.PSEM position weight matrix. The affinities per gene were 

calculated over a 5 kb window around a gene’s TSS incorporating the signal abundance 

(cpm) within a peak into the transcription factor annotation. We also provided the log2 gene 

expression ratios for differentially expressed genes (DEGs) between NeuN+ nuclei from 

NAcc and BA9 (n = 2,952). Other input parameters used: outerCV=6, innerCV=10, 

alpha_Step_Size=0.01. We reported only those transcription factors that were expressed 

in our NeuN+ nuclei and had a correlation coefficient > |0.04| in Figure 4f. The full output 

(including transcription factors not expressed in our samples) is reported in Supplementary 

Table 23.

Gene Ontology Annotation—We utilized the Genomic Regions Enrichment of 

Annotations Tool (GREAT; v3.0.0)35 to assess nearest gene enrichment for hypo- and 

hypermethylated CG-DMRs. We used the hg19 assembly, reduced the default input 

parameter for max extension to 100 kb, and kept all other default parameters the same 

(settings available at the GREAT website: http://great.stanford.edu/). Gene Ontology (GO) 

terms returned must be significant by both the binomial and hypergeometric tests using the 

multiple hypothesis correction false discovery rate (FDR) ≤ 0.05 whose binomial fold 

enrichment is at least 2.0.

Metascape71 (http://metascape.org) was used to perform gene ontology (GO), Reactome, 

and KEGG pathway analyses using lists of gene symbols for differentially expressed genes 

(either up- or downregulated in NAcc as compared to BA9 NeuN+ nuclei) as input. The gene 
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lists were generated by matching GENCODE gene IDs to gene symbols 

(“external_gene_id”) using biomaRt72,73 (v2.30.0).

Supplementary Software—All statistical analyses were performed using R66 (v3.3.x) 

and made use of packages contributed to the Bioconductor project74,75. In addition to those 

R/Bioconductor packages specifically referenced in the above, we made use of several other 

packages in preparing results for the manuscript:

• bsseq (v1.14)

• AnnotationHub (v2.6.4)

• biomaRt72,73 (v2.30.0)

• GenomicAlignments58 (v1.10.0)

• GenomicFeatures58 (v1.26.2)

• GenomicRanges58 (v1.26.2)

• ggplot276 (v2.2.1)

• Hmisc (v4.0–2)

• Matrix (v1.2–8)

• rtracklayer77 (v1.34.1)

• SummarizedExperiment (v1.4.0)

• EnrichedHeatmap (v1.4.0)

• mgcv (v1.8–23)67

• sva (v3.22.0)

• EnrichedHeatmap (v1.4.0)

• Picard (v2.2.2)

• seqtk (v1.2-r94)

• Salmon (v0.7.2)

• tximport (v1.2.0)

• Metascape (http://metascape.org)

• GREAT (v3.0.0; http://great.stanford.edu)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Neuronal nuclei isolated from different brain regions display widespread differences in 
CpG methylation.
DNA methylation was assessed in samples from four tissues: anterior cingulate cortex 

(BA24; pink), prefrontal cortex (BA9; blue), nucleus accumbens (NAcc; orange), and 

hippocampus (HC; grey). (a) Principal component analysis (PCA) of distances derived from 

average autosomal CpG methylation (in 1 kb intervals) in NeuN+ and NeuN- nuclei from 

each brain region; each point is a sample (n=6 for BA9,HC,NAcc in both NeuN+ and 

NeuN-; for BA24, n=5 for NeuN+ and n=4 for NeuN-). (b) Hierarchical clustering of 

samples based on the average methylation per sample of the neuronal CG-DMRs 

(n=13,074). (c) Log odds ratios for the enrichment of CpGs within cell type (NeuN+ vs 

NeuN-) and neuronal (NeuN+) CG-DMRs and blocks compared to the rest of the genome 

for genomic features. Gene models from GENCODE (promoters, intronic, exonic, 5’UTR, 

3’UTR, intergenic), CpG islands (CGIs) and related features from UCSC (shores, shelves, 

OpenSea), putative enhancer regions (H3K27ac30, FANTOM531), open chromatin regions 
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(OCRs) from this study, and brain-specific ChromHMM15 annotations (core 15-state 

model). (d) Average methylation for NeuN+ nuclei over a 3 kb window centered on the 

neuronal CG-DMRs. CG-DMRs were grouped by k-means clustering based on their 

methylation patterns. Metagene plots for each group are shown to the right with the number 

of CG-DMRs in each group indicated. (e) Heatmap as in (c) showing enrichment within 

neuronal CG-DMRs from groups 1–3 and CG-DMRs from EBV transformed B cells33. (f) 

Example CG-DMR (top) and CG-block (bottom) showing average methylation values for 

NeuN+ nuclei from each tissue as indicated. Regions of differential methylation are shaded 

in pink.
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Figure 2. Differential non-CpG methylation among neuronal nuclei from different brain regions.
(a) Principal component analysis of autosomal non-CpG methylation in NeuN+ nuclei; each 

point is a sample, colored by brain region and character denoting strand and context (n=6 

individuals for BA9, HC, NAcc and n=5 for BA24). (b) Hierarchical clustering of samples 

based on the z-score of methylation over CA(+) DMRs. (c) Log odds ratios for the 

enrichment of cytosines within CG-DMRs and CH-DMRs compared to the rest of the 

genome in different genomic features. (d) Example CH DMR over RGS9 with all strands 

and contexts depicted in addition to CG-DMRs (mCG(S); obtained from small smoothing 

window) and blocks (mCG(L); obtained from large smoothing window). Average 

methylation values calculated from NeuN+ nuclei isolated from BA24, BA9, HC and NAcc. 

