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ABSTRACT

Active surveillance (AS) using repeated biopsies to monitor disease progression has been a popular alternative to immediate surgical intervention
in cancer care. However, a biopsy procedure is invasive and sometimes leads to severe side effects of infection and bleeding. To reduce the burden
of repeated surveillance biopsies, biomarker-assistant decision rules are sought to replace the fix-for-all regimen with tailored biopsy intensity for
individual patients. Constructing or evaluating such decision rules is challenging. The key AS outcome is often ascertained subject to interval
censoring. Furthermore, patients will discontinue participation in the AS study once they receive a positive surveillance biopsy. Thus, patient
dropout is affected by the outcomes of these biopsies. This work proposes a non-parametric kernel-based method to estimate a tailored AS
strategy’s true positive rates (TPRs) and true negative rates (TNRs), accounting for interval censoring and immediate dropouts. We develop
a weighted classification framework based on these estimates to estimate the optimally tailored AS strategy and further incorporate the cost-
benefit ratio for cost-effectiveness in medical decision-making. Theoretically, we provide a uniform generalization error bound of the derived
AS strategy, accommodating all possible trade-offs between TPRs and TNRs. Simulation and application to a prostate cancer surveillance study

show the superiority of the proposed method.
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1 INTRODUCTION

Active surveillance (AS) has become a widely used alternative
to immediate aggressive interventions such as surgery for man-
aging low-grade cancer (Ganz et al., 2012; Cooperberg and Car-
roll, 2015; Chen et al,, 2016; Auffenberg et al., 2017; Sanda
et al, 2018). It involves periodic tumor monitoring with in-
vasive tests such as biopsies, often following a one-size-fits-all
schedule for all patients. To reduce the burden of frequent test-
ing, biomarker-assistant rules are sought to personalize AS inter-
vals based on patients’ characteristics. However, creating these
rules and evaluating their clinical validity remain challenging due
to the dynamic nature of AS and how the key AS outcome is
ascertained.

Our research is motivated by the Canary Prostate Active
Surveillance Study (PASS), a multicenter, prospective cohort
study enrolling men with low-grade prostate cancer opting for
AS (Cooperberg et al,, 2020). In PASS, patients are closely
monitored for disease progression, with prostate-specific anti-
gen (PSA) tests every 3 months, clinical visits every 6 months,
and ultrasound-guided biopsies at 6, 12, and 24 months after di-
agnosis, then every 2 years. A key goal is to develop an optimally
tailored AS dynamic regimen. The outcome of AS, disease pro-
gression, indicated by reclassification to clinically significant can-

cer, is determined through biopsies, with its timing known only
between the last negative and the most recent positive biopsy.
The patient typically drops out of the study after reclassification.
Deriving and evaluating the AS rule need to account for the in-
terval censoring and immediate dropouts.

Many model-based approaches have been proposed to es-
timate the covariate effects on interval-censored events. Para-
metric and semiparametric maximum likelihood estimators and
sieve likelihood estimators address interval censoring under pro-
portional hazards models (Huang, 1995; 1996; Rossini and
Tsiatis, 1996; Huang and Rossini, 1997; Goggins and Finkel-
stein, 2000; Wang and Dunson, 2011; Zeng et al,, 2017; Gao
et al,, 2019), as well as additive hazard and accelerated fail-
ure time models (Lin et al., 1998; Shiboski, 1998; Shen, 2000;
Martinussen and Scheike, 2002; Tian and Cai, 2006; Lin and
Wang, 2010). To construct surveillance rules with longitudi-
nal measurements, joint modeling or partly conditional mod-
els are adapted with these baseline models to account for
interval-censored outcomes (Tsiatis and Davidian, 2004; Yu
et al.,, 2008; Maziarz et al., 2017; Tomer et al., 2019). How-
ever, these methods depend on specific assumptions, and their
performance can be sensitive to them, while also requiring sig-
nificant computational resources (eg, expectation-maximization
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algorithms) (Mongoué-Tchokoté and Kim, 2008; McMahan
etal,, 2013). Thus, a robust treatment for the interval-censored
event under a more flexible and computationally efficient
framework would broaden the applicability of the developed
rules.

Chan et al. (2021) proposed non-parametric estimators for
time-dependent true positive rate (TPR) and true negative rate
(TNR) via kernel regressions to evaluate the prediction perfor-
mance of abaseline risk score when the occurrence of a particular
clinical condition is only examined at the scheduled visit. Their
estimators are model-agnostic and computationally simple but
assume random dropouts and panel current status data, which
may not hold in surveillance studies where patients often leave
after disease progression is detected. In addition, their focus was
not on deriving a decision rule. Our shift from a linear risk score
to a surveillance rule represents a more actionable and clinically
interpretable framework for decision-making. To this end, we
follow classification-based approaches in deriving decision rules
for medical decision-making. Dong et al. (2023) introduced a
framework incorporating time-dependent TPR and TNR into
the objective function for learning optimal dynamic surveil-
lance rules, accommodating right-censored outcomes through
inverse-censoring-probability weighting (IPCW). However, this
method does not directly address interval-censored outcomes,
which are common in settings with infrequent diagnostic proce-
dures.

