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Simple Summary: Adoptive transfer of T cells targeting tumors still remains mainly ineffective in
solid entities. In this review we discuss challenges related to the tumor microenvironment (TME)
and promising strategies to improve tumor control by engineering the TME or the transferred T
cells themselves.

Abstract: T cells are important players in the antitumor immune response. Over the past few years,
the adoptive transfer of genetically modified, autologous T cells—specifically redirected toward the
tumor by expressing either a T cell receptor (TCR) or a chimeric antigen receptor (CAR)—has been
adopted for use in the clinic. At the moment, the therapeutic application of CD19- and, increasingly,
BCMA-targeting-engineered CAR-T cells have been approved and have yielded partly impressive
results in hematologic malignancies. However, employing transgenic T cells for the treatment of solid
tumors remains more troublesome, and numerous hurdles within the highly immunosuppressive
tumor microenvironment (TME) need to be overcome to achieve tumor control. In this review, we
focused on the challenges that these therapies must face on three different levels: infiltrating the tumor,
exerting efficient antitumor activity, and overcoming T cell exhaustion and dysfunction. We aimed to
discuss different options to pave the way for potent transgenic T cell-mediated tumor rejection by
engineering either the TME or the transgenic T cell itself, which responds to the environment.

Keywords: adoptive T cell transfer; transgenic T cells; TCR; CAR; solid tumors; tumor microenviron-
ment; lymphocyte engineering

1. T Cells: Essential Players across Immunotherapeutic Approaches

Various immunotherapeutic approaches targeting cancer focus on T cells. CD8+ T cell
responses appear to play a major role in the success of immune checkpoint inhibitors (ICI)
such as anti-PD-1/-PD-L1, anti-CTLA4, and others [1–4]. Bi- and tri-specific antibodies
are used to attract T cells to the tumor site (the bispecific T cell engager (BiTE) plat-
form) [5–7]. CD19- and BCMA-targeting chimeric antigen receptor (CAR)-transgenic T cell
products show effective and safe clinical responses [8–11]. Eventually, the endogenous TCR
repertoire is employed for highly personalized antitumor treatment by tumor-infiltrating
lymphocyte (TIL) or T cell receptor (TCR)-transgenic T cell infusions [12–15]. Overall,
numerous applications suggest the potential of T cells for antitumor therapy.

1.1. T Cells as Key Players of the Antitumor Immune Response

A complex interplay between a variety of different immune cell populations is in-
dispensable for effective tumor control. Yet, T cells, key players in the adaptive immune
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system, play an essential role in the antitumor response. The increased infiltration of
tumors with CD8+ T cells is largely correlated with prolonged survival across different
entities [16–22]. CD8+ TCRαβ T cells exert cytolytic functions in antiviral and antitumor
defense [22] and produce large amounts of cytotoxic molecules such as interferon-γ (IFN-γ),
tumor necrosis factor-α (TNFα), perforin, and granzymes. For this reason, they are also
known as cytotoxic T cells (CTLs) [23].

The quantity of cytotoxic cells alone does not guarantee potent antitumor responses.
CD8+ T cells do not act in isolation; CD4+ TCRαβ T cells, for example, play a well-
established role as T helper cells (TH), interacting with professional antigen-presenting
cells (APCs), promoting CD8+ T cell-priming and providing cytokines for effective T
cell responses [24].

Devoted to selectively suppressing T effector cells and maintaining self-tolerance, the
T cell pool also contains immunosuppressive regulatory T cells (Treg cells). Conventionally,
Treg cells express the transcription factor FOXP3 and the IL-2Rα chain (CD25) (thymus-
derived tTreg or peripherally induced pTreg, e.g., Th3 cells), but there are also FOXP3-
independent, peripherally induced subsets (e.g., Tr1 cells) [25–27]. Suppressing immune
functions, Tregs are often involved in hampering antitumor immune processes in the tumor
microenvironment (TME) [28].

1.2. Targets for T Cell-Based Immunotherapeutic Approaches

The quality of a T cell response—for CD8+ or CD4+ cells—is determined by the
recognition of a specific target antigen presented on a major histocompatibility complex
(MHC) on the surface of the tumor cell via the cognate TCR. Thus, the TCR is the cell’s main
trigger for antigen-specific clonal expansion and cytokine secretion. It consists of disulfide-
bonded α- and β-chains composed of a constant and a variable domain, of which the latter
contains the antigen-binding site and undergoes somatic recombination on the genetic level
during maturation (the so-called V(D)J-recombination of the variable, diversity, and joining
the gene sequence) [29]. This process results in more than 1013 stochastically possible TCR
sequences for each human being [30,31] of which usually only the non-self-reactive survive
thymic selection as a means of central tolerance, preventing autoimmunity. [32] TCR targets
are peptides that have undergone intracellular processing and presentation machinery,
ending up on the binding cleft of MHC-class I or II complexes—the first presenting these
antigens to CD8+, the latter to CD4+ T cells [33]. The initial contact between a (at this stage)
naïve T cell and its respective antigen, so-called priming, mostly takes place in secondary
lymphoid tissues, where professional APCs (dendritic cells (DCs), macrophages, or B cells)
with important ligands for costimulatory receptors on the T cell-surface have processed
these antigens. Subsequently, clonal expansion is initiated and tumor-specific T cells start
to infiltrate the tumor site [34].

Rosenberg and colleagues were the first to demonstrate that collecting TILs, at first
from mice and later from melanoma patients, and then expanding them in vitro and
reinfusing these cells back into the patient provoked potent antitumor responses. This
strongly suggested the presence of tumor-reactive TCR clonotypes in the tumor tissue, but
also resulted in the question about their target [35–37]. When it comes to T cell therapies,
TCR- and CAR-based target identification might be the most challenging bottleneck. In
principle, the following options exist: over- or selectively expressed self-antigens in the
adult, differentiation, and cancer-testis antigens (CTA) or neoantigens.

