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Abstract: Transcutaneous spinal cord stimulation (tSCS) has the potential to promote improved senso-
rimotor rehabilitation by modulating the circuitry of the spinal cord non-invasively. Little is currently
known about how cervical or lumbar tSCS influences the excitability of spinal and corticospinal
networks, or whether the synergistic effects of multi-segmental tSCS occur between remote segments
of the spinal cord. The aim of this review is to describe the emergence and development of tSCS as a
novel method to modulate the spinal cord, while highlighting the effectiveness of tSCS in improving
sensorimotor recovery after spinal cord injury. This review underscores the ability of single-site tSCS
to alter excitability across multiple segments of the spinal cord, while multiple sites of tSCS converge
to facilitate spinal reflex and corticospinal networks. Finally, the potential and current limitations
for engaging cervical and lumbar spinal cord networks through tSCS to enhance the effectiveness of
rehabilitation interventions are discussed. Further mechanistic work is needed in order to optimize
targeted rehabilitation strategies and improve clinical outcomes.

Keywords: neuromodulation; interlimb coordination; rehabilitation; neurophysiology; Hoffmann
(H)-reflex; motor-evoked potential; locomotion; spinal cord injury

1. Introduction

Neuromodulation of the spinal cord by means of non-invasive transcutaneous (tSCS)
and implanted epidural (eSCS) spinal cord stimulation may improve sensorimotor reha-
bilitation after spinal cord injury (SCI) [1–4]. However, developing an optimal treatment
approach requires taking advantage of the intrinsic ability of the spinal circuits by fa-
cilitating preserved sensorimotor pathways that could drive spinal plasticity [5]. The
influence of spinal cord stimulation (SCS) does not necessarily depend on the nature of
the neurological disorder, but on the operational and functional status of residual neural
networks [6]. Epidural SCS has been shown to modulate neuronal circuits in persons with
motor-complete SCI, including corticospinal, [7–9] propriospinal [10,11], and corticoreticu-
lospinal [12] tracts. The resulting neuroplasticity is thought to improve spinal motor output
and volitional movements even in cases of severely reduced supraspinal input, without
negatively impacting residual motor function [3,13–17]. Most recently, eSCS applied to
the lumbar spinal cord, in conjunction with intensive locomotor training, enabled persons
with clinically motor-complete SCI to walk over ground for short distances [4,13,18]. This
demonstrates that dormant neurons that survive the injury may be reengaged with spinal
neuromodulation, and can produce stepping-like movements [19,20].

While eSCS has important implications for rehabilitation after SCI, its invasive nature,
high cost, and limited accessibility are limitations for rapid translation to a broad popula-
tion. Transcutaneous SCS is a non-invasive, accessible, and cost-effective alternative that
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is thought to be a safe assistive technology with important implications for both further-
ing our understanding of the mechanisms controlling locomotion, and for rehabilitating
sensorimotor function after SCI [21–23]. It has been suggested that tSCS of the lumbar
spinal cord may activate similar spinal circuitry to eSCS [24–26]; if accurate, tSCS is likely
to enhance functional recovery in a similar manner to eSCS when paired with rehabilitation
strategies. This would also allow for the tSCS to build on the foundation of knowledge
of the intrinsic circuitry recruited by eSCS. In case studies and small clinical trials, tSCS
improved hand and arm function [2,27–29], produced locomotor-like stepping [1,30], and
improved walking function [22,31,32] in participants with neurological deficits including
incomplete and complete SCI, stroke, and cerebral palsy. Evidence suggests that tSCS
may also be used as a viable alternative to pharmacological anti-spasticity approaches,
altering the excitability of spinal pathways and possibly augmenting pre- and post-synaptic
inhibitory mechanisms [33,34]. Understanding the impact that tSCS has on spinal cord
circuitry is vital to ensuring that the stimulation is applied at therapeutically appropriate
sites, and that the parameters of stimulation are chosen so as to optimize the desired
rehabilitative effects.

It is critical to realize that not all of the studies using tSCS follow the same pattern of
stimulation. Transcutaneous SCS patterns including single pulses, trains of pulses, and
waveforms with and without carrier frequencies have been used. The present review fo-
cuses on the use of alternating current (AC) tSCS, because most studies aimed at improving
functional recovery after SCI have used this type of stimulation. Direct current (DC) tSCS
also modulates spinal excitability, and may be another promising and novel tool to pair
with activity-based interventions [35,36]; however, this technique is beyond the scope of
this review, and requires further research in order to determine the specific mechanisms
involved. In this review, the two common patterns of AC tSCS that have been employed to
date will be included and discussed in detail. The first pattern, which will be referred to
as unmodulated tSCS, does not include a carrier frequency, and is generally composed of
rectangular pulses delivered as single individual pulses, or in trains of 1–90 Hz frequency.
The second stimulation pattern, which will be referred to as modulated tSCS, includes
rectangular pulses with a carrier frequency of 2.5–10 kHz, delivered at a rate of 5–40 Hz [37].
While both patterns have been reported to modulate neural circuitry across the central
nervous system and produce functional outcomes, it is unlikely that they share identical
mechanisms of action. The fundamental differences between the two patterns will be
highlighted throughout this review as the different studies are discussed.