Regions of differential methylation are shaded in pink.
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Figure 3. Chromatin accessibility landscape differs between neuronal nuclei isolated from the 
nucleus accumbens and prefrontal cortex.
Mean-difference plots of gene expression data comparing NAcc to BA9 in (a) NeuN+ nuclei 

and (b) NeuN-. Differentially expressed genes (DEGs) are shown in orange. (c) Principal 

component analysis of open chromatin regions [log2(counts per million)] in NeuN+ and 

NeuN- nuclei from NAcc or BA9. For (a-c), NeuN+ nuclei were from: NAcc, n = 5 

individuals and BA9, n = 6 individuals; for NeuN-: NAcc, n = 4 individuals and BA9, n = 5 

individuals. (d,e) Mean-difference plots of peak accessibility data comparing: NAcc to BA9 

in either (d) NeuN+ nuclei, or (e) NeuN- nuclei. Differentially accessible regions (DARs) 

are shown in orange. Data shown in (d,e) were randomly sampled (20% of DARs, 10% of 

non-DARs). (f) Log odds ratios for the enrichment of open chromatin regions (OCRs), 

DARs, or the intersection of DARs and differentially methylated regions (CG-DMRs) (cell 

type or neuronal as indicated) in different genomic features. OCRs and DAR/CG-DMR 

intersection enrichments were calculated in comparison to the rest of the genome while 

DARs were compared to non-DARs. Gene models from GENCODE (promoter, intronic, 

exonic, 3’UTR, 5’UTR, intergenic), CpG islands and related features from UCSC (CGI, 
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shores, shelves, OpenSea), and putative enhancer regions (brain-specific H3K27ac30, 

FANTOM531). (g) ATAC-peak coverage for NeuN+ nuclei from NAcc or BA9 over a 3 kb 

window centered on neuronal DARs (n=68,201). Neuronal DARs were annotated based on 

log fold change (greater or less than one) and direction (“hyper” - more accessible in NAcc; 

“hypo” – more accessible in BA9). The number of neuronal DARs in each category is 

indicated. Average CpG methylation values and the methylation difference (NAcc minus 

BA9) for these regions are also shown. (h) As in (g), but centered on neuronal CG-DMRs 

(n=12,895) identified between NeuN+ nuclei from NAcc and BA9. Neuronal CG-DMRs are 

separated by those that overlap neuronal DARs and those that do not as indicated. The 

number of neuronal CG-DMRs in each category is indicated.
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Figure 4. Differential gene expression is strongly associated with neuronal CA-DMRs.
Regions where neuronal CG-DMRs and DARs intersect are enriched in binding sites for 

transcription factors (TFs) associated with synaptic activity. (a) Proportion of protein coding 

genes (n=19,823) with a differential epigenetic feature in each bin around gene bodies. Each 

gene length is split into 100 bins and data extend two gene lengths up and downstream. 

Differentially expressed genes (DEGs) are indicated. (b) Absolute Pearson correlation values 

of differential epigenetic features with protein coding gene expression across scaled gene 

bodies with each gene length split into 100 bins (0–100%); data extend 1 Mb up and 

downstream in 1 kb bins. The sample for the Pearson correlation in each bin is the subset of 

features that overlap that bin and, therefore, the sample size for which Pearson’s correlations 

were determined varies for each bin and feature. (c) Estimated probability (with 95% CI) 

that a gene is differentially expressed in terms of the proportion of the gene covered by 

differential epigenetic features (Methods). Example DEGs are annotated. (d) Enrichment of 
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TFs whose motifs were enriched in DARs that overlap hypo- (n=11,734) or hypermethylated 

CG-DMRs (n=14,463) in NAcc compared to BA9. Differentially expressed TFs in NAcc vs. 

BA9 are shown by red bars (see Methods for description of RNA-seq analysis). TFs whose 

binding is influenced by DNA methylation (as determined in47) are indicated with a blue 

bar. (e) As in (d), showing TFs with motifs enriched where DAR/CG-DMRs overlap 

promoters (hyper, n=2,618; hypo, n=1,435). Significance determined using one-sided 

Fisher’s test in (d,e). (f) Bar plot showing the predicted impact of TFs on gene expression 

(normalized coefficient) for each TF with a binding site within a DAR located within 5 kb of 

a gene. Large values denote a higher impact of the TF on differential gene expression. Bold 

type indicates that the TF is differentially expressed between NAcc and BA9.
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Figure 5. Neuronal CG-DMRs and DARs are highly enriched for explained heritability of 
multiple psychiatric, neurological, and behavioral-cognitive traits.
Results from running stratified linkage disequilibrium score regression (SLDSR) using 30 

GWAS traits with 5 brain-specific differential features, 3 brain-specific non-differential 

features (Brain H3K27ac44, CNS51, chromHMM26), and 53 baseline features. Traits are 

stratified by whether they are viewed as brain-related and by whether any of the brain-

specific features explained additional heritability of the trait above the 53 baseline features 

(see Methods and Supplementary Table 24). Feature-trait combinations with a z-score 

significantly larger than 0 (one-sided z-test with alpha = 0.05, P-values corrected within each 

trait using Holm’s method) are shown by filled-in circles. (a) Enrichment score and (b) 

coefficient z-score from running SLDSR for each of the 8 brain specific features separately 

combined with the 53 baseline features. (c) Enrichment score and (d) Coefficient z-score 

from running SLDSR for each of the 5 brain-specific differential features separately 

combined with baseline features. Baseline features for this analysis included the 3 brain-

specific non-differential features. (e) Enrichment score and (f) coefficient z-score from 

running SLDSR for each of the 5 brain specific differential features separately combined 

with the baseline features. For this analysis the baseline features included only the unique 

portions of the 3 brain-specific non-differential features (non-differential feature regions that 

are also present in the differential features were excluded from the baseline).
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