Over the past several years, self-antigens, regularly expressed in the adult body with
defined tissue-restricted expression, reached a prominent role in tackling hematological
malignancies via CARs. Regarding hematological cancers, lineage markers such as CD19
for B cell lymphoma [8–10] or BCMA for multiple myeloma (MM) [11,38,39] can be tar-
geted at the expense of also eliminating the respective healthy cell population. B cells,
for example, are dispensable, up to a certain point (at least temporarily) [40]. However,
since compared to pathogens tumor cells are not foreign, per se, the sum of the peptides
presented by MHC class I or II molecules, the so-called immunopeptidome, contains mainly
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self-peptides. Due to the mechanisms of central tolerance they are, in most cases, subop-
timal targets for endogenous TCRs [41]. For solid tumors, no distinct surface-expressed
lineage markers exist, and targeting self-antigens comes at the risk of on-target off-tumor
toxicity. Therefore, target choice and therapy safety assessments become crucially impor-
tant. In melanoma, melanocyte-specific proteins, such as epitopes of glycoprotein 100
(gp100), serve as target candidates, and this is exemplarily so for the recently approved
BiTE Tebentafusp [42]. Another melanoma-associated antigen, PRAME (Preferentially
expressed Antigen in Melanoma), has been detected in medulloblastoma and synovial
sarcoma, promising a potential therapeutic target [43,44]. A third example, the tumor-
associated antigen (TAA) mesothelin (MSLN), is widely expressed in malignant pleural
mesotheliomas (MPM), pancreatic, ovarian, and some lung cancer entities [45,46]. However,
it can also be detected at low levels on peritoneal, pleural, and pericardial mesothelial
surfaces [47]. MSLN-targeted CAR-T cells show manageable side effects and reasonable
safety profiles [48], yet possess only limited clinical efficacy compared with the response
rates of CARs in hematological cancers [49,50]. Similarly, TCRs targeting MSLN showed an-
titumor activity in a murine model yet became progressively dysfunctional over time. [51]
Other self-antigens, however, are more specific for the tumor tissue. L1CAM (CD171),
for example, is expressed in a supposedly glycosylated form by neuroblastoma, and an
antibody recognizing this glycosylation-dependent epitope can be used for the generation
of a CAR-product [52].

Secondly, developmental antigens re-expressed in the tumor tissue display promising
candidates for sufficient tumor specificity and, therefore, a reduced risk for off-tumor toxic-
ity. The oncofetal protein Claudin 6 (CLDN6), virtually absent in normal body tissues, is
aberrantly—but frequently—expressed in various cancer entities and therefore targeted by
CAR-approaches [53,54]. Furthermore, so-called cancer-testis antigens (CTAs), only found
in gametogenic tissue in the adult body otherwise, are reactivated during tumorigenesis.
Many of the TCRs already assessed in clinical studies target some of the most abundantly
expressed immunogenic CTAs such as NY-ESO-1 or members of the MAGE-family [55,56].

Nevertheless, reactivities against both kinds of antigen cannot be solely responsible
for endogenous antitumor activity, since self-reactive TCRs should be mostly eliminated
by central tolerance; additionally, those remaining in the repertoire should be expected to
show a low avidity [57,58]. Since a tumor deviates from normal body cells due to muta-
tions during tumorigenesis, a third class of antigens emerges. To date, it is assumed that
somatic mutations in the tumor genome, as well as aberrant posttranslational modifica-
tions, can induce aberrant peptide ligands differing from the self. These can be recognized
by TCRs upon their presentation on HLA-molecules. These mutated peptide ligands,
termed neoantigens, promise highly tumor-specific—and therefore safe and extremely
personalized—tumor targeting [59].

2. T Cell-Based Adoptive Cellular Therapy for Solid Tumors: Where Are We in the Clinic?
2.1. TCR-Based Approaches

Reinfusing TILs, as pioneered by Rosenberg et. Al., was the historical predecessor
of adoptive cellular therapy (ACT) regimens for tumor treatment and led to impressive
remissions in metastasized melanoma [36]. By then, rather than TCR sequences, only
tumor-reactive T cell clones were isolated, which can—despite general technical feasibility
for many solid cancer entities—be limiting due to their low TIL infiltration, lack of immuno-
genicity, or reduced T cell fitness after several rounds of chemotherapeutics. Attempts to
increase the percentage of tumor-reactive T cells via the selection of surface activation mark-
ers, e.g., CD137+, CD134+ or PD-1+ cells, have been made but have remained laborious
and time-consuming [60–62]. Recently, single-cell genome- and transcriptome-sequencing
methods have gained increasing influence in T cell-identification pipelines [63–65].

Meanwhile, the idea of transferring TCR genes, and thereby TCR specificity, from one T
cell onto another was published in 1986 [66]. This became the direct ancestor of the concept
of identifying tumor-reactive TCRs against TAAs in one patient and transferring these
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receptors off-the-shelf to other HLA-matching tumor patients with the expression of the
identical antigen. In 2004, the first trial with 15 refractory melanoma patients was launched
with a melanoma antigen recognized by T cells 1 (MART1)-specific HLA-A02-restricted
TCR. Two patients showed a complete clinical regression of disease after the transfer of
autologous, genetically engineered T cells [12]. Four years later, the first clinical TCR-T
cell trial in another solid tumor entity, a metastatic synovial sarcoma, was launched with
NY-ESO-1-reactive TCRs. Four of the six sarcoma patients responded to the treatment [55].
Meanwhile, many studies on TCR-based T cells in solid tumors have been launched (see
Table 1), continually demonstrating the potential of these cellular therapies in the future,
but also highlighting the challenges ahead.
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Table 1. Selected clinical studies for TCR-T cell-based therapies in solid tumors (information from clinicaltrials.gov (accessed on 6 June 2022)).

Target Target TCR HLA Entities Sponsor Phase n 1 Start Further
Therapy Study ID 2 Ref.

