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Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that 
is activated downstream of many key cytokine receptors expressed by lymphocytes. 
As such, it plays a critical role in regulating B cells as well as CD4+ and CD8+ T cells. 
Patients with clinically significant immunodeficiency and immune dysregulation resulting 
from loss-of-function or gain-of-function mutations in STAT3 have been described. 
These individuals provide insight into the critical role of this transcription factor in the 
regulation of immune responses and the balance between effective immune protection 
and autoimmunity.
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inTRODUCTiOn

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that is activated 
downstream of a large range of cell surface receptors. It forms part of a family of proteins that also 
includes STAT1, 2, 4, 5A, 5B, and 6, which are activated in a similar manner downstream of surface 
receptors. Binding of their ligand by these receptors, leads to the activation of receptor-associated 
Janus activating kinases (JAKs). The activated JAKs then phosphorylate the receptor providing dock-
ing sites for STATs, which in turn become tyrosine phosphorylated. This leads to the formation of 
homodimers or heterodimers, followed by translocation to the nucleus where the dimers bind to 
DNA and induce transcription of a broad range of target genes (1, 2).

Importantly, many of the cytokine receptors that lead to STAT3 activation are expressed by 
lymphocytes including those for IL-6, IL-10, IL-21, IL-23, and IFNs. The critical role of STAT3 
in lymphocyte biology was highlighted by the discovery that loss-of-function (LOF) mutations in 
STAT3 cause the primary immunodeficiency autosomal dominant hyper IgE syndrome (AD-HIES), 
which is characterized by defects in both T and B cells (3, 4). More recently, gain-of-function (GOF) 
mutations in STAT3 were also identified, this time in patients who presented with early onset autoim-
munity as well as immunodeficiency (5–7). These diseases demonstrate that STAT3 plays a central 
role in regulation of immune responses.

iMMUnODeFiCienCY CAUSeD BY STAT3LOF MUTATiOnS

Autosomal dominant hyper IgE syndrome was first described about 50 years ago, but it was not until 
2007 that two groups demonstrated that it is caused by heterozygous LOF mutations in STAT3 (3, 
4). AD-HIES is characterized by a range of immunological manifestations including elevated IgE, 
eczema, chronic mucocutaneous candidiasis (CMC), recurrent staphylococcal infections, and pneu-
monias. Patients also display non-immunological manifestations such as joint hyperextensibility, 
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facial dysmorphism, and retention of primary teeth (8). Since the 
initial description over 89 disease-causing mutations in STAT3 
have been reported and are found distributed throughout the 
STAT3 molecule (9, 10). These mutations all lead to the same 
clinical phenotype, presumably because while different mutations 
impair signaling at different stages, they all impair the ability of 
STAT3 to bind to DNA and induce gene transcription (11). It 
should be noted that due to the dimerization step in the STAT3 
signaling pathway these heterozygous mutations in STAT3 work 
in a dominant negative manner. That is, in patient cells, 75% of 
STAT3 dimers would contain at least one LOF STAT3 molecule 
and thus be dysfuctional, leaving only 25% of dimers functioning 
normally (3, 4). Thus, AD-HIES results in severely compromised, 
but not completely ablated, STAT3 signaling. This 25% of residual 
STAT3 function is presumably critical for survival as germline 
deletion of Stat3 in mice is embryonically lethal (12).

iMMUne DYSReGULATiOn CAUSeD BY 
STAT3GOF MUTATiOnS

More recently, patients with heterozygous GOF mutations in 
STAT3 have also been described (5–7). These patients present with 
early onset autoimmunity and/or lymphoproliferation. The range 
of autoimmune manifestations is broad and includes cytopenias, 
type I diabetes, enteropathy, scleroderma, arthritis, and thyroid 
disease (5–7). However, many of these patients were also reported 
to suffer from recurrent or severe infections as well as hypogam-
maglobulinemia (6, 7) suggesting concurrent immunodeficiency. 
Overall, the clinical phenotype of the patients has been found 
to be quite variable and unaffected family members who carried 
STAT3GOF mutations have also been identified suggesting there is 
incomplete disease penetrance and that other factors influence 
the pathogenicity of the mutations (7, 13).