The aims of this review are as follows: first, to identify the parameters and the
potential underlying mechanisms that allow tSCS to facilitate ongoing motor output;
secondly, to highlight the effects of tSCS on excitability across multiple segments of the
spinal cord; thirdly, to address the ability of multiple sites of tSCS to converge and enhance
modulation of spinal reflex and corticospinal pathways; and finally, to explore the potential
and limitations for engaging cervical and lumbar spinal cord networks through tSCS to
enhance the effectiveness of rehabilitation interventions. This review will also underscore
the need for further mechanistic work to optimize tSCS parameters that, when paired with
targeted rehabilitation strategies, can effectively improve clinical outcomes.

2. Historical Perspective

The use of electricity for neuromodulation has a storied history, ultimately leading
to a variety of therapeutic electrical stimulation techniques that target spinal networks,
including tSCS, eSCS, and intraspinal microstimulation (ISMS) [38,39]. Epidural SCS
initially emerged in the pain literature in 1967 [40], and is currently most commonly used for
the treatment of intractable chronic pain; while originally designed to alleviate pain, it was
used in 1971 as a method for facilitating motor control in persons with multiple sclerosis [41],
and to reduce spasticity after incomplete SCI [42–44]. In 1979, tonic stimulation of dorsal
roots of the spinal cord was shown to generate locomotion in low-spinal cats [45,46]. This
work then led to initial investigations demonstrating improved stepping in humans, and
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providing the potential for this technology to be used as a translational tool to facilitate
improved function after neural injury [3,15,47,48].

In humans, eSCS involves implanting electrodes over the dura mater encasing the
lumbosacral segments of the spinal cord. Dorsal root fibers are the first to be recruited, with
the lowest thresholds, while the ventral root fibers are the least accessible [49]. This recruit-
ment leads to the activation of motor neurons through monosynaptic and polysynaptic
proprioceptive circuits, and increases the overall excitability of the spinal cord, allowing for
greater responsiveness of spinal circuits to descending signals and sensory feedback [14].
Extensive evidence from animal studies has led to the hypothesis that electrically stimu-
lating the human spinal cord through the epidural space can facilitate improvements in
motor function.

Transcutaneous SCS was inspired by high-voltage percutaneous electrical stimula-
tion over the lumbosacral spinal column to activate peripheral motor axons [50]. In 1997,
the generation of locomotor-like activity with the application of tSCS over the lumbar
enlargement was demonstrated in individuals with SCI [51]. It was then suggested that
there are low-threshold sites in the posterior structure of the human lumbosacral cord
that could be accessed from the surface [49]. In 2007, and encouraged by earlier discov-
eries, Minassian et al. revealed that posterior root afferents can be accessed by tSCS with
single pulses (unmodulated), and they reported monosynaptic reflex responses in mul-
tiple muscles of the legs [52]. Later, it was shown that unmodulated tSCS can enhance
voluntary locomotor-like electromyographic (EMG) activity [53] and modify spasticity in
individuals with incomplete SCI [54]. In 2015, tSCS was used with a novel waveform that
included a carrier frequency (i.e., modulated) to activate spinal networks while reducing
the perception of pain associated with the necessarily high stimulus amplitudes [22,30].
The tSCS parameters were based on a previous finding that a 10 kHz carrier frequency of
transcutaneous stimulation reduces the likelihood of activating pain fibers [55]. Building
on these exciting initial investigations, the tSCS literature has incorporated a diverse set
of stimulation parameters that are vital to understand, as they may have important impli-
cations for improving function in persons experiencing sensorimotor impairments due to
neurological conditions.

3. Properties of Transcutaneous Spinal Cord Stimulation (tSCS)
3.1. Parameters of tSCS

Typically, tSCS is applied through circular adhesive electrodes of 2–3 cm diameter
that are placed on the skin overlying the lumbar or cervical segments of the spinal cord
(Figure 1). Optimal placement of electrodes is dependent on the individual symptoms,
desired rehabilitation outcomes, and paired rehabilitation strategies, on a case-by-case
basis. When targeting the lower extremities, the most common cathode placement is over
the T11–T12 and/or L1–L2 spinous processes, while C6–C7 or C7–T1 is the most common
placement for the upper extremities [37]. The anode electrodes are placed either over the
iliac crests or the anterior superior iliac spine [37].

In addition to electrode placement, it is important to consider the waveform character-
istics of the applied current for maximal therapeutic outcomes [5,17,21]. With unmodulated
tSCS, which evolved from the eSCS literature, rectangular mono- or biphasic pulses of
0.4–2 ms duration are typically delivered at a frequency range of 1–90 Hz and stimulation
intensity of up to 170 mA [21,37]. On the other hand, the novelty of the modulated stimu-
lation pattern comes from its unique waveform, which includes a carrier frequency of up
to 10 kHz within a given pulse. Such high-frequency stimulation approaches were origi-
nally used to reduce the perception of pain during transcutaneous nerve stimulation [55].
The waveform in the modulated stimulation pattern generally consists of 0.3–1 ms long
rectangular biphasic or monophasic pulses that repeat at a frequency of 5–40 Hz. Each
of these pulses encompasses a carrier frequency of 2.5–10 kHz, aimed at suppressing the
user’s perceived pain and, thus, allowing for greater current amplitudes to be employed.
The amplitude of the current for modulated tSCS is similar to that of unmodulated tSCS,