TAA
WT-1 WT1-TCRc4 HLA-A*0201 mesothelioma, NSCLC (both

stage III-IV)
Fred Hutchinson Cancer Center/

Juno Therapeutics I/II 11 2015 Aldesleukin NCT02408016

MSLN FH-TCR-TMSLN HLA-A*0201 pancreatic ductal
adenocarcinoma

Fred Hutchinson Cancer Center/
Juno Therapeutics I/II 15 2021 NCT04809766

CTA/
Oncofetal
proteins

NY-ESO-1 Anti-NY ESO-1 mTCR
PBL HLA-A*0201 melanoma, meningioma,

breast CA, NSCLC, HCC NCI II 11 2013 Aldesleukin NCT01967823

NY-ESO-1 Anti-NY ESO-1 mTCR
PBL HLA-A*0201 melanoma, renal cell cancer,

metastatic cancer NCI II 45 2008 Aldesleukin NCT00670748 [55]

NY-ESO-1 NY-ESO-1c259T

HLA-A*0201,
HLA-A*0205,

and/or
HLA-A*0206

melanoma

Adapt
immune/

Glaxo
SmithKline

I/II 4 2011 NCT01350401

NY-ESO-1 NY-ESO-1c259T

HLA-A*0201,
HLA-A*0205,

and/or
HLA-A*0206

ovarian cancer

Adapt
immune/

Glaxo
SmithKline

I/II 9 2013 NCT01892293

NY-ESO-1 NY-ESO-
1c259T/GSK3377794

HLA-A*0201,
HLA-A*0205,

and/or
HLA-A*0206

liposarcoma

Adapt
immune/

Glaxo
SmithKline

II 23 2016 NCT02992743 [67]

NY-ESO-1 TBI-1301 HLA-A*02:01 or
HLA-A*02:06

sarcoma, melanoma,
esophageal, ovarian, lung,

bladder, or liver cancer
University Health Network, Toronto I 22 2016 NCT02869217

MAGE-A3/12 PG13-MAGE-A3
TCR9W11 HLA-A*0201

metastatic cancer, metastatic
renal cancer, metastatic

melanoma
NCI I/II 9 2010 Aldesleukin NCT01273181 [56]

MAGE-A3/12 Anti-MAGE-A3-DP4 TCR HLA-DPB1*0401 melanoma, cervical, renal,
urothelial, or breast cancer NCI I/II 21 2014 Aldesleukin NCT02111850 [68]

MAGE-A4 TBI-1201 HLA-A*24:02 various entities Mie University I 18 2014 NCT02096614

MAGE-A4 MAGE-A4c1032T HLA-A*02

bladder, head and neck,
ovarian, esophageal, gastric
cancer, melanoma, NSCLC,

synovial sarcoma, liposarcoma

Adapt
immune/

Glaxo
SmithKline

I 54 2017 NCT03132922 [69]

MAGE-A10 MAGE A10c796T
HLA-A*0201

and/or
HLA-A*0206

NSCLC

Adapt
immune/

Glaxo
SmithKline

I 28 2015 NCT02592577 [70]

MAGE-A3/A6 KITE-718 HLA-DPB1*0401 various entities Kite Pharma I 16 2017 NCT03139370 [71]

MAGE- A4/A8 ACTengine IMA201-101 HLA-A*0201 various entities Immatics I 22 2018 NCT03247309 [72]

clinicaltrials.gov
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Table 1. Cont.

Target Target TCR HLA Entities Sponsor Phase n 1 Start Further
Therapy Study ID 2 Ref.

MAGE- A1 ACTengine IMA202-101 N.A. various entities Immatics I 15 2019 NCT03441100

PRAME IMA203-101 ACTengine HLA-A*0201 various entities Immatics I 42 2019 IL-2, Nivolumab
(Cohort B) NCT03686124 [73]

AFP AFPc332T HLA-A*02 HCC

Adapt
immune/

Glaxo
SmithKline

I 45 2017 NCT03132792

neoantigens personalized

NEO-PTC-01

Persona
lized

melanoma BioNTech I 52 2020 NCT04625205

NeoTCR-P1 solid tumors PACT Pharma, Inc. Ia/Ib 148 2019 Aldesleukin,
Nivolumab NCT03970382 [74]

N.A.
(neuro)endocrine tumors,

NSCLC, ovarian, breast, GI
cancers

NCI II 270 2018 Aldesleukin,
Pembrolizumab NCT03412877

N.A. malignant epithelial
neoplasms Providence Health & Services I/Ib 24 2022

CDX-1140 (CD40
activation),

Pembrolizumab
NCT04520711

1 estimated number of patients enrolled or to be enrolled at the time of publication of this review, 2 source: clinicaltrials.gov.

clinicaltrials.gov
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2.2. CAR-Based Approaches

Despite TCRs predating tumor therapy, CARs drew ahead in the race between both
ACT approaches. While TCR-T cell products have thus far remained in clinical studies, sev-
eral CAR products have been FDA- and EMA-approved for the treatment of hematological
malignancies, with impressive clinical response rates. Among these are the CD19-targeting
CAR constructs approved for the treatment of B cell lymphoma: axicabtagene ciloleucel
(Axi-cel) [8], tisagenleucel (Tisa-cel) [10,75,76], and lisocabtagene maraleucel (Liso-cel) [77]—
the first of these with CD28 co-stimulation; the latter two with 41BB co-stimulation. Idecap-
tagene vicleucel (Ide-cel) was approved for treating multiple myeloma (MM) by targeting
B cell maturation antigen (BCMA) and including 41BB-costimulation [11,38].

CARs are synthetically engineered receptors mimicking TCR signaling, according to
our understanding of T cell activation. In contrast to TCRs, CARs do not recognize peptides
bound to MHC-complexes. Instead, they comprise single-chain variable fragments (scFv)
from antibodies targeting an epitope of a surface-expressed protein [78]. This already
suggests one main difference between the two approaches: while the target-repertoire
of CARs is limited to surface antigens—only about 20–30% of all encoded proteins are
expressed on the cell’s surface [79] and only a fraction of these is accessible for antibody
binding—HLA-presented peptides also cover the intracellular proteome, and therefore
grant a much broader target repertoire for TCRs. In CARs, the scFv differ from TCRs by
being directly linked to an intracellular CD3ζ-chain containing the necessary binding sites
(immunoreceptor tyrosine-based activation motifs, ITAMs), provoking T cell activation
upon TCR ligation. [80,81] Since this first generation of CAR-constructs, which contained
a CD3ζ (or CD3γ) chain alone [82–84], costimulatory elements—mostly the intracellular
domain of CD28 or 41BB—were added to magnify the signaling effects and induce the
more efficient killing of tumor cells [78]. These CARs of the second generation are the
ones currently in use for clinical applications. Further engineering, however, has already
led to a third and fourth generation with either two costimulatory domains or additional
modifications such as off-switches, inducible cytokine secretion, or chemokine receptor
expression [78,85]. Most of these constructs, however, have not yet been proven to be
superior in clinical assessments.

Notwithstanding the success of CARs in hematological cancers, the treatment of
solid tumors has remained rather ineffective to date [86]. The major obstacles and po-
tential engineering strategies for both ACT approaches in the TME are outlined in the
following section.