The molecular mechanism that results in GOF from these 
germline mutations has not been extensively characterized; how-
ever, the varied patient phenotype suggests there may be more 
divergence in mechanism than is observed with LOF mutations. 
It has been observed that most disease causing GOF mutations 
do not alter phosphorylation; however, these mutations gener-
ally lead to increased transcriptional activity of STAT3 target 
genes in unstimulated and/or stimulated cells (6, 7). This in turn 
leads to upregulation of STAT3 target genes such as SOCS3 (7). 
Interestingly, SOCS3 can regulate the activation of STAT fam-
ily members, and cells from these patients were found to have 
reduced STAT5 phosphorylation in response to IL-2, and STAT1 
phosphorylation in response to IFNγ (7). Moreover, some of the 
symptoms of STAT3GOF patients are similar to those observed in 
STAT5b LOF patients (14) suggesting that reduced STAT5 activa-
tion may partially explain the phenotype (discussed below).

THe ROLe OF STAT3 in B CeLLS

Multiple findings in patients with dysregulated STAT3 function 
point to a role for STAT3 in regulating human B cells responses. 
For example, although patients with STAT3LOF mutations have 
relatively normal levels of total serum IgM, IgG, and IgA, they have 
elevated levels of serum IgE, defects in antigen specific antibody 

responses and reduced memory B cells (8, 15–19). Further, the 
STAT3-activating cytokines IL-21, and to a lesser extent IL-10, 
are potent B cell activators. In combination with CD40L, IL-21 
and IL-10 are capable of inducing the proliferation, class switch-
ing, and differentiation of human B cells (19, 20). Interestingly, 
some, but not all, of the actions of IL-21 and IL-10 were found 
to be disrupted in B cells from AD-HIES patients. Specifically, 
STAT3LOF naïve B cells were unable to differentiate into antibody 
secreting cells in response to CD40L and IL-21 (19, 21) and failed 
to upregulate key transcriptional regulators of the plasma cell 
program such as BLIMP-1 and XBP-1 (19, 21). In contrast, IL-21 
was able to induce normal levels of switching to IgG from naïve 
STAT3LOF B cells and could stimulate increased levels of prolif-
eration from these cells compared to cultures with CD40L alone, 
albeit lower than what was observed in naive B cells from healthy 
controls responding to CD40L and IL-21 (19). This decreased 
proliferation/expansion could at least partially be attributed to 
an increase in cell death (19). It must be remembered, however, 
that these patient cells retain 25% STAT3 activity so it unclear 
whether the responses to IL-21 that are preserved reflect STAT3-
independent effects of IL-21 or the function of the residual 
STAT3. Some insight can be gained from mouse models of B cell 
specific deletion of Stat3 in which all STAT3 function is ablated 
in these cells. These models showed relatively normal switching 
to IgG (22, 23) but decreased expansion and/or maintenance of 
B cells to a T cell-dependent antigen resulting in fewer germinal 
center B cells (23, 24). Further STAT3 deficiency also resulted in 
a defect in affinity maturation (23) although cells still underwent 
somatic hypermutation (19, 23). Together these studies reveal 
that STAT3 is required in naïve B  cells to induce plasma cell 
formation, survival, and expansion of responding B cells but not 
for regulating switching to IgG. Interestingly, the small number 
of memory cells that do emerge in patients with STAT3LOF can 
respond normally to IL-21 to form antibody-secreting cells (21). 
This demonstrates that naïve and memory B cells have differential 
requirements for STAT3, which may have important implications 
for attempts to target the STAT3 pathway therapeutically.

Confirmation of the critical role of IL-21 upstream of STAT3 
was provided by the identification of patients with LOF mutation 
in IL21R and IL21. These patients displayed similar B cell defects 
to those with LOF STAT3 mutations such as reduced memory 
B cells, poor responses to vaccination, and elevated levels of IgE 
(21, 25–28). This clearly demonstrates the importance of the 
IL-21/STAT3 signaling axis in human B cell function. However, 
the exact molecular mechanism that leads to decreased memory 
cells and increased IgE is still unclear. Interestingly, a study of 
a patient with somatic mosaicism of the STAT3 mutation has 
shown that STAT3LOF cells did not generate memory CD4+ or 
CD8+ T cells but the mutation was present in memory B cells, 
suggesting that there was an intrinsic requirement for STAT3 in 
T cells but not B cells for the generation of memory (29). Thus, 
it may be that the decrease in memory B  cells is secondary to 
aberrant function of other cell types such as T follicular helper 
(Tfh) cells (discussed below).