In this work, we develop a flexible framework that can handle
interval-censored events and non-random dropouts with com-
putationally efficient algorithms for surveillance rule derivation.
We make two major contributions. First, different from Chan
et al. (2021), we propose a two-dimensional kernel function
for non-parametric TPR and TNR estimators to handle inter-
val censoring and non-random dropouts simultaneously. Sec-
ond, based on the classification framework of Dong et al. (2023),
we construct a kernel-based benefit value function using pro-
posed non-parametric TPR and TNR estimators to derive op-
timal AS strategies under the complex data structure of AS stud-
ies. In addition, the proposed benefit value function can incor-
porate cost-benefit ratios and disease prevalence as weights to
target cost-effective decisions. Our proposed work may signifi-
cantly broaden the framework’s applicability and overcome lim-
itations present in the prior work.

2 METHOD

2.1 Weighted benefits value function and the optimality
Let Z; represent the covariate information at time ¢, includ-
ing baseline and time-invariant covariates, {Z;};cg, be a p-
dimensional covariate process, and Z; represent the accrued co-
variate information up to t. Our goal is to derive a tailored AS
decision rule, d(-), which maps Z, the accrued information
up to the decision time point s, to a binary output {1, —1},
with di(-) = 1 indicating a positive decision for conducting a
future biopsy at s + 7, and d,(-) = —1 for a decision to skip
the biopsy at that time. Here, T is typically predetermined by
the study protocol fixed for everyone. Therefore, d;(-) leads
to a surveillance intensity tailored to the individual’s covari-

ate history. In particular, for ease of implementation and stable
estimation given a typical limited study cohort size, we are inter-
ested in the stabilized strategy do (-), thatis, d;(Z;) = do(Z,). A
stabilized strategy shares the same format at different time points
s, and takes only the most up-to-date covariate information as
input.

The validity of d, (), that is, whether a biopsy should be sched-
uled at time s + 7, depends on whether a surveillance endpoint
will occur within the time window [s, s + 7 ]. For any tailored
AS rule, we first define a weighted benefits value function based
on the TPR and the TNR (Dong et al., 2023). At a landmark
time point s, pertinent to the outcome by a future time s + 7, the
time-varying TPR and TNR for a tailored AS strategy d,(Z,) are
defined as TPR(d;s, ) = P{ds(zs) =1|s<T<s+ ‘L’}
and TNR(d,;s, T) = P{dS(Z) =—1|T>s+ 7:} , where
T is the event time, that is, the time of progression.

The TPR(d;s, T) is the proportion of positive decisions
among patients with an AS event occurs within time in-
terval (s,s+ t]; the TNR(d; s, 7) is the proportion of
negative decisions among patients who are event-free by
s+ 7. Both high TPR(d,;s, ) and TNR(d;;s, 7) are de-
sirable for meaningful clinical decisions, but there is often
a tradeoff between the two. We therefore define the time-
specific weighted benefits value function at time point s as
¢(d; s, (s), T) = TPR(dg; s, ) + & (s)TNR(dg; s, 7),
where & (s) is a pre-specified scalar representing the trade-off
between TPR(d,;s, ) and TNR(d,;s, 7). To obtain a dy-
namic regimen over time, we define the weighted benefits value
function by averaging time-specific value functions over all
landmark time points. Let S(t) be the distribution function of
the time making biopsy decisions. The value function is then
defined as @ (d;&,7) := [@{d;t, E(t), T}dS(t), where
d= {ds}szO’

Based on the definition of the weighted benefits value func-
tion, the optimally tailored AS regimen under a specific & (-) is
defined as its maximizer, that is, d¢ ; := argmax ®(d; &, 7).
When the biopsy decisions have to be made at fixed landmark
decision time points denoted as 0 <t; <, < --- < tj, the
value function ®(d: &,7) =J 7' Y _, pldy:t;. &(t). 7). If
we are interested in the stabilized decision rule, the weighted
benefits value function can be written as ®(dy; &,7) =
T bldet E(t). T

There are many possible choices of & (+). One possible choice
is a £(s) that characterizes the cost-benefit trade-offs. In this
case, a strategy is cost-effective at time s if the number of
unnecessary biopsies a patient can afford to catch an event
(disease progression) is lower than an expected number, re-
ferred to as r (Pepe et al, 2016). It can be achieved by
choosing &(s) = {1 — p(s; T)}/{p(s; T)r}, where p(s; 7) =
P(s<T <s+ 1t |T >s). Under this choice, given a fixed r
and a strategy d, the value function is equivalent to the difference
between the number of unnecessary biopsies patients can afford
and the number of unnecessary biopsies under the strategy d to
catch an event. Thus, given a fixed r, a higher value function in-
dicates better cost-benefit trade-offs, that is, fewer unnecessary
biopsies compared with the number of unnecessary biopsies pa-
tients can afford to catch an event.