3. Challenges for T Cells in the Tumor Microenvironment

T cells encounter multifaceted obstacles in the microenvironment of a solid tumor
(Figure 1). In principle, the therapeutic concept of TIL-therapy eradicating tumor tissue
provides, on the one hand, evidence for the presence of immunogenic tumor antigens as
well as preexisting tumor-reactive T cell clones in the patient’s TCR repertoire and even
intratumorally. On the other hand, it raises the question as to why the patient’s immune
system obviously does not efficiently control the tumor.

3.1. Infiltrating the Tumor: Cold and Hot Tumor Microenvironment

Firstly, lacking an efficient homing mechanism to the tumor site, no tumor-specific
clonotype can unleash antitumor activity. The identification of T cell infiltration into the
tumor as one major predictive factor for survival led to the classification of outcomes in
colorectal carcinoma based on an immune score rather than tumor staging [19,87,88]. It also
resulted in the introduction of the now commonly used terms hot (inflamed) and cold (non-
inflamed) tumors to describe the level of immune infiltration [89,90]. Primarily, the immune
type of tumors range from inflamed (hot), immunosuppressed, and excluded to cold, with
gradually lower numbers of T cells present in the tumor (see Figure 1). Those few T cells
in the immunosuppressed tumor bed lack functional capacity due to immunosuppressive
signaling. In the excluded state, immune cells accumulate at the outer tumor border, the
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so-called invasive margin, without further invasion. Cold tumors are not infiltrated by T
cells at all [91,92]. This demonstrates the physical, immunological, and metabolic barriers
impeding immune tumor control via subverting T cell trafficking and the penetration of
the tumor parenchyma.

Figure 1. Major challenges for adoptively transferred T cells in the tumor microenvironment. The
immune infiltration of a solid tumor is schematically represented by a cold (dark blue), an excluded
(light blue), an immunosuppressed (violet), and a hot (red) tumor sector with gradually more CD8+ T
cells (shown as blue cells) penetrating the tumor tissue (represented by grey tumor cells). Three major
challenges are depicted, along with relevant exemplary adjustment screws, as discussed in this review:
infiltrating the tumor (1), targeting the tumor via CARs or TCRs (both illustrated schematically) (2),
and overcoming exhaustion and dysfunction (3).
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3.1.1. Targeting Tumor Vessels

The first step toward effective cellular-based tumor therapies is T cells’ egress from the
blood vessel at the tumor margin. In the hypoxic TME, the continued production of pro-
angiogenic factors by tumor cells (e.g., vascular endothelial growth factor (VEGF)) stands in
disbalance with antiangiogenic factors. Aberrant blood vessel formation is promoted. [93]
Cancer cells sprout new vessels via angiogenesis, recruit endothelial cells from the bone
marrow, or hijack host vessels. Such rapidly growing and reorganizing vessels show
structural malformations, a leaky endothelium, and an abnormal, heterogeneous blood
flow, not only aggravating the supply of nutrients but also chemotherapeutic agents [94].
Moreover, T cell arrest and transmigration require activated integrins on the endothelium
of the target tissue. The lower expression of these adhesion molecules, such as vascular
cell adhesion molecule-1 (VCMA1) or intercellular adhesion molecule-1 (ICAM1), on the
irregular tumor vessel endothelium deteriorates the extravasation of immune cells and is
termed endothelial anergy [95–98].

It has been described that the irregular endothelium compromises immune penetration
for endogenous as well as adoptively transferred T cells, resulting in non-inflamed, cold
tumors. One approach to increasing T cell infiltration is the administration of angiogenesis
inhibitors, most of them targeting VEGF. Primarily, these inhibitors deprive the tumor
of a blood supply to starve cancer cells of nutrients and oxygen and directly kill them.
However, simultaneously, a reduced tumor perfusion is accompanied by lower T cell
infiltration—at first view, the opposite of a strategy to switch a cold tumor into a hot
tumor. However, by choosing lower, vascular-normalizing (rather than antiangiogenic)
doses of VEGF-inhibitors, a synergistic effect of anti-VEGF and immunotherapy has been
reported [99]. In part, this might be explained by an amelioration of the permeability of the
tumor vessels for T cells and decreased interstitial pressure in a narrow time window and
dose range. Furthermore, VEGF directly interacts with various immune cells, amongst them
T cells, macrophages, dendritic cells (DCs), and myeloid-derived suppressor cells (MDSCs), as
reviewed elsewhere in more detail [100,101]. All these interactions are additionally influenced
by the VEGF-blockade and potentially contribute to antitumor effects. This example illustrates
the fine-tuned interplay in the TME based on single growth factors. Apart from VEGF, other
molecules were identified for the stabilization of the intratumoral vascular network, partly
mediated by pericytes, such as low doses of TNFα or LIGHT [102–104].

In some models, however, only a combinatorial treatment with low doses of an-
tiangiogenic therapy and the inhibition of programmed-death receptor 1 or its ligand
(PD-1/PD-L1) improved survival. Apart from vascular normalization, antiangiogenic
treatment was shown to induce PD-L1 expression in the TME of relapsing tumors as well
as PD-1 on the surface of T cells. Abrogating such adaptive immunosuppressive effects via
simultaneous ICI therapy sustained the therapy response. The formation of high endothe-
lial venules (HEVs) with an activated endothelium necessary for the T cells’ egress was
induced and thus T cell infiltration and activation were promoted. Thus, both treatments
may reinforce each other synergistically [105–107]. Further clinical trials have already
been launched for the combination of PD-L1-blockade and VEGF-inhibitors [108] as well as
PD1-blockade and VEGF-receptor inhibitors [109]. These examples for combination therapy
vividly demonstrate the sensitive balance between anti- and pro-tumorigenic factors and
illustrates the need for a better understanding and additional treatment for the effective
infiltration of either endogenous or adoptively transferred T cells into tumors.