B  cells can influence immune responses through their role 
in antigen presentation and the production of cytokines. IL-10 
produced by B cells has been implicated in a regulatory role in 
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immune responses (30). Interestingly, STAT3LOF B cells have been 
shown to produce less IL-10 following stimulation, than normal 
controls (31) suggesting that this regulatory function of B cells 
may also be altered.

Given this critical role of IL-21/STAT3 in B cell differentia-
tion, it might be predicted that STAT3GOF patients would exhibit 
increased B  cell activity. Surprisingly, however, some of these 
patients seem to display hallmarks of B  cell dysfunction such 
as hypogammaglobulinemia and decreased switched memory 
B cells (6, 7). Conversely, many of these patients seem to display 
antibody-mediated autoimmunity suggesting that B cell tolerance 
is disturbed (5–7). Unfortunately, little functional work has been 
done on B cells from these patients so it remains unclear if there 
are B cell intrinsic effects of STAT3 over activation or whether this 
is secondary to defects in other cells such as Tfh cells or regulatory 
T cells (Tregs) (discussed below).

THe ROLe OF STAT3 in CD4+ T CeLLS

Naive CD4+ T  cells are able differentiate into distinct effector 
subsets that play specific roles in the immune response. These 
subsets include Th1, Th2, Th9, Th17, Th22, Tfh cells, and Tregs. 
The differentiation of CD4+ T cells is determined by the cytokine 
milieu at the time of activation and numerous STAT3-signaling 
cytokines have been implicated in this process (32, 33). Analysis 
of patients with STAT3 mutations has provided key insights into 
the role of STAT3 in controlling these processes.

Th17

The differentiation of human Th17 cells is controlled by the action 
of several STAT3-activating cytokines including IL-6, IL-21, and 
IL-23 (34–36). Analysis of AD-HIES patients revealed a defi-
ciency in Th17 cells in the blood of these patients as measured by 
expression of CCR6 and the production of IL-17A, IL-17F, and 
IL-22 (28, 37–40). Furthermore, STAT3LOF naïve CD4+ T  cells 
from these patients fail to differentiate into IL-17-expressing cells 
in vitro (38, 41). Together, this not only demonstrates an essential 
requirement for STAT3 signaling in the generation of human 
Th17 cells but also provides an explanation for the CMC observed 
in AD-HIES patients as IL-17-mediated immunity is crucial for 
control of candida infections (42, 43). Interestingly, patients with 
GOF mutations in STAT1 also display defects in the generation of 
Th17 cells and susceptibility to candida infections demonstrating 
that balanced STAT1/STAT3 signaling is required for genera-
tion of these cells (41, 44, 45). On the other hand, patients with 
STAT3GOF were not found to have increased IL-17-expressing 
CD4+ T  cells suggesting that, while STAT3 is required for the 
generation of these cells, over activation alone is not sufficient to 
drive Th17 differentiation (6, 7). However, more detailed analysis 
of these STAT3GOF CD4+ T cells may be required to definitively 
conclude this as some patients may have increased Th17 cells (46).

Th1/Th2

In contrast to Th17  cells, the generation of human Th1 and 
Th2 is thought to act primarily through IL-12/STAT4 and 

IL-4/STAT6 signaling, respectively (32, 33). Consistent with 
this, generation of these populations was found to be largely 
STAT3-independent, as shown by normal frequencies of 
CXCR3+CCR6− and CXCR3−CCR6− and IFNγ-producing and 
IL-4, IL-5, IL-13-producing cells, respectively, in AD-HIES 
patients (28, 37, 38). Similarly, naïve CD4+ T cells from STAT3LOF 
patients could differentiate into Th1 or Th2 cells when cultured 
under the relevant polarizing conditions (41, 47). Interestingly, 
IFNγ expression tended to be increased in STAT3-deficient 
CD4+ T cells (28, 41), suggesting STAT3 signaling may inhibit 
Th1 cell differentiation.