2.2 Estimating optimally tailored regimen under interval
censoring and immediate dropouts
In this section, we consider estimating the time-varying
TPR/TNR and the optimally tailored AS strategy using the ob-
served data. First, we introduce our notations and assumptions.

Denote the event and censoring times as T and C, respec-
tively. In the observed data, we do not directly observe T;
instead, physicians would schedule K biopsies at times N =
(Ny, -+, Ng), where N; < --- < N, to check whether dis-
ease progression occurs. Given these biopsy time points, with-
out missing data or dropouts, we observe A = (Ay, - -+, Ag),
where Ay = 1{T < Ny} indicating whether the disease pro-
gressed before the kth biopsy. However, we may be unable to
observe Ay and Ni due to lost-to-follow-up before the event
time (censoring), missed biopsy appointments, and dropout
due to disease progression. Specifically, to account for possible
missed biopsy appointments, we use § = (8, - - - , 8x ) to indi-
cate the completeness of the biopsy sequence, where §; = 1 in-
dicating information on the kth biopsy, as well as Ay, is avail-
able. To account for the censoring before the event time, let
¢= (&, Lx), where & = 1{C > Ny} indicating whether
the censoring time is later than the kth biopsy time, that is,
the kth biopsy is not censored; if {; = 0, we cannot observe
the kth biopsy, Ni nor Aj. In addition, we assume that the
patient will drop out of the study immediately after A, = 1.
Under these notations, in our observed data, we can observe
N and Ay if and only if ;8 = 1 and ApSy = 0 for all K <
k. We assume that Z, is available up to the time of the last
biopsy.

For N, ¢, and §, we adopt the same assumptions as those in
Chan et al. (2021). We assume that N is a random vector as pa-
tients may visit at random times near the scheduled visits, that is,
the biopsy times N are independent of both T and {Z, };cR, ; the
P(8k =1| A,N,{Z}icr,) = pr > 0; the censoringindicator
P(&k=1| A N,{Z}icr,) = pr > 0. The key difference be-
tween the settings in Chan et al. (2021) and ours is whether the
patient will drop out from the study immediately after Ay = 1.
For settings in Chan et al. (2021), the patients may still return to
the study after A = 1; for surveillance study, the patients often
drop out from the study and seek other medical interventions
once Ay = 1 for some k.

Next, we propose an estimation method of the time-varying
TNR(d;; s, T) based on the observed data under a tailored
AS strategy, d;. Following the approach in Chan et al. (2021),
we can construct a non-parametric estimation for time-varying
TNR(d,; s, ) for a given decision rule d;. The key idea is to
leverage the randomness of the biopsy time. Given an interval
(s,s+ 7], suppose that we want to infer P(s < T <s+ 1),
since the biopsy time is random, there are chances that the
biopsy times are close to s ors 4 7; and thus by results of biopsies
nearsands + 7, we caninfer P(s < T < s+ 7). By combining
the biopsy information across biopsy times close to s or s 4 7,
we can estimate the TPR/TNR.

Define F,(t;s) =P{dJ(Z,) =a, T > t}, where a=
{1, —1}. The TNR(d,; s) can be re-formulated as a function of
E,(t;s), that is, TNR(d;;s) = F_ (s + 7; s){F_ (s + T;5) +
Fi(s+17;5)}"". Following Chan et al. (2021), we consider
the following estimation for TNR(d,; s), that is, TNR(d;; s) =
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E,[1d(Z,) = —1}W_1 ;).  where W_;, ={> (1 -

AR 88K (N — £)} [ E{ (1 — Ap) 88K (Nj — t)}]_l ,
the function K;,(-) = h™'K(-/h) and K(-) is a univariate ker-
nel function, and h is the bandwidth. The E,(-) denotes the
sample average of the subjects whose last biopsy is after s + .
The proposed estimator utilizes all observed negative biopsies.
Although we do not observe future positive biopsy results after
a positive biopsy, we observe all negative biopsies except those
that are missing or censored. Thus, the proposed estimator for
TNR(d; s, T) is also expected to be consistent in our setting.