3.1.2. Application of Proinflammatory Stimuli

Converting cold tumors into hot tumors can also be attempted by less specific proin-
flammatory stimuli. At low doses, the proinflammatory effect of local irradiation can
remodel the anergic endothelium to re-express activated integrins and selectins, which
might increase T cell extravasation [110–112]. Moreover, radiotherapy-mediated damage
leads to immunogenic cell death activating the immune system. This becomes especially
evident as the so-called abscopal effect, where the local irradiation of a tumor leads to
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the shrinkage of distant tumors outside the radiation field [113]. Higher radiation doses,
however, damage the endothelium, deteriorate immune infiltration, and necessitate ju-
dicious balancing. Further local manipulations, such as radiofrequency ablation therapy,
photothermal therapy, or high-intensity focused ultrasound, can also help to increase T
cell infiltration by triggering local inflammatory processes [114–116]. Further stimulatory
treatments, such as the exemplary intravesical Bacillus Calmette-Guérin (BCG)-treatment in
urothelial malignancies, also partly rely on such local immune activation by immunogenic
cell death [117,118].

While it was previously thought that chemotherapy exerted its antitumor effects
primarily by directly killing tumor cells and inhibiting their proliferation, it is now be-
lieved that tumor control also relies on immune stimulation. As for radiation therapy,
immunogenic cell death after chemotherapy was shown to elevate immune activation. In a
murine model, CAR-T cell infiltration and sensitivity to anti-PD-L1 therapy both increased
after chemotherapy [119].

In any case, local tissue damage was accompanied by an increased release of TAAs,
their uptake by DCs and macrophages, and a subsequent T cell priming, similarly to the
concept of cancer vaccination. Moreover, mediated by proinflammatory cytokines such as
IL-1β, TNF-α, or type I and II interferons (IFN) [120], chemokine secretion and upregulated
adhesion molecules at the inflamed tumor site resulted in T cells’ ameliorated homing and
infiltration [112,121,122].

In addition, DNA from damaged tumor cells led to the activation of the cyclic GMP-
AMP (cGAS)-dependent and the stimulator of IFN genes (STING)-dependent pathways,
resulting in a type I-IFN-release from DCs [123]. An intact cGAS-STING cascade in adop-
tively transferred CD8+ T cells was proven essential for the potency of antitumor responses
in mice, maintaining stemness by the regulation of the transcription factor TCF1 and the
restraint of AKT-signaling [124]. In preclinical mouse models, STING-agonists such as
DMXAA were shown to be effective for tumor regression by triggering the cooperation
between T cells and myeloid cells [125], thereby causing them to enhance CAR-T cell traf-
ficking to the tumor site [126]. Due to the structural divergence in key amino acid residues
of STING between humans and mice, the clinical translation required the identification
and development of further STING-agonists. While synthetic cyclic dinucleotides were
developed and are currently being tested for intratumoral administration [127,128], many
approaches are being pursued to efficiently activate STING as an immune adjuvant for the
immunomodulation of tumor environments [129].

Overall, radio-, chemotherapy, and immunomodulatory agents bear a potential for
use in combination strategies with ACT by inducing local inflammatory stimuli. Para-
doxically, inflammation also entails immunosuppression, most likely counterregulatory
mechanisms, such as the upregulation of PD-L1 on tumor cells, immune cells, and the
endothelium, which additionally requires combinatorial regimens of ACT with check-
point inhibitors [130].

3.1.3. Engineering T Cells to Alter the Cytokine Milieu

Synergistically, some groups have engineered not only the TME but the T cells them-
selves by radiotherapy. Splenic irradiation in mice upregulated chemokine receptor expres-
sion on T cells, which in turn promoted tumor infiltration [131]. Despite the questionable
feasibility and toxicity for T cells and surrounding tissue in human patients, such attempts
demonstrated that increasing immune cell infiltration into the TME was not solely reached
by engineering the TME alone. It might also be achieved by modulating and engineering
the T cells themselves.

To date, no universal chemokine–receptor axis suitable for a broad variety of solid
entities has been identified due to the diverse chemokine profiles of different tumors [132].
For lymphocyte extravasation, chemokine receptors, such as CXCR3 and CCR5, expressed
on effector T cells are of central importance. Their corresponding ligands, CXCL9, CXCL10,
CCL3, CCL4, and CCL5, are upregulated in inflamed tissue in an IFN-dependent man-
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ner [133,134]. Therefore, it is reasonable that through the gene transfer of different
chemokine receptors, such as CXCR2, CCR2, CXCR6, or CCR8 in TCR- or CAR-T cells, the
infiltration at the tumor site could be elevated in preclinical models [135–139]. For example,
CXCR3 was identified to be of special importance for CD8+ T cells’ homing ability [140]
and chemotherapeutically increased secretion of its ligands (CXCL9, CXCL10, and CXCL11)
enhanced intratumoral T cell accumulation [141]. These findings showed CXCR3 to be a
promising candidate for further T cell engineering in ACT.

Along this line, a newly designed third generation of so-called armored CARs com-
prises so-called TRUCKs (T-cells Redirected towards Universal Cytokine Killing). CAR-T
cells that can home to the tumor have been employed to modulate the cytokine milieu in
the TME by creating an immune-activating positive feedback loop. Antitumor responses
and T cell expansion were augmented via either the constitutive or—to avoid systemic
toxicity—inducible secretion of, for instance, IL-12 [142–145], IL-18 [146], or IL-15 [147,148].
In that manner, CARs may become vehicles to switch the TME from an immunosuppressive
to a pro-inflammatory state in addition to their direct cytotoxic capacity.

Similarly, it is also possible to alter the effects of specific cytokines on CAR-T cells by
manipulating their response to these molecules. For example, hybrid receptors combin-
ing elements of IL-7- and IL-2-receptors were used to convert the signal of IL-7-binding
into the intracellular proliferative stimulus of IL-2 signaling cascades by simultaneously
circumventing the IL-2-induced formation of immunosuppressive regulatory T cell popula-
tions [149]. Immunosuppressive signals from the TME, similar to TGF-β, were attenuated
by introducing a dominant negative receptor (dnTGF-βRII) into CAR-T cells to intercept
TGF-β without inhibitory downstream signaling [139,150]. This was already tested in a
phase I clinical trial [151]. Moreover, costimulatory receptors or ligands, such as CD40L, can
be constitutively expressed on transgenic T cells augmenting tumor responses by engaging
with their counterpart [152]. Such approaches, however, must prove their clear superiority
in the patient compared to the second-generation CAR-constructs currently used in clinics.

Third, the forced local secretion of chemokines by the transgenic CAR-T cells themselves
is another strategy for attracting T cells to the tumor site in a positive-feedback loop. CCL19-
and CCL21-secreting CARs were reported to increase T cell infiltration into the tumor [153–155].
Additionally, in part, the first clinical results for CCL19-incorporation combined with IL-7
overexpression in CAR-T cells show an improved antitumor capacity [153].