Th9

Human Th9 cells develop in the presence of TGFβ and IL-4 
(48, 49); however, they can also be induced by the addition of 
TGFβ to Th17 polarizing conditions (i.e., IL-1β/IL-6/IL-21/
IL-23) (48), suggesting STAT3 may be involved in Th9 cell dif-
ferentiation. Consistent with this, addition of IL-6, IL-10, or IL-21 
to Th9 polarizing conditions enhanced IL-9 expression (50). In 
contrast, IL-27 partially suppressed TGFβ and IL-4-induced IL-9 
expression (50). Since IL-6, IL-10, IL-21, and IL-27 are capable 
of activating both STAT1 and STAT3, further investigation is 
required to determine if the regulation of IL-9 production by 
these cytokines results from both STATs, or whether one STAT 
has a dominant function in regulating IL-9 production. However, 
one paper found that IL-9 production in responses to candida 
antigens was decreased in patients with STAT3LOF mutations (51) 
suggesting that STAT3 may be important, at least under some 
conditions, for the induction of IL-9.

Tfh

Like Th17 differentiation, the generation of human Tfh cells is 
driven by numerous STAT3-ativating cytokines, namely IL-6, 
IL-12, IL-21, and IL-27. Consistent with a requirement for STAT3 
to induce this differentiation program, patients with STAT3LOF 
have a reduction in circulating CXCR5+ Tfh cells (28, 52, 53), 
and naïve STAT3LOF CD4+ T cells failed to differentiate in vitro 
into IL-21-producing Tfh-like cells (41, 52, 54). The role of 
STAT3 in differentiation and/or function of Tfh cells has also 
been demonstrated in mouse studies of Stat3-deficient T  cells 
(55–59). However, the degree to which Stat3 is required seems 
to be dependent on the presence of other signals such as STAT1 
and type 1 IFNs as well as the site of the immune response  
(57, 59, 60). This defect in Tfh cells in AD-HIES would contribute 
to impaired humoral immunity in these patients and potentially 
to the deficiency in memory B cells. In vitro, IL-12 was found to 
be the main driver of IL-21-producing cells (61, 62), but since 
patients with defects in IL-12R signaling do not present with 
impaired humoral immunity (63–65), it is likely that the other 
STAT3-dependent cytokines IL-6, IL-21, and/or IL-27 plays 
a redundant role in this process in  vivo. Consistent with this, 
IL-6 and IL-21 were found to induce ICOS expression in cord 
blood CD4+ T cells in a STAT3-dependent manner (53, 66), and 
patients with mutations in IL21/IL21R show defects in Tfh cell 
development and function (28, 41).
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ReGULATORY T CeLL

Studies in mice have suggested that IL-6/STAT3 signaling 
inhibits Treg differentiation inasmuch as Stat3−/− CD4+ 
T  cells stimulated under Th17 conditions (TGF-β+ IL-6 in 
mice) showed decreased Th17 differentiation and increased 
Treg differentiation (67–69). However, normal frequencies of 
Tregs (defined as CD25hiCD127lo or FoxP3+) were reported in 
AD-HIES patients (28, 38, 47) and Tregs from these patients 
displayed normal suppressive behavior in vitro (47), suggesting 
STAT3 was somewhat redundant in controlling the generation 
of human Tregs. On the other hand, a recent study demon-
strated that naïve CD4+ T cells from STAT3LOF patients showed 
an increased propensity to develop into iTregs in culture (70). 
CD4+ T  cells from these patients have also been reported to 
display a defect in IL-10 production (28, 38, 41) and DCs from 
STAT3-deficient patients failed to induce Tregs from naïve 
CD4+ T  cells (47). Thus, it may be that in these patients the 
increased propensity of STAT3LOF CD4+ to form induced Tregs 
is compensated for by the reduced ability of STAT3LOF dendritic 
cells to induce them.

Indeed, patients with STAT3GOF mutations much more clearly 
demonstrate a role for STAT3 in the regulation of Tregs. As 
discussed above, these patients display early onset autoimmun-
ity that is reminiscent of patients with Immune dysregulation, 
polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, 
which is caused by mutations in FoxP3 leading to a loss of Treg 
function (71). These overlapping clinical phenotypes suggested 
that STAT3GOF patients also have dysfunctional Tregs. Consistent 
with this, they were found to have lower percentage of FoxP3+ 
cells in their blood and lower CD25 expression on their Tregs (7). 
This is thought to be due to increased SOCS3 levels that inhibit 
the activation of STAT5 downstream of IL-2 (7).