J. Clin. Med. 2022, 11, 639 4 of 18

and ranges from 30 to 180 mA, depending on the stimulation site and the desired outcome.
In neurologically intact participants, the intensity of modulated tSCS (with a 5 kHz carrier
frequency) allows for maximal tolerable current amplitudes of 103 mA, while unmodulated
tSCS has maximal tolerable amplitudes of 39 mA. However, when considering maximal tol-
erable stimulation with respect to the stimulation levels needed to evoke motor responses,
tSCS with a carrier frequency was no different than unmodulated tSCS in reducing the
perception of pain [56].
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Figure 1. Typical tSCS electrode placement: Transcutaneous SCS is commonly delivered via two
2.5 cm round cathodic electrodes placed over the C3–4 and C6–7 (cervical) or T11 and L1 (lumbar)
spinous processes. Two 5 × 10 cm rectangular anodic electrodes are placed bilaterally over the
iliac crests.

Interestingly, when using an array of electrodes and adjusting the parameters of
stimulation—including intensity and location—different patterns of independent and coor-
dinated upper limb motion at both distal and proximal joints have been elicited, showing
the potential of tSCS without a carrier frequency to evoke functional movements [28].
Therefore, the chosen parameters of tSCS can have a meaningful effect on the recruited
circuitry and the functional movements that are facilitated or inhibited. Understanding
how the applied electrical current is integrated into the spinal circuitry is vital.

3.2. Current Flow Involved in tSCS

The current flow and electrical potential generated by eSCS and tSCS are markedly
different [24,25]. With eSCS, 80–90% of the ionic current flows between the active electrodes
through the cerebrospinal fluid [57]. In tSCS, the current flow is strongly influenced
by the electrical properties of the numerous conductivity boundaries of body tissues
(e.g., skin, fat, muscle, and bone), with computer simulations estimating that only ~8% of
the overall current flows through the cerebrospinal fluid [25]. With the dramatic difference
in current flow and the proximity of neural structures to the electrodes between eSCS
and tSCS, both the selectivity of spinal circuitry and the required stimulation intensity
are dissimilar. Modelling studies suggest that the superficially located large-diameter
posterior column fibers with multiple collaterals have a threshold three times higher than
that of posterior root fibers [26]. For both tSCS and eSCS, large-diameter proprioceptive
sensory fibers within the posterior rootlets/roots have the lowest thresholds of all neural
structures within the vertebral canal [24], making it unlikely that the effects of SCS arise
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exclusively from dorsal column stimulation [57]. Computer modeling indicates that action
potentials generated by tSCS are initiated in the posterior root fibers at their entry into the
spinal cord, or along the longitudinal portions of the afferent fiber trajectories, depending
on the cathode position [25]. Evidence suggests that the reflex nature of unmodulated
tSCS exploits the difference in the strength–duration properties of sensory and motor
axons; however, future research should be conducted to explore how modulated tSCS
generates action potentials in neural tissue [58]. At stimulation intensities that result in the
recruitment of posterior column axons, co-activation of posterior root fibers of large and
small diameters is observed, demonstrating the substantial differences in the thresholds of
activation of various components of the spinal cord [26]. Moreover, increasing stimulation
intensity engages spinal interneurons via synaptic projections which, in turn, activate
motor neurons [22,59]. These simulation results provide a biophysical explanation for
the electrophysiological findings of lower limb muscle responses that are induced by
posterior root stimulation (Figure 2A). However, it should be noted that these computer
simulation studies have all applied unmodulated tSCS (i.e., without carrier frequency), and
the results may not necessarily be generalizable to other types of pulses. Understanding
the potential unique properties associated with modulated tSCS is vital for implementing
tSCS in a manner that optimizes functional recovery after neural injury or disease. Similar
simulation studies using high carrier frequencies are necessary in order to extend the
knowledge regarding current flow in tSCS.

3.3. Transcutaneous SCS Carrier Frequency Is Important for Reducing Discomfort, but Its Role in
Restoring Motor Function Remains Unclear