However, estimating TPR(d;; s, T) is nontrivial. In our set-
ting, patients immediately drop out from the study once Ay =1
for some k, and thus, the positive biopsy times after the first pos-
itive biopsy cannot be observed. Directly using the estimator in
Chan et al. (2021) for TPRs leads to a biased estimation since
whether we can observe a positive biopsy also depends on previ-
ous biopsy results. To address the immediate dropouts, we con-
sider adjacent negative—positive pairs of biopsies. We say an ad-
jacent pair of biopsies is a negative—positive pair if and only if
Ay =0and Ay = 1, where (k) is the index of the adjacent
observed biopsy before the kth biopsy. Different from the pos-
itive biopsies, whether an adjacent negative—positive pair will be
observed does not depend on the past biopsy results; the ad-
jacent negative-positive pair will always be observed if there is
no censoring or missing, and thus is not affected by the imme-
diate dropouts. Thus, these pairs can always inform the short-
est interval identifiable from the observed data that contains the
event time, thatis, T € (N(x), Ni]. In addition, since the biopsy
times are random, the biopsy times of adjacent biopsy pairs are
random. Given a time interval of interest, the frequency of ad-
jacent negative—positive pairs with biopsy times similar to the
time interval of interest can inform the prevalence of an event;
thus, adjacent negative—positive pairs can help address the prob-
lem of interval censoring. Denote Ny = 0 and 8¢ = 1, corre-
sponding to the confirmatory biopsy or baseline diagnosis. The-
orem 1 shows that the P {dS(Z) =a,s<T<s+ ‘L'} isidenti-
fiable using observed adjacent negative—positive pairs. Its proof
is in the online Supplementary Material.

Theorem 1: For any k and s, we have
Pld(Z,)=a,s <T <s+ 1}
=P{d(Z)=a, A =0,Ar=1| Ny =s,
N =s+ 1,88 = 1},
where (k) is the index of the adjacent observed biopsy before the kth
biopsy.
Following Theorem 1, for any k, notice that
TPR(d;; s, 7) = P{d(Z;) =1, Ay =0,
Ar=1,88 =1|Ng =s,Ne=s+ 1}
xP HA@ =0,Ar=1,
Skl =1[Nu) =s, Ny =s+ 1}

Thus, the TPR(d;;s, ) can be then estimated
by TPR(d,; s, ) = E,[1{d,(Z,) = 1}W, /], where
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Wie= {3 A1 — A k) ) S8k (N — s — 7, Ny —
S Enl Ak (1 — A ) 518K (N — s — 7, Ny — )} ™,
the function K;(f;, ) = h_ZK(E/h, t/h), K(-, ) is a two-
dimensional kernel function, and % is the associated bandwidth
that could be different from h.

Based on the estimators of TNR(d,; s, 7) and TPR(d; s, T),
we can estimate the optimally tailored AS strategy. For
the simplicity of the notation, we only consider the
strategy with a stabilized decision rule in the following
discussion. For stabilized decision rules, we can maxi-
mize @, (do; &, 7) =] 30, E[H{do(Z,) = Wi, +
l{do(th) = -1} (tj)W—l,t,+r]~

Remark 1: The proposed method assumes that N is independent of
T and {Z}icr, . When such an assumption does not hold, estimation

will be biased. Under a less stringent assumption that T | Z,N. =
s, Niw = s + T has the same distribution as T | Z, for every s, k and
K', our proposed method for estimating TPR is still valid if we modify
the kernel weights by including Z,,

Wi(z) = |:Z EAA (1 — Agy) 681k (Ne — s — 7, Ny — s, Z, zs)}]
p

—1
X [ZEH{Q(S;{E;(N,( —s5—1,Ng —s, Z, — zs)}:| s
k

and TPR(d,; s, T) = E,[1{d,(Z,) =
W, (Z,)]/E,{W..(Z,)}. In addition, when N follows a discrete
distribution over landmark decision time points, we can choose
discrete kernel functions instead of a continuous kernel function
(Rajagopalan and Lall, 1995).

2.3 Computationally efficient algorithms

Maximizing the weighted benefits value function is equiv-
alent to solving a weighted classification problem, that
is, ming ]! > Enl1{do(Zy) # LW, + 1{do(Z;)) #
_1}&_ (tj )W—l,t,+r:|-

To prevent the complication of optimizing an objective func-
tion that includes the indicator function, we substitute it with a
convex surrogate loss function, denoted as ¢, and consider

min Gy, (f: &, 2) =] > EWy . ¢1f(Z,)
j

+W_ s d{=f(Z)}] 4 Mall 11

(1)
where W, , = {Wl,t,- - S(t}-)W,l,tiﬂ}_i_ and W_, =
{Wl,t, — S(tj )W,l,tjﬂ } _, Fisapre-specified function class in
a Hilbert space, and || - || ;. is the associated norm. The penaliza-
tion A, || f ||fr is added to avoid over-fitting, where 1, is a tuning
parameter. Denote its minimizer as };M ; the estimated AS

strategy can be characterized by @,M (Z,) = sgn {jf;.xn (z,) }
To account for cost-benefit ratios, we set &(s) = {1 —
p(s; 7)}/{p(s; T)r}. For constructing the objective function,

it’s necessary to estimate & (s). In the online Supplementary M
aterial, we derive an estimator using techniques similar to those

for constructing TPR(dy; s, 7). Denote the estimated & (s) as
£(s),and we then minimize Ly f; £, ,) over f € F.Denote
itAs minimizer as fg; ,,,; the estimated AS strategy is defined by
dz.5, (Z;) = sgn {fg,\n (Zt)}-

Minimizing £ ,( f; &, A,,) fundamentally resolves a weighted
classification problem via penalized empirical risk minimization.
As €y ,(f; &, Ay) is convex in f, we can employ the gradient-
based approaches for its solution. In our implementation, ¢ is
chosen as the logistic loss with linear decision rules (i.e., f(-) has
a linear form), and thus minimizing €4 ,(f; &, A,) is the same
as a weighted logistic regression with a ridge penalty. Existing
R packages, for example, glmnet, can be used to implement the
proposed method. We refer to our proposed method as the Op-
timization with the Surrogate Function approach for Interval-
censored data (OSF-I).