Studies in mice have now demonstrated that there are different 
populations of Tregs that seem to be specialized for inhibiting par-
ticular T-helper populations (72). Thus, a population of Treg cells 
that express CCR6 and are specialized for suppressing Th17 cells 
has been described. These “Treg17” cells, like the Th17 cells they 
suppress, were found to be dependent on STAT3 signaling (73). 
AD-HIES patients were also shown to have decreased CCR6+ 
Tregs suggesting that human “Treg17” cells may also exist and be 
dependent on STAT3 (74).
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Taken together, these data suggest STAT3 plays a complex 
role in the regulation of Treg responses and care should be 
taken in targeting this pathway as a means of regulating Treg 
responses.

THe ROLe OF STAT3 in CD8+ T CeLLS

STAT3 activating cytokines such as IL-21 also play a role in 
regulating CD8+ T  cells. Studies on STAT3LOF CD8+ T  cells 
showed they had impaired induction of perforin and granzyme 
B in response to IL-21; however, this could be rescued by strong 
TCR ligation (75). In contrast, proliferation induced by IL-21 
was not affected in naïve STAT3LOF CD8+ T cells (75). STAT3 
deficiency, however, did result in reduced memory CD8+ T cells 
(29, 75), an effect that was shown to be cell intrinsic (29). 
IL-21R patients also showed decreases in memory CD8+ T cell 
populations suggesting that IL-21 may be a cytokine upstream 
of STAT3 that contributes to the maintenance of memory cells 
(75). Patients with AD-HIES also show increased susceptibility 
to reactivation of viruses such as EBV and VZV (29) indicating 
that STAT3LOF CD8+ T cells may be defective in their ability to 
control these chronic infections.

STAT3 in AUTOiMMUniTY

STAT3GOF patients provide a clear demonstration that STAT3 
plays an important role in controlling autoimmunity. However, 
previous evidence from other disease states had already indi-
cated that STAT3 played an important role in the regulation of 
autoimmunity. In particular, multiple studies have associated 
polymorphisms in STAT3 with various autoimmune conditions 
including Crohn’s disease, ulcerative colitis, psoriasis, and 
Behcet’s disease (76–78). Furthermore, many of the cell popula-
tions that STAT3 can induce (Figure 1) have been implicated in 
driving autoimmunity; this includes Tfh cells and B cells, which 
support autoantibody production and Th9 and Th17 cells, can 
produce potentially damaging cytokines (79, 80). Conversely, 
STAT3 can inhibit Tregs, which act to restrain destructive 
immune responses.

Interestingly, somatic STAT3GOF mutations have been reported 
in large granular lymphocytic (LGL) leukemia (81, 82) and are 
associated with higher rates of autoimmune complications such 
as rheumatoid arthritis and autoimmune cytopenias (81–83). As 
these LGL leukemias are of either CD8+ T cell or NK cell origin, 
this suggests that STAT3 overactivation in CD8+ T cells or NK cells 
alone may be sufficient to drive autoimmunity, possibly by induc-
ing the production of cytokines/inflammatory mediators (84).

Taken together, these data are consistent with a role for STAT3 
in promoting autoimmunity; however, STAT3 is also likely to play 
a role in inhibiting damaging responses downstream of IL-10. 
Indeed, germline LOF mutations in the genes coding for IL-10 
or IL-10R are a major cause of early onset inflammatory bowel 
disease (85), demonstrating a critical requirement for IL-10 
signaling (presumably through STAT3) to maintain tolerance in 
the bowel.

It remains unclear which of these many roles of STAT3 in 
multiple cell types underlies the phenotype in STAT3GOF patients. 
Certainly, the similarities with IPEX (71, 86) point to a clear role 
of Tregs in the phenotype; however, contributions from other 
pathways are also likely to make contributions. Further research 
will help clarify this and in turn pave the way for targeted treat-
ments for both rare patients with STAT3GOF mutations as well as 
patients who suffer from autoimmunity more generally.
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