The inclusion of a carrier frequency within a given stimulation pulse is used for
its ability to disrupt synchronous firing of the high-threshold C-fibers related to pain
perception [60]. Pain management through SCS is based on the gate control theory
introduced in 1965 [57], which proposed that the activation of Aβ mechanorecep-
tor fibers that synapse onto a range of neurons within the dorsal horn that release
inhibitory neurotransmitters—including γ-amino butyric acid (GABA) and adeno-
sine [61]—reduces the activity of nociceptive projection neurons in laminae I and V
traveling along the spinothalamic tract. It has also been proposed that high-frequency
stimulation of the spinal cord blocks discomfort by inactivating paresthesia-inducing
large-diameter fibers and activating medium–small-diameter fibers that suppress wide-
dynamic-range neurons encoding neuropathic pain [62]. Sub-perception SCS at 1 kHz
was more effective for pain relief compared to low-frequency supra-perception stim-
ulation [63]. Moreover, a recent eSCS study suggested that there was no observable
difference between 1 kHz and 10 kHz stimulation for the relief of back pain [64]. Charge
per pulse is lower in high-frequency eSCS in comparison with low-frequency stimula-
tion, while charge per second is higher [61]. While these studies did not use tSCS, and
were only aimed at pain management, they can play an important role in explaining
the potential mechanisms that reduce discomfort in modulated tSCS. Manson et al.
have recently shown that the maximal tolerable stimulation intensity is significantly
greater during modulated tSCS compared to unmodulated tSCS [56]; however, the
stimulation intensity required to evoke a muscle response (motor threshold) was cor-
respondingly higher with a carrier frequency, leading to no difference in the relative
current amplitude required to evoke a motor response [56]. This study indicated that
the addition of a carrier frequency reduces discomfort for a given current amplitude
compared to unmodulated tSCS, but does not reduce discomfort when evoking the
same motor response.
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Figure 2. Schematic of networks within the spinal cord that are potentially altered with tSCS: The
main figure highlights the ability of tSCS to modulate ongoing motor output through dorsal root
afferents that trans-synaptically facilitate motor output by bringing previously inaccessible motor
units closer to their threshold, allowing them to contribute to the execution of a desired task. (A) Large-
diameter afferents are likely activated and synapse on several types of interneurons that facilitate
ongoing motor output. (B) Among these interneurons are propriospinal interneurons, which transmit
this input to multiple segments of the spinal cord in order to alter excitability and impact ongoing
motor output throughout the cord. Solid lines indicate that transmission remains intact to the point
of injury to the spinal cord, while dashed lines indicate that transmission is impaired, and may be
facilitated by tSCS. Typically, tSCS is applied in single unmodulated or modulated monophasic or
biphasic pulses or trains of pulses.
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What is less clear is the impact that the carrier frequency has on the neural circuitry
recruited during tSCS, and the specific role it serves to improve functional recovery when
paired with rehabilitation strategies. Recently, hand and arm function improved signifi-
cantly during a single session of cervical tSCS with a 5 kHz carrier frequency applied in
individuals with an SCI compared to when a carrier frequency was not included [65]. How-
ever, limited data are available as to the differences in specific neural substrates recruited
by tSCS with and without a carrier frequency. Overall, integrating a carrier frequency
may be an important feature of tSCS that not only circumvents pain compared to other
stimulation profiles, but also promotes effective restoration of function after SCI. Further
exploration is required in order to understand whether the carrier frequency is a unique
feature necessary for optimizing the use of tSCS for sensorimotor recovery. Incorporating
this knowledge into a mechanistic framework for the implementation of tSCS is essential in
order to facilitate optimal functional recovery after neurological damage.

3.4. Mechanisms of tSCS Recruitment

The principal mechanism by which tSCS non-invasively activates inaccessible neuronal
networks of the spinal cord likely includes the recruitment of afferent fibers (large–medium)
in the posterior root in order to elevate spinal network excitability [66,67]. The excitability
of spinal interneuronal networks can be readily modulated (changing the networks’ physi-
ological state) without directly producing action potentials [22]. The route of stimulation
propagation is through the dorsal root afferents, as indicated by the significant inhibition
of cervical tSCS responses when using paired stimuli, during passive muscle stretching,
and during muscle–tendon vibration [67]. Moreover, it has been suggested that eSCS and
modulated tSCS can engage both afferent and efferent pathways, based on observations of
early- and medium-response components of evoked potentials that are partially ascribed to
posterior roots/group Ia/group II and motor neurons/anterior roots [22,68]. It is proposed
that as stimulation intensity is increased, in addition to the Ia afferents, the smaller diameter
afferents such as group Ib, larger diameter cutaneous afferents, group II muscle spindle
afferents, and even more intraspinal connections and spinal interneurons are recruited
through tSCS, similarly to what has been observed in eSCS [22,59]. This, in turn, brings
interneurons and motor neurons closer to their firing threshold, making them more likely
to respond to limited post-injury descending drive and improving supraspinal control
after both modulated and unmodulated tSCS [24,30]. Both electrophysiological and com-
puter modeling studies to date suggest that unmodulated tSCS excites posterior root fibers
similarly to eSCS [24,52].