3.2. Effectively Targeting and Eradicating Tumor Cells
3.2.1. TCR-T Cells and Peptide-MHC-Complexes
Target Identification

Once having left the blood vessel and reached the tumor site, the highly specific T cells
can only act upon the recognition of their cognate antigen—as outlined previously, a TAA,
CTA, or neoantigen. For TCR-based approaches, currently, the identification of suitable
target peptides presented on HLA-molecules remains a major challenge for the broader
application of ACT in solid tumors; unlike many hematological malignancies affecting one
cell lineage with distinct surface markers, there is no particular antigen overexpressed for
solid entities to be identified. This is underlined by the different strategies that some of the
largest TCR-T cell companies follow [156] (see also Table 1).

Independent of the kind of antigen, all TCR targets must be presented on an HLA-
molecule on the tumor cell surface to make the tumor detectable for T cells. Differences
in the individual tumor clones’ proteomes, and subsequently their immunopeptidomes,
develop during tumorigenesis. The loss of DNA integrity due to DNA damage and ineffi-
cient repair mechanisms leads to the acquisition and accumulation of somatic mutations
over time, resulting in a metabolic and proliferative potential to evolve into a tumor clone.
Within the adapting tumor and immune environment, natural selective pressure selects for
further subclones from the original combination of mutations [157–159].

For over-expressed self-antigens and CTAs, their detection within the tumor tissue
remains relatively simple, as it is based on methods such as immunohistochemistry (IHC),
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PCR, western blot, and targeted or whole exome sequencing (WES). For example, New
York Esophageal Squamous Cell Carcinoma-1 (NY-ESO-1), first described in a patient with
an esophageal carcinoma in 1997 [160], was found to be expressed in various other different
solid cancer entities, e.g., metastatic melanoma, synovial sarcoma, bladder cancer, head and
neck cancer, ovarian cancer, or medulloblastoma [161–166]. Multiple immunotherapeutic
approaches—TCR- and vaccine-based—have been launched since then, and epitopes of
NY-ESO-1 are considered some of the most immunogenic CTA-derived peptides [167].
However, the actual presentation of antigen-derived peptides on the tumor cell surface in
the individual patient cannot be distinguished by all the methods stated. These days, algo-
rithms based on the individual HLA-type of the patient predict which peptides are most
likely presented on the cell surface upon CTA expression [168,169]. However, expression
analyses thus far barely dissolve the single cell-level and therefore lack information about
CTA-peptide-presentation-negative tumor fractions. Since immunoediting due to therapeu-
tic or immunogenic selection pressure favors antigen-negative tumor clones, those might
remain unrecognizable for cognate TCRs, leading to refractory and relapsed disease stages.
The further development of methods for quantification of surface-expressed peptide-MHC-
complexes will thus be necessary to better understand the impact of molecular antigen
presentation and density on T cell functionality [170,171].

Moreover, inter- and intratumor heterogeneity raise the demand for highly person-
alized, precision medicine to an increasing degree when targeting neoantigens. Most
tumor mutations remain private and are specifically found within one patient. Therefore,
the enormous tumor specificity of neoantigens turns them into safe immunotherapeutic
targets, in theory. Since somatic mutations or posttranslational modifications lead to an
aberrant immunopeptidome, neoantigens are predicted based on the whole exome and
transcriptome sequencing of tumor tissue compared to normal body cells, as well as HLA-
binding affinities [168,169]. Their actual identification by mass-spectrometric (MS) analyses,
however, remains laborious and has limited sensitivity [172].

Furthermore, due to spatial and temporal genomic diversity between tumor clones
within one genetically unstable tumor, the likelihood of tumor-wide clonal antigen expres-
sion is reduced. Detected by sampling from several regions of the same tumor, it has been
reported that the local predominance of certain tumor subclones (with their individual
surface immunopeptidomes) leads to the regional expansion of disparate reactive T cell
clones. This is most likely occurs due to genetic determinants as well as in response to the
surrounding TME [173–175]. This underlines the need for the heterogeneity assessment
of tumors to detect important driver mutations and downstream broadly expressed and
probably promising peptide targets.

Neoantigens have been widely discussed in the context of immunotherapy over
the past few years, since a high tumor mutational burden (TMB) correlates with better
clinical outcomes upon immunotherapy, especially checkpoint inhibition [159,176]. At
the same time, McGranahan et al. reported for non-small cell lung cancer (NSCLC) that
it is not the pure quantity of neoantigens alone, but within a cohort of a high TMB the
homogenous, clonal neoepitope expression, which is associated with prolonged survival.
A highly heterogeneous distribution of neoantigen profiles correlated with deteriorated
outcomes. [159] Subclonal mutations, occurring only in a fraction of the tumor and often
selected during aggressive chemo- or radiotherapy regimens, may aggravate prognoses.
Not only does this stress the need for the better identification of clonally and subclonally
expressed neoepitopes that can predict the optimal antigen candidates for TCR-based ACT,
but it also questions the use of immunotherapy for solely relapsed, refractory patients.
By tracking the driver mutations shared between several patients, such as in PIK3CA,
the first examples of public neoantigens and cognate TCRs have been identified. They
carry implications for less personalized, off-the-shelf neoantigen-targeted ACT treatment
possibilities in the future [177]. However, to date, the search for public neoantigens has
been rather unsuccessful.
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HLA-Expression

Interestingly, the criteria of a high neoantigen load and intratumor homogeneity only
predicted therapy outcomes for unknown-stage lung adenocarcinoma (LUAD), not for
lung squamous cell carcinoma (LUSC), despite a similar neoantigen load in the studies of
the group around McGranahan. Most likely, a lower expression of HLA-molecules on the
tumor cell surface and aberrant antigen presentation mechanisms are responsible [159].
Immune escape by the downregulation of the antigen presentation machinery suggests a
further major challenge for TCR-based ACT apart from the identification of suitable target
structures; even if CTAs, self-antigens, or neoepitopes are present and identified in the
cancer cell, they are not necessarily presented on the cell surface—mostly a result of a high
immunologic selection pressure [178–181]. The irreversible structural, genomic loss of HLA
in a tumor cell is frequently caused by the loss of heterozygosity (LOH) of chromosome
6p21, harboring HLA-ABC, or LOH in chromosome 15, carrying the β2-microglobulin
(β2m) gene [182]. As they can only be corrected by replacing the defective gene, attempts
were made to recover HLA-I-expression by adenoviral vectors in cell lines. However, the
targeted expression in the tumor tissue of a patient could only be reached by the local
administration of such a vector into the lesion [183].