3 THEORITICAL PROPERTIES

In this section, we state the theoretical properties of the
proposed estimators under a stabilized decision rule. The de-
tailed proof of the main theorem can be found in the online
Supplementary Material. The theoretical properties of the time-
varying surveillance decision rules are implied in the proof. To
start with, given a decision rule dy, we define ®(do; &, 7) =
J7' 3 {TPR(do; tj, T) + £ (5 ) TNR(do; £, 7)} . To assess
the theoretical property of the tailored AS rule under a; At
we use a generalization error that compares CD(c/i;;\n; £,1)
with the optimally tailored AS dynamic regimen. The opti-
mally tailored AS dynamic regimen at time ¢; is defined as
the maximizer of TPR(dti; ti, )+ E(tj)TNR(dt]; ti, 7).
Denote the maximizer at time t; as d;,y and define ®*(&, 1) =

7! > {TPR(d;].; tj, T) +&(t;)TNR(d; ;i t;, z)} . The
generalization error is then defined as CD((j; as E.T) —
®*(&, 7). To accommodate the case where & is chosen us-
ing the cost-benefit ratio, we derive an upper bound for the
generalization error {CD((E;;W; &, 1) — O*(&, ‘L’)} which is
uniformly held for§ € E := [£, &), where & is some constant

bounded away from 0 and £ is some constant bounded away
from +o0.

For the function class F, we impose a complexity constraint
regarding the covering number of the space F. The covering
number N{e, F, L,(P)} is defined as the minimal number of
closed L, (P)-balls of radius € > 0 required to cover F, where
||f||12)’2 = E(f*) (Van de Geer, 2008). Under these notations,
we assume the following:

Assumption 1: There exist constants 0 < v < 2 and ¢ such that
Ve € (0, 1], we have supp, log N {e, F, LZ(P)} < ce™", where
the supremum is taken over all finitely discrete probability measures
P.

Assumption 2: The kernel function K(-) is a vth order univariate
kernel function with a bounded 2nd order derivative and compact
support; the kernel function K(-, -) is a vth order bivariate kernel
function with a bounded 2nd order derivative and compact support.
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FIGURE 1 Estimating TNR, TPR, and weighted benefits value of a derived tailored AS rule using IPCW method in Dong et al. (2023)
(“IPCW”), the method proposed in Chan et al. (2021) (“KS-CS”), and our proposed method (“KS-1”). The lines labeled as “Oracle” are the
TPRs, TNRs, and values calculated using the true event time without censoring.

Assumption 1 controls the complexity of the function class
F and can be satisfied for many choices of function classes.
For example, if F is a class of all linear combinations of ele-
ments in a fixed base class with a finite Vapnik-Chervonenkis
dimension, Assumption 1 is satisfied according to Theorem 9.4
in Kosorok (2008). Assumption 2 contains commonly adopted
assumptions for kernel regressions (Nadaraya, 1964). Assump-
tions on the surrogate loss ¢ can be found in the online Supple
mentary Material. Under these assumptions, our main theorem
below provides a uniformly valid upper bound for the general-
ization error.

Theorem 2: Suppose that Assumptions 1 and 2 hold with X, —
0, with probability approaching to 1, we have that CD(a;,\,J ) —
o (&) <V {A(An; &)+ k;l/zﬁ}l/s uniformly holds for all
& € B, where A(L,; &) is the approximation error due to the func-
tion class F (see formula in the online Supplementary Material),
h=h"+ (nh)~'/? + R+ (nZZ)—l/Z, and s is a positive con-
stant depending on the choice of ¢.

The result in Theorem 2 shows an upper bound for the
weighted benefits value difference between the estimated tai-
lored AS rule and the optimally tailored AS dynamic regimen.
To achieve the lowest generalization error, we can set h and h
to minimize A;l/zh; when h = n=V/@+D 4nd % = n~1/@vt2)
theterm A, 1721 is minimized for any given A,.. In our simulation
and real data, we specify h = Cyn~ /5 and i = Cyn~ /%, where
Cp is some positive constant. To select the optimal A, and C;,, we
use the cross-validation procedure. From the uniform general-
ization error, if we adopt § (+) as £(+) in optimization (1), then
we can provide a generalization error for CD(CE w6 *) (see on-

line Supplementary Material), which is the generalization error
of the rule incorporating the cost-benefit ratio.

4 SIMULATIONS

In this section, we compare the proposed method for estimat-
ing TPR, TNR, and the tailored AS rule with other methods
through simulations.