Recently, a few studies have compared the different effects of modulated and un-
modulated tSCS on descending input. Benavides et al. reported that single-site tSCS
applied with a 5 kHz carrier frequency at the C5–C6 level facilitated the amplitude of
cervicomedullary-evoked potentials (CMEPs), but did not increase the amplitude of the
motor-evoked potentials (MEPs) [65]; this was accompanied by an increase in the level of
short-interval cortical inhibition (SICI). When tSCS was applied without the carrier fre-
quency, both cortically and subcortically driven responses were facilitated. This is similar
to our recent investigation, which found that modulated tSCS (33 Hz trains of 1 m long
pulses with a 10 kHz carrier frequency) applied over the C3–4 and C6–7 spinous processes
in neurologically intact individuals did not alter MEPs assessed in the forearm flexors [69].
Moreover, data from a paired associative stimulation (PAS) paradigm involving single
pulses of transcranial magnetic stimulation (TMS) and unmodulated tSCS arriving at the
same time at spinal motor neurons revealed increases in corticospinal excitability, but
facilitation of MEPs following tSCS was less pronounced when tSCS pulses were filled
with a carrier frequency [70]. These studies highlight the fact that in the presence of a
carrier frequency, tSCS may be unable to facilitate MEPs. In contrast, it was shown that
sub-motor-threshold tSCS without a carrier frequency, applied for a short period of 10 min
to the cervical region, did not alter the excitability of the corticospinal and spinal reflex
pathways [71]. At first glance, these results seem contradictory; however, the stimulation
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duration, stimulation amplitude, frequency of stimulation, stimulation waveform (mod-
ulated/unmodulated), and target muscles varied across these studies, which may have
influenced the neuromodulatory effects of tSCS. By priming neural structures at the level
of the spinal cord, unmodulated tSCS modulated spinal reflex excitability and reduced
spasticity in a manner similar to that seen with passive cycling movements [34]. This
suggests that alterations in spinal circuitry—including presynaptic influences—are likely
the primary target of tSCS, and play an important role in the recovery of arm and hand
function in persons with SCI.

Importantly, dorsal root stimulation is likely not entirely responsible for the effects of
tSCS. Group Ia muscle spindle afferent fibres, which travel in the dorsal roots, have a lower
threshold of activation compared to the largest cutaneous fibres [72]. If the effects of tSCS
are only due to the activation of dorsal root afferents, then at low stimulation amplitudes
the large-diameter group Ia afferents should be activated, leading to muscle contractions
and proprioceptive errors via monosynaptic reflexes [57]. However, cutaneous sensation
typically occurs over a large range of stimulus amplitudes that are lower than those
required to produce motor responses mediated by purely monosynaptic reflex pathways,
and proprioceptive errors are not a significant occurrence [73], making it unlikely that
tSCS functions entirely by stimulating dorsal root afferents. Epidural SCS at 1–2 Hz
has been shown to activate inhibitory interneurons in laminae I–III, albeit with latencies
consistent with trans-synaptic (i.e., indirect) activation [74]. Therefore, it is important to
consider whether inhibitory neurons in this region are the main or, at least, a contributing
mechanism underlying the therapeutic benefit of tSCS; that is, tSCS may restore inhibition
by enhancing dorsal horn GABAergic systems. It has been suggested that islet cells in the
substantia gelatinosa require further consideration as prime candidates for the inhibitory
effects on pain [57].

Moreover, while it is widely believed that tSCS depolarizes sensory afferents in the dor-
sal roots and dorsal horn that trans-synaptically recruit motor pools, it remains possible that
polysynaptic connections from cutaneous mechanoreceptors in the skin act on both sensory
processes and motor pools in the spinal cord. This, in turn, alters the excitability at both the
level of the spinal cord—where the stimulation is provided—as well as remote levels of the
spinal cord, through propriospinal interneuronal connections. Cutaneous inputs are known
to have diffuse input that is specific to the task, phase, and amplitude at which stimulation is
delivered [75,76]. It is therefore plausible that the recruitment of cutaneous mechanoreceptors
surrounding the electrodes may contribute to the neuromodulatory effects of tSCS through
these polysynaptic connections. The potential role of cutaneous mechanoreceptors in the skin
with tSCS remains an important avenue to explore in future work [77–79].

A potential mechanism by which tSCS improves upon previously developed reha-
bilitation interventions is potentiation. Guiho et al. observed potentiation of supraspinal
evoked responses with both dorsal eSCS and modulated tSCS over the C3–4 and C7–T1
intervertebral spaces in monkeys, but facilitation was stronger with dorsal eSCS [80]. It is
vital to identify the capability of unmodulated tSCS to alter supraspinally driven responses
compared to eSCS and modulated tSCS, in order to identify whether unique stimulation
parameters are required for individual outcomes. Similarly, PAS with tSCS and TMS in-
duced facilitation of corticospinal excitability for at least 30 min after the PAS, which is
indicative of long-term potentiation (LTP)-like plasticity in the lower limb region of the
primary motor cortex [81]. An important component of tSCS is its neuromodulatory effect
on remote segments of the spinal cord, which must be considered during SCI rehabilitation.