Otherwise, these irreversible mutations inevitably required MHC-independent treat-
ment. Either another immunogenic epitope, presented on a still-expressed HLA, must be
identified, or CARs, natural killer (NK) cells, or chemo- or radiotherapeutic approaches
may be more suitable to eliminating these tumor clones than TCRs. For example, the com-
plete loss of HLA type I-molecules and thereby those inhibitory to NK-cells (missing self)
renders tumor cells susceptible to NK-mediated killing [184]. However, a downregulation
without a complete loss avoids NK- and T cell-mediated immune surveillance [185]. If
abnormalities in antigen presentation remain reversible by cytokine administration, various
stimuli might be able to upregulate HLA expression. It has been shown, for instance, that
IFN-γ or TNF-α could upregulate HLA-expression and thereby contribute to more effective
immunotherapy [186–188]. In principle, it must again be stressed that an inflammatory
stimulus in the tumor tissue is necessary for increasing antigen presentation.

TCR Identification and Assessment

Tumor heterogeneity can be influenced only to a limited extent, and immune selection
pressure almost necessarily favors tumor clones with defective antigen presentation. Thus,
beyond attempts to engineer the TME, optimizing the living drug itself and its receptor is
necessary to support TCR-T cell ACT.

First, receptor composition matters; even assuming the targeting of a clonal mutation
present in all tumor cells that might be a driver of mutation in the tumor and therefore
be responsible for the tumor phenotype, one single TCR will most likely not be able to
durably eradicate the whole tumor without any escaping cancer clones. After successful
ICI therapy, there is an at least oligoclonal TCR repertoire expected to be tumor-reactive
in responding patients. Despite the difficulty in assessing their role in tumor debulking,
their increased abundance upon successful ICI therapy renders the contribution of all
expanded TCRs highly likely. [189] Therefore, it might be worth considering mimicking
polyclonality in TCR-based ACT and infusing a combination of different TCRs instead of
one alone. Bioinformatical methods could help to assess the clonality of antigen candi-
dates [190] and immunopeptidomics or RNA-sequencing could validate peptides beyond
prediction algorithms [172].

The identification of the respective TCRs for these mutations remains the second
current bottleneck for such an ACT pipeline. Seeking to overcome the low sensitivity
for the identification of small populations of tumor-specific TCRs within nonspecifically
expanded bulk TIL populations (in some cases up to 11% or more) or peripheral blood
mononuclear cells (PBMCs) (ranging between 0.002 and 0.4%) [191], single-cell sequencing
approaches have recently been launched to lower the detection limit for tumor-reactive
TCRs [63–65,192]. Transcriptomic signatures could be employed to identify tumor-reactive
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T cells amongst TILs, which can often be distinguished by effector and dysfunction markers,
and therefore broaden the number of receptors identified [63,65].

Influence of T Cell Stimulation Strength on T Cell Function and Presence within the Tumor

Assuming that TCR identification were to be facilitated, it will still be crucial to under-
stand which qualities of a TCR are associated with the most potent antitumor functions.
The paradigm of ACT throughout the past few decades has focused on increasing the
avidity of TCRs by affinity maturation procedures [193,194] since a high avidity is regarded
as the major predictive factor for tumor eradication. A higher avidity is associated with
higher activation levels, a stronger antitumor response, and more rapid cell lysis, even
at lower doses of antigen [195–198]. Nonetheless, TCR clonotypes with relatively lower
avidity levels are also able to expand in response to tumors and remain present at often
unexpectedly high frequencies in the TCR repertoire of some patients [63,199,200]. In fact,
excessively high levels of activation might overstimulate T cells and be associated with
an impaired proliferative capacity as well as dysfunction. For example, MAPK-signaling
was deteriorated by the overstimulation of T cells [201]. A “goldilocks” model for the
optimal T cell activation for in vivo settings has been suggested [202,203] and, recently, an
intermediate level of activation was described as capable of improving antitumor activity
in vivo [204]. Shakiba et. al. showed that the counter-intuitive removal of the CD8-domain
in T cells with a very strong initial level of activation, which thereby attenuated the signal
strength in the T cells in their system, enabled targeted cell killing [204]. Therefore, this
work challenged the current paradigms of avidity in ACT and asked the question: which
engineering efforts of the TCR and the co-signaling receptor repertoire might be fruitful?

The large influence of the addition of costimulatory domains onto T cells became
especially clear by CAR-T cell engineering [205]. In TCR-T cells to date, fusion receptors,
for instance, of extracellular TIGIT- and intracellular CD28-domains, were tested for de-
creasing inhibitory signals [206], while CD40L and CD28 were tested for increasing the
activation signals [207] on effector T cell populations. Such fusion receptors can be specifi-
cally designed for and adapted to the respective malignancies, responding to upregulated
inhibitory receptors deteriorating T cell functionality. This was exemplarily demonstrated
by attempts at fusing CD200R and CD28 domains for the treatment of AML, where CD200
(OX2) expression often dampens T cell responses [208]. CD19-directed CAR-like receptors
with costimulatory signaling domains, but no CD3ζ-chains were employed in the B cell enti-
ties to provide costimulatory signals to the T cells, circumventing the lack of corresponding
costimulatory ligands in most tumor entities [209]. However, studies such as the work of
Shakiba et al. [204] illustrated that simply increasing the activation level upon TCR ligation
might not necessarily strengthen functionality. Instead, all such engineering approaches
must be tightly balanced within and adapted to the existent system, where numerous
different factors influence T cell activation. These include TCR intrinsic properties, antigen
density, HLA-expression, the amount of tumor cells, activatory and inhibitory co-signaling
receptor–ligand interactions, and many other factors.