4.1 Data generation

The data-generating process is as follows. We first gener-
ate the underlying covariate with measurement error, that
i5Xi(t) = Wi(t) + €1(t), where Wi(t) = o, + a1 log(t/v)
and a;. = (ag;, ay;) are generated from a bivariate normal
distribution with mean (—0.1, —0.1)" and covariance ma-
trix (0.822, —0.005; —0.00S, 0.132). The measurement errors
€(t) are independently generated from a mean-zero Gaussian
distribution with a variance of 0.1. We generate the true event
time, censoring time, and biopsy information following two sce-
narios. The censoring time C is generated from a uniform distri-
bution on [12,150].

(1) The true event time T follows a proportional
hazard  model  A(t) = Ao(t) exp{—0.7W,(t) +
0.8W;(t) — 1.3W,(u)}, where the baseline hazard
Ao (t) = t/v(t/vscale)vsmpe_l and v = 30, Vscale = 15,
and Vgape = 1.4

(2) The true event time T is generated from 12+

~ 1
o[Fuzter explag, B — rlaos +a021]
where T follows a standard exponential distribution,
y = 1)shape + aIﬂ + r(al,l + (11’2)2,7' = 0.1, V= 30,
Vscale = 15, and Vshape =1.4.


https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf067#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf067#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf067#supplementary-data

6 o Biometrics, 2025, Vol. 81, No. 2

HNL

ddl

anjep

HNL

ample size 500
QOO0 =
@ 00 ©
o o1 o
e O
o o
Hdl

anjep

Inverse Cost-benefit Ratio

-4~ OSF-I -+ OSF-R

FIGURE 2 TNR, TPR, and weighted benefits value achieved by different methods under Scenario (1). The x-axis represents the inverse
cost-benefit ratio, r, that is, how many unnecessary biopsies the patient can afford to catch an event (disease progression). The left and right
columns summarize the results where Tg,, = 24 and Tg,, = 48, respectively.

Scenarios (1) and (2) differ in the distributions of T: Sce-
nario (1) uses a linear log-hazard model in W;(t); Scenario
(2) uses a non-linear model. Comparing the results in linear
and non-linear settings allows us to test the robustness of the
proposed method to non-linear terms. For both scenarios,
biopsy time depends on the biopsy gap Tg,p, which controls the
frequency/intensity of the biopsies. The first biopsy is generated
from a uniform distribution on [12, 3Ty, ]. After the first biopsy
time Ny, we generate the rest of the biopsies sequentially. The
following biopsy N; is generated from a uniform distribution on
[N:—1 + Tgaps Ni—1 + 3Ty ] until Ny + Ty > 150, where
N;_ is the previous biopsy time. Through this generation pro-
cess, the first follow-up biopsy Nj is ensured after 12 months of
confirmatory biopsy Ny = 0; the adjacent biopsies have a min-
imum gap of Ty,,. Then, we generate A = (A, -+, Ag),
where Ay=1{T <NJ}; and ¢= (& ---,&), where
&= 1{C > Ni}.

4.2 Comparison between estimators of TPRs and TNRs

This section compares the proposed method for estimating
TPRs and TNRs, referred to as “KR-I”, with two alternatives. We
consider the IPCW method in Dong et al. (2023) (referred to
as “IPCW”) and the method in Chan et al. (2021) (referred to
as “KR-CS”). For the IPCW method, we use the Kaplan-Meier
estimator for the censoring distribution and apply IPCW to es-
timate TPRs and TNRs.

To assess the performance of different approaches, we estimate
the TPRs and TNRs of a fixed surveillance rule using different
methods. To derive the tailored AS rule and generate datasets to
estimate TPRs and TNRs, we assume no missed biopsy and set
the biopsy gap Tg,, = 24. We generate a dataset with a sample
size of 500, and use the optimization with the surrogate func-
tion approach for right-censored data (referred to as “OSF-R”)
in Dong et al. (2023) to derive a tailored AS rule (fixingr = 3in



Sample size 200

ample size 500

Biometrics, 2025, Vol. 81,No.2 e 7

ddl HNL

anjep

ddl dNL

anjep

Inverse Cost—benefit Ratio

~4~ OSF-I -4 OSF-R

FIGURE 3 TNR, TPR, and weighted benefits value achieved by different methods under Scenario (2). The x-axis represents the inverse
cost-benefit ratio, r, that is, the acceptable number of unnecessary biopsies to perform to catch an event (disease progression). The left and
right columns summarize the results where T, = 24 and Ty, = 48, respectively.

Scenario [1]; and r = 2 in Scenario [2]). To evaluate this rule,
we generate an independent dataset with sample sizes varying
from 200 to 500 and implement our proposed KR-I, IPCW, and
KR-CS approaches. When generating this dataset, we vary the
biopsy gap T, from 24 to 48. We use the true event time T to
calculate the true TPRs, TNRs, and weighted benefits values of
the derived tailored AS rule. The entire procedure is repeated
500 times. Figure 1 summarizes the results for Scenarios (1) and
(2). In both scenarios, the proposed method achieves the most
accurate estimates w.r.t the true TPRs, TNRs, and weighted ben-
efits values.