4. Transcutaneous SCS Alters Excitability across Multiple Levels of the Spinal Cord

Evidence indicates that tSCS alters the excitability of multiple segments of the spinal
cord [70,82]. These multi-segmental effects were specifically investigated in our recent
work exploring how stimulation alters excitability across multiple levels of the spinal
cord in neurologically intact participants, using the setup described in Figure 3. We first
determined that cervical tSCS suppresses the amplitude of the soleus Hoffmann (H)-reflex
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by 22.9% (Figure 4B), which was similar to the 19.7% reduction produced by rhythmic
arm cycling (Figure 4C), demonstrating that cervical tSCS alters lumbar excitability [59].
The suppression of H-reflexes evoked in one limb by rhythmic movements of the remote
limbs demonstrates coupling between the arms and legs in humans [83–85]. A bidirectional
linkage between the cervical and lumbar segments of the spinal cord exists during rhythmic
movements in both quadrupedal mammals and humans [86,87], facilitated primarily by
propriospinal connections [83,88]. Therefore, it was hypothesized that a similar reciprocal
organization may also be revealed by tSCS applied to the cervical and lumbar networks,
suggesting that tonic tSCS activates similar networks to those activated during rhythmic
activity of the arms or legs [76,89]. In contrast to our hypothesis, lumbar tSCS significantly
facilitated the amplitude of the H-reflex in the flexor carpi radialis (FCR) by 11.1% relative to
no stimulation (Figure 4D), as opposed to the expected 13.6% reduction in reflex amplitude
during leg cycling (Figure 4E) [69]. This indicates that separate propriospinal networks are
likely responsible for the effects of tSCS and rhythmic cycling.
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These results are summarized in Figure 4A, as tonic activation of spinal cord net-
works via tSCS alters excitability over multiple segments of the spinal cord, and is not 
bidirectional in its effects. The mechanisms responsible for the disinhibition of the H-re-
flex results between the upper and lower limbs are unknown. Facilitation of the H-reflex 
pathway through tSCS may be due to reduced Ia presynaptic inhibition, or to facilitation 
of the motor pool through activation of posterior root afferents and interneuronal projec-

Figure 3. Experimental setup for investigating the effect of modulated tSCS on cervicolumbar
connectivity and corticospinal facilitation: (A) Hoffmann (H-) reflexes were evoked during tSCS via
stimulation of the tibial nerve and recorded in the soleus (SOL) muscle. The left leg was held static
in an extended position, and stimulation to evoke the H-reflex was delivered with either the left
arm held at 0◦ or during arm cycling. (B) H-reflexes were evoked during tSCS via stimulation of the
median nerve and recorded in the flexor carpi radialis (FCR) muscle, while motor evoked potentials
(MEPs) were evoked in the contralateral motor cortex and recorded in the FCR muscle, either with
the legs held static, or during leg cycling. Responses were evoked during a consistent background
contraction of ≈5–10% peak muscle activity at the same position, regardless of condition.

These results are summarized in Figure 4A, as tonic activation of spinal cord networks
via tSCS alters excitability over multiple segments of the spinal cord, and is not bidirectional
in its effects. The mechanisms responsible for the disinhibition of the H-reflex results
between the upper and lower limbs are unknown. Facilitation of the H-reflex pathway
through tSCS may be due to reduced Ia presynaptic inhibition, or to facilitation of the motor
pool through activation of posterior root afferents and interneuronal projections [24]. It
also remains possible that the stimulation of skin itself may be a larger contributing factor
in altering the excitability of the spinal cord with tSCS than previously considered [77].
Understanding the integration of tSCS across multiple segments of the spinal cord across
the range of stimulation parameters is critical in order to determine whether facilitating
or inhibiting the circuitry involved is desirable based on the individual, the available
technology, and the primary clinical outcome. While single-site tSCS neuromodulates
remote segments of the spinal cord, multiple sites of tSCS appear to converge and facilitate
the spinal and corticospinal circuitry.
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cated that unmodulated tSCS delivered at the vertebral level T11 can activate the locomo-
tor circuitry in neurologically intact study participants when their legs are placed in a 
gravity-neutral position [91]. Simultaneous stimulation of cervical, thoracic, and lumbar 
levels (i.e., C5, T11, and L1, respectively) with a carrier frequency induced coordinated 
stepping movements with a greater range of motion at multiple joints in five of six neuro-
logically intact participants, compared to stimulation of T11 alone [92]. The addition of 
stimulation at L1 and/or at C5 to stimulation at T11 immediately resulted in enhancing 
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Figure 4. Effects of tSCS on interlimb connectivity are not similar to those of cycling in terms of
reciprocal organization: (A) The schematic highlights common spinal segments activated by tSCS,
including the cervical (blue) and lumbar (pink) enlargements. The blue arrow indicates that tonic
cervical tSCS inhibits lumbar excitability, while the red arrow indicates that lumbar tSCS facilitates
cervical excitability in neurologically intact individuals. (B) Spinal reflex excitability as assessed by the
H-reflex in the soleus muscle is significantly inhibited in the presence of cervical tSCS [82]. (C) Spinal
reflex excitability is similarly reduced in the lower limbs during arm cycling, which is a known
condition for altering interlimb connectivity via presynaptic mechanisms [84,90]. (D) Conversely,
spinal reflex excitability as assessed by the H-reflex in the FCR muscle is significantly facilitated in
the presence of lumbar tSCS [70]. (E) Leg cycling continues to inhibit spinal reflex excitability in the
upper limbs. Panels (B–D) adapted from published data in [70,82].