Administration of CD4-T Helper Cells

CD8+ T cells, naturally, were the focus of antitumor therapy due to their cytotoxic
capacities [210]. However, the reinfusion of CD4+ T cell products was demonstrated to
result in a partly impressive tumor regression, which pointed to the therapeutic potential
of CD4+ T cells [211,212]. On the one hand, they strongly trigger CD8-responses; CD4+ T
cells secrete IFN-γ upon antigen encounter, which in turn upregulates MHC-class I and II
molecules in the TME and especially on antigen-presenting DCs. They also interact with
APCs themselves through costimulatory interactions (e.g., CD40-L and CD40), activating
the DCs to migrate towards lymph nodes and present tumor antigens to CD8+ T cells [213].
Moreover, cytotoxic CD4+ T cell states can directly mediate antitumor responses [214–216];
however, such responses are MHC-class II-dependent, which is not expressed in most solid
tumor entities. The CD8-dependency of most MHC-class I-restricted TCRs complicates
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their use in CD4+-T cells [217]. Only a few clinical trials combining CD8+ and CD4+ T
cells for adoptive TCR-T cell transfer have been launched to date (e.g., NCT04639245). For
CAR-products used in the treatment of B cell lymphomas, an advantage of combination
products could be shown [218,219]. Therefore, the T cells’ help from CD4+ T cells could
support the eradication of the tumor and the recruitment of more CD8+ T cells by setting
an inflammatory stimulus.

CAR-T Cells in Solid Tumors: Armored CARs

In contrast to TCR-based ACT, it was much easier for CAR approaches to test the
above-mentioned combinations of CD4+ and CD8+ CAR-transgenic T cells, as both are able
to target the same antigen MHC independently. However, the success in solid tumors was
limited. It is assumed that, besides the lack of specific antigen, the cytokine-stimulation for
T cell activation lacks CAR-T cell signaling in solid tumors. Several groups have started
to equip a fourth generation of CAR constructs with additional features to increase their
safety, specificity, and activation strength. These features include reversible and irreversible
on-and-off switches, cytokine secretion elements, chemokine receptors, and more. These
“weapons” of the armored CARs have been reviewed elsewhere in more detail [220].

One impressive attempt to ameliorate tumor recognition was the employment of a
synthetically engineered form of the Notch protein, released from its membrane-anchor
by intramembrane proteolysis upon the extracellular binding of its cognate ligand. By
replacing the extracellular sensing domain, as well as the intracellularly released tran-
scriptional module, this technology was used to create new cell–cell interaction circuits,
allowing for even multiple different chimeric receptors per cell. The platform became
known as Synthetic Notch (synNotch) technology [221]. By applying this technology to
a defined set of several different antigens—which are not entirely tumor-specific on their
own, but in combination—the controlled local expression of a CAR can be achieved and
surface proteins that are not tumor-specific per se can be accessed, without the risk of
systemic toxicity. Meanwhile, the constant tonic signaling in the T cells due to the over-
expressed, constantly weakly stimulating CAR on its surface can be reduced and the cell
persistence improved [222].

Despite all engineering already performed on CAR constructs, phosphoproteomic
analyses of TCR- and CAR-T cells have highlighted the inability of CAR signaling to
entirely mimic physiological TCR signaling cascades. Salter et. al. [223] described, by
comparing ROR1-CAR and EBV-specific TCR-activated T cells, the lower phosphorylation
of the canonical T cell signaling molecules CD3δ, CD3ε, and CD3γ as well as a linker for the
activation of T cells (LAT) in CAR-cells. Consequently, they suggested the supraphysiologi-
cal phosphorylation of CD3ζ and CD28 to overcome unphysiological T cell activation [223].
They illustrated the level of highly fine-tuned engineering needed to precisely intervene in
signaling pathways and potentially improve CAR performance in solid tumors.

As the ultimate goal of a CAR-receptor is to simulate (or maybe even overtake) TCR
signaling, other CAR-approaches have coopted the endogenous TCR of a cell and used
the association of the natural CD3-complex with the TCR instead of CAR-intrinsic CD3-
chains to activate the T cell downstream. These T cell antigen coupler (TAC)-receptors
outperformed CD28-based CARs in a solid tumor model, exerting a more efficient tumor
rejection, reduced toxicity, and increased tumor infiltration [224]. Thus, on the one hand,
CARs demonstrated that T cells could be reprogrammed toward tumor rejection with a
construction kit of different receptor and signaling domains that could be systematically
exchanged and manipulated to optimize cellular activation. On the other hand, CAR-T cells
also underlined the enormous complexity of circuits activated downstream from a TCR,
which are neither fully understood nor easy to mimic in their entirety. It will be interesting
to see whether synthetically engineered CARs or naturally encoded TCRs will dominate
ACT in solid tumors in the future when the diversity of engineering strategies—some of
which are outlined above—have been tested in clinical studies to assess the superiority of
one approach over the other. In principle, all these manipulations launched in armored
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CAR-T cells could also be transferred to TCR-T cells, which could also shed more light on
the role of the receptor itself for the initial activation, persistence, and dysfunction.

Receptor Specificity: On- and Off-Target Dose-Limiting Toxicity

Specificity for the tumor tissue remains another major bottleneck for ACT regarding
dose-limiting toxicities. In the past, serious adverse events due to off-target toxicities of
TCRs occurred, such as neurotoxicity after a previously disregarded MAGE-A12 coexpres-
sion in the brain [56] or a cardiac failure due to a cross-reaction with an unrelated (titin-
derived) peptide in the heart [225]. These toxicities demonstrated the need for improved
screening methods for the potential cross-reactivity of TCR, which cannot be covered by
mouse models alone. Each small genetic variance between individuals can potentially
create epitopes, resulting in off-target toxicity. However, on-target off-tumor toxicity must
be considered when evaluating the safety of TCR-based therapies. For example, while
targeting TAAs such as MART1, patients suffered from uveitis and hearing loss due to
the destruction of normal melanocytes in the skin, eye, and cochlea [226], while severe
inflammatory colitis was observed during a treatment with carcinoembryonic antigen
(CEA)-specific TCRs [227].

The same risk for on-target off-tumor toxicity has been observed for CAR T cells. The
infusion of an ERBB2-targeting CAR into a colon cancer patient, which led to immedi-
ate severe respiratory distress and lethal cytokine release syndrome (CRS), impressively
demonstrates this. Dramatic pulmonary infiltrates suggested the recognition of low ERBB2-
levels on the lung epithelium as causal [228]. Therefore, one major goal of engineering
CAR-T cells is directed toward increasing safety through the inclusion of suicide domains