4.3 Comparison between methods to estimate the tailored
ASrule
We compare the proposed method (referred to as “OSF-I1") and
the OSE-R approach to estimate the optimally tailored AS rule.
The OSF-R approach minimizes the relaxation of the empirical

objective, which is similar to our objective. However, the OSF-R
treats the event time as the biopsy time subject to right-censoring
and employs an IPCW method to account for it. As shown in
Section 4.2, the IPCW method may lead to biased estimations in
TPRs and TNRs, and thus, a biased estimation in the optimally
tailored AS rule.

For each scenario, we vary the sample size from 200 to 500,
and the biopsy gap T, from 24 to 48; we also vary the r from
2 to 8. The varies in the sample size, count of biopsy, &, and
scenarios lead to a total of 32 simulation settings. We gener-
ate the training data for each simulation setting and estimate
the decision rule on the training data; we repeat this proce-
dure 500 times. We generate an independent testing dataset
with a sample size of 1000 to compare different methods. On
the testing dataset, we record the true event time T thus, we
can directly calculate the true TPR, TNR, and the value of
the weighted net benefit for each derived AS rule. Figures 2
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TABLE 1 Patient characteristics of the PASS and UCSF cohort.

Variable PASS (844 patients) UCSF (533 patients)
Age, No. (%), year
<60 290 (34) 222 (42)
60-70 474 (56) 271 (51)
>70 80 (10) 40 (7)
BMI, median (IQR) 27 (25-30) 27 (25-29)
Race/ethnicity, No. (%)
White 769 (91) 422 (79)
Black 42(5) 12 (2)
Other 33(4) 99 (19)
Diagnostic percent positive cores, median (IQR),% 8.3 (8.3-16.7) 11(7-19)
No. missing percent positive cores at diagnosis 16 7
Diagnostic PSA, median (IQR), ng/mL 4.7 (3.5-6.4) 5.4 (4.2-7.3)
No. PSA measurements, median (IQR) 12 (7-19) 7 (4-13)
Most recent prostate size at confirmatory bx, median (IQR), mL 42 (30-58) 39 (30-54)
Grade reclassification, No. (%) 182 (22) 154 (29)
Follow-up since confirmatory bx, censored patients, median (IQR), y 3.2 (1.7-5.0) 2.5(1.3-4.3)
TABLE 2 Comparisons using the PASS and UCSF data.
PASS only
r 4 6 8 10 12
OSFI ~ TPR 0.817(0.0.802,0.833)  0.932(0.922,0.941)  0.954(0.945,0.962)  0.967 (0.959,0.974)  0.976 (0.969,0.983)
TNR 0.399 (0.0.381,0.416)  0.201 (0.183,0.219) 0.137(0.120,0.154) 0.100 (0.085,0.116) 0.078 (0.064,0.092)
Value 1318 (1.310,1.331)  1.100 (1.092,1.108)  1.040 (1.035,1.045)  1.017 (1.014,1.020)  1.009 (1.006,1.011)
OSF-R  TPR  0.049 (0.037,0.061) 0.191 (0.170,0.211) 0.344 (0.318,0.369) 0.483 (0.460,0.506) 0.606 (0.584,0.627)
TNR  0.984 (0.980,0.987) 0.934 (0.927,0.941) 0.861 (0.850,0.873) 0.772 (0.759,0.785) 0.676 (0.663,0.690)
Value  1.162 (1.153,1.171)  0.896 (0.880,0.913)  0.832(0.811,0.852)  0.833 (0.815,0.852)  0.862 (0.844,0.879)
PASS train + UCSEF test
r 4 6 8 10 12
OSF-1 TPR  0.788 (0.724,0.0.910)  0.847 (0.765,0.930) 0.940 (0.836,0.965) 0.955 (0.887,0.992) 0.955 (0.892,0.995)
TNR  0.280(0.213,0.0.334)  0.207 (0.136,0.254)  0.095 (0.084,0.185)  0.077 (0.050,0.126)  0.076 (0.042,0.119)
Value  1.015 (0.908,1.126) 0.959 (0.850,1.028) 0.978 (0.879,1.007) 0.980 (0.914,1.016) 0.975 (0.911,1.011)
OSF-R  TPR  0.055(0.015,0.112)  0.279(0.193,0.376)  0.497 (0.348,0.552)  0.619 (0.510,0.718)  0.697 (0.595,0.791)
TNR  0.971(0.950,0.987) 0.816 (0.767,0.863) 0.619 (0.615,0.740) 0.502 (0.437,0.568) 0.412 (0.350,0.480)
Value  0.728 (0.582,1.013)  0.660 (0.545,0.843)  0.718 (0.588,0.837)  0.762 (0.657,0.881)  0.795 (0.699,0.899)

and 3 summarize the results for Scenarios (1) and (2), respec-
tively. In both scenarios, compared to the OSF-R approach, the
proposed OSF-I method achieves higher values for almost all
choices of r. Compared with the settings where Tg,, = 24, in
the settings where Tg,, = 48, the advantage of the proposed
method is larger; this implies that the bias induced by treating
the interval-censored data as right-censored increases with the

increase of Tg,p.