5. Multiple Sites of tSCS Converge to Facilitate Alterations in Excitability

Further improvements to the reengagement of previously inaccessible networks may
be possible using multiple stimulation sites of tSCS. Previous investigations have indicated
that unmodulated tSCS delivered at the vertebral level T11 can activate the locomotor
circuitry in neurologically intact study participants when their legs are placed in a gravity-
neutral position [91]. Simultaneous stimulation of cervical, thoracic, and lumbar levels
(i.e., C5, T11, and L1, respectively) with a carrier frequency induced coordinated stepping
movements with a greater range of motion at multiple joints in five of six neurologically
intact participants, compared to stimulation of T11 alone [92]. The addition of stimulation
at L1 and/or at C5 to stimulation at T11 immediately resulted in enhancing the kinematics
and interlimb coordination as well as the EMG patterns in proximal and distal leg muscles.
Moreover, paired tSCS at the L2 and S1 segments of the spinal cord resulted in greater
potentiation of the evoked response than from either site alone, indicating synergistic
effects of multi-segmental pathways [93]. The interactive and synergistic effects indicate
multi-segmental convergence of descending, ascending and, most likely, propriospinal
influences on the neuronal circuitry during tSCS [93].

Interestingly, multisite (i.e., combined) modulated tSCS in both the cervical and lumbar
segments of the spinal cord led to a convergence in the upper limbs (FCR muscle) that
significantly increased H-reflex and MEP amplitude, by 19.6% (Figure 5B) and 19.7%
(Figure 5C), respectively. Cervical tSCS alone did not increase H-reflex or MEP amplitude
in the FCR, but both were significantly facilitated with the addition of lumbar tSCS. This
indicates that tSCS alters excitability across multiple segments of the spinal cord, and
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converges to facilitate both spinal and corticospinal transmission, as demonstrated in
Figure 5A. The facilitation of MEPs in the FCR by combined cervical and lumbar tSCS could
be due to reinforced projection of ascending propriospinal and corticospinal axons onto
cervical spinal motor neurons [94]. Therefore, the activation of proprioceptive inputs at
both the cervical and lumbar spinal cord by tSCS, which synapse on cervical motor neurons,
may be a major contributor to the facilitation of H-reflexes and MEPs to the FCR muscle. An
important consideration with the potential use of multisite tSCS is the role that spasticity
plays in the rehabilitation strategy; facilitating H-reflexes in muscles that have significant
spasticity could compound the effect. Further study is required for understanding the
effects of multisite tSCS in individuals living with an SCI, as well as its effects on spasticity
both within a session and after training.
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Figure 5. Convergence across multiple spinal segments facilitates spinal and corticospinal excitability:
(A) The schematic highlights that simultaneous cervical and lumbar tSCS (yellow) significantly
facilitates cervical spinal reflex and corticospinal excitability. (B) Spinal reflex excitability as assessed
by the H-reflex in the flexor carpi radialis (FCR) muscle is significantly facilitated in the presence of
combined cervical and lumbar tSCS. (C) Similarly, corticospinal excitability as assessed by MEPs in
the FCR elicited from the contralateral motor cortex was also significantly facilitated by combined
cervical and lumbar tSCS. Panels (B,C) adapted from published data in [69].

Interestingly, in neurologically intact study participants, modulated tSCS was unable
to alter the excitability of either H-reflexes or MEPs when combined with either arm or
leg cycling, regardless of whether single-site or multisite tSCS was applied [70,82]. This
indicates that in neurologically intact individuals where interlimb coordination and the
corticospinal tract are intact, the effects of arm or leg cycling on cervicolumbar coupling and
corticospinal drive were not impacted significantly by the tSCS intensity used. Therefore, it
will be a vital next step to determine the role that multisite tSCS has on interlimb connectiv-
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ity after SCI. The potential impact of using multisite tSCS as a strategy to neuromodulate
the spinal circuitry has significant implications in furthering our understanding of the mech-
anisms controlling posture and locomotion, and for regaining significant sensorimotor
function even after neural injury.

6. Is There a Role for tSCS to Facilitate Cervicolumbar Coupling to Improve Walking?

Since single-site modulated tSCS alters excitability at remote segments of the spinal
cord, and multisite modulated tSCS shows a significant convergence effect, it is possible
that tSCS may influence coupling between the arms and legs after SCI. The coordination
between the legs and arms is an inherent feature of locomotor neural networks [80], with
coupling between the cervical (arms) and lumbar (legs) spinal networks (cervicolumbar
coupling) well demonstrated in both animals and humans [95–97]. Oscillatory movements
are governed by separate locomotor centers known as central pattern generators (CPGs),
which are located in the cervical and lumbar spinal cord segments [76,89]. Similarly to
quadrupedal mammals, a bidirectional linkage between the cervical and lumbar segments
of the spinal cord during rhythmic movements is present in humans [86,87], facilitated
primarily by propriospinal connections [83,88].

Engaging these connections with simultaneous arm and leg (A&L) cycling training
improves walking capacity after both chronic incomplete SCI [98] and stroke [99,100].
Highlighting the importance of these interlimb connections, arms-only cycling has also
been shown to improve overground walking function after stroke [101]. A&L cycling often
capitalizes on the incompleteness of the injury to the spinal cord, even in cases where the
injury is clinically classified as complete. The effect of neuromodulation is maximized
when accompanied by a residual intact descending/ascending input. While the beneficial
effects of rehabilitation strategies such as arm and leg cycling on cervicolumbar coupling
after incomplete SCI and stroke have been outlined previously, little is known about severe
cases when the injury to the spinal cord is clinically complete. Pairing tSCS with A&L
cycling may allow for similar improvements in interlimb connections after complete SCI or
multiple sclerosis. However, the impact of tSCS on propriospinal connectivity has yet to be
investigated. Enhancing cervicolumbar connectivity by pairing A&L cycling with tSCS to
improve mobility outcomes also remains a vital avenue for future research.

7. Trunk Stability Improvements with tSCS

While direct evidence of tSCS influencing remote segments of the spinal cord is
limited, enhancing trunk stability—which is often an overlooked component—may provide
indirect evidence of the influence of tSCS. Postural stability via regulation of trunk function
is an integral part of locomotor control and a key element of the kinematic chain for
reaching movements [102,103]. Modulation of lumbosacral networks via modulated tSCS
has enabled individuals with various levels of SCI to stand without assistance from a
therapist; more importantly, individuals showed improved postural control after repeated
sessions of training, as demonstrated by an increased range of the center of pressure
excursion during self-initiated body weight displacement [67]. As argued by the authors,
biphasic pulses were perceived similarly to the sensation caused by monophasic pulses;
however, biphasic stimulation could not enable unassisted standing, and was ineffective in
producing motor output in the lower extremities, even at higher stimulation intensities [67].
Although critical, this observation is limited to one specific task of the lower extremity using
only a modulated waveform; thus, future investigation is necessary in order to compare
the effects and the underlying mechanisms of monophasic and biphasic tSCS paradigms,
in an effort to uncover the best stimulation paradigm for improving functional outcomes.
Moreover, modulated tSCS applied to the lumbar region increased the level of activity
in the trunk muscles, adjusted the abnormal sitting posture, and extended the limits of
multidirectional seated displacement, overall enhancing postural control [104]. The ability
of lumbar tSCS to improve muscle activity in the trunk and postural control provides
indirect evidence for tSCS inducing meaningful effects across multiple segments within
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the spinal cord. While further investigation is necessary in order to determine the specific
pathways responsible for improved postural control, there is an additional incentive to
pair tSCS with rehabilitation interventions in order to improve functions that are often
overlooked in research and rehabilitation interventions.

8. Previously Developed Rehabilitative Approaches Are Enhanced through tSCS

Understanding the role of tSCS across multiple converging segments of the spinal
cord is an important consideration when designing optimal rehabilitation interventions.
The use of tSCS in conjunction with functional training appears imperative for optimizing
functional recovery after SCI [17,27,32,105]. When tSCS (either modulated or unmodulated)
and training are combined, functional changes emerge more rapidly and to a greater degree
than with either method alone, making these strategies vital to one another’s success [27,32].
Importantly, participants with SCI previously considered to be at maximal functional
capacity following walking-based therapy were able to gain significant improvements in
the 6 min and 10 m walking tests after incorporating unmodulated tSCS into a paired tSCS-
and walking-based therapy intervention [32]. Likewise, unmodulated tSCS as an adjunct to
locomotor training was shown to improve walking outcomes in individuals with subacute
motor-incomplete SCI [106]. Furthermore, pairing modulated tSCS with walking using
an exoskeleton can improve lower limb coordination [105]. Positive synergistic effects of
tSCS neuromodulation and previously successful rehabilitation strategies are a promising
avenue for increasing what is currently possible for recovery after neurotrauma. This may
be enhanced by further understanding of the unique properties of tSCS, and how it may
modulate spinal circuitry differentially based on stimulation parameters and waveforms,
muscles of interest, and desired functional outcomes.

9. Conclusions and Future Directions

Collectively, this work demonstrates that the activation of spinal cord networks with
tSCS alters excitability over multiple segments of the spinal cord, with differential proper-
ties depending on the site, waveform, and parameters of tSCS. Importantly, multiple sites
of tSCS converge to enhance the modulation of spinal reflex and corticospinal pathways
in neurologically intact individuals. Clinical data also indicate that multi-segmental func-
tional improvements occur after SCI. This highlights the potential for engaging cervical and
lumbar spinal cord networks through tSCS to enhance the effectiveness of rehabilitation
interventions. An essential next step in the evolution of tSCS research is determining
the unique contributions of cutaneous mechanoreceptors, islet cells, dorsal root afferents,
interneuronal projections, and large afferents in the dorsal horn, all of which likely con-
tribute to neuromodulation with tSCS. Understanding the mechanisms of action with
tSCS and potential differences in recruitment between modulated and unmodulated tSCS
will provide the foundation with which to establish optimal concomitant rehabilitation
therapy to improve sensorimotor function after neural injury or disease [66,107]. In general,
tSCS appears to be a safe approach for modulating the excitability of neural networks of
the spinal cord. Several studies have reported that the stimulation is well tolerated with
minimal skin irritation or adverse changes in blood pressure, heart rate, spasticity, and/or
incontinence [2,27]. However, two studies have reported side effects after tSCS including
unintentional voiding during standing, skin damage and redness, fluctuation of blood
pressure and heart rate, and nausea [63,105], and significant work is still required in order
to ensure the safety of tSCS, including its application to locations where autonomic nerves
are located. Specific caution should also be taken to ensure that tSCS is not applied to areas
containing a metal implant or medical device, because the potential interactions between
tSCS and such devices have not been explored [106].
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