S APPLICATION

We apply the proposed method to develop and evaluate a clini-
cal decision rule for the tailored management of prostate cancer
patients using data from PASS. We included 844 patients diag-
nosed since 2003 and enrolled in PASS before 2017, with Glea-
son grade group (GG) 1 on diagnostic biopsy and GG1 or no
tumor on confirmatory biopsy. The disease progression was de-
fined as a reclassification, any increase in GG to 2 or more, de-
tected through a surveillance biopsy. The predictors included
the most recent PSA values, the most recent BMI status, the most

recent prostate size, the PSA value at diagnosis, the most recent
maximum core ratio, time since the confirmatory biopsy, and the
counts of negative biopsies (0, 1, > 2).

We aim to derive an AS rule using updated information to de-
cide whether a patient should receive a biopsy within 1 year (7
= 1 year). The time points of the decisions were chosen at s =
1,2, 3, 4 years after the confirmatory biopsy. In the PASS study,
the compliance rate was found to be very high, with patients ad-
hering to their scheduled clinical visits under AS, and a surveil-
lance biopsy is typically completed within a reasonable time win-
dow following the study protocol (Cooperberg et al., 2018).
Therefore, the independent assumption regarding biopsy sched-
ule N and progression time T appears reasonable. To compare
different methods, we conduct two analyses. We repeatedly split
the PASS cohort into equal training and testing sets in the first
analysis. Each method is trained on the training set, and TPR,
TNR, and weighted benefits values are calculated on the testing
set. We report the mean and standard deviation over 100 repeats.
In the second analysis, we train each method on the entire PASS
cohort and use a cohort from the University of California San
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FIGURE 4 Visualization of the estimated AS strategy for Patient No.13S. For this patient, 3 biopsies are recorded in the PASS data (the first
two triangulars represent the biopsies that detect no disease progression; the final triangular represents the biopsy detecting disease
progression), and there is a disease progression detected at Year 7.1. The circle points represent the time updating covariate information; the
arrows below the time axis represent our estimated AS decisions at Years 07 (apply the stabilized AS decision rule derived from Years 1-4 in
Years 0-7). Our estimated strategy suggests that the patient should skip biopsies at Years 4 and S due to the increased prostate size and resume

the biopsies at Years 6 and 7 due to abnormally increased PSAs.

Francisco (UCSF) for external validation. The second analysis
aims to validate the estimated surveillance strategies on exter-
nal data. Confidence intervals are constructed by bootstrapping
the UCSF dataset for B = 1000. Table 1 summarizes the patient
characteristics of two cohorts. Compared with the PASS cohort,
the UCSF cohortis younger, more diverse, and has a higher event
rate (grade reclassification). Additional results on other metrics
can be found in the online Supplementary Material.

In both analyses, we set up a sequence of cost-benefit ratios
ranging from 4 to 12. We consider a wide range of cost-benefit
ratios reflecting varied emphasis on the TPR (increase from
about 80% to higher than 98% when using the PASS cohort).
We used the repeated sample-splitting strategy to compare dif-
ferent methods. Table 2 reports the results for both analyses.
Using PASS only, the proposed OSF-I method achieves signif-
icantly higher values than the OSF-R method. When we use the
UCSEF data to validate the tailored AS rules derived by different
methods, although the confidence intervals are wide, we can still
observe that the proposed OSF-I method achieves higher values
than the OSF-R method for most values of r. We further visualize
our estimated rule to make biopsy decisions (see Figure 4).

6 DISCUSSION

This work proposes a weighted classification approach to es-
timate the optimal AS strategy. We utilize adjacent negative-
positive pairs and employ two-dimensional kernel regressions
for estimating TPRs and TNRs to accommodate the complica-
tions of interval-censored events and immediate dropouts. Ex-
isting methods for right-censored or panel status data have not
fully addressed these complications.

Our work opens several avenues for future research. Longi-
tudinal measures frequently involve missingness due to non-
adherence, and methods like “last value carry-forward” for im-
putation may affect the optimality of AS strategies. Investigat-
ing ways to incorporate delayed or outdated information into
strategy formulation is important. Our study relies on biopsies

to identify disease progression. However, biopsies may have im-
perfect sensitivity or specificity and can be non-randomly as-
certained in detecting progression. Addressing these challenges
could enhance the robustness and applicability of AS strategies
in clinical settings.

SUPPLEMENTARY MATERIALS

Supplementary material is available at Biometrics online.

Web Appendices, referenced in Sections 2 and 3, and R code
implementing the proposed method are available with this paper
at the Biometrics website on Oxford Academic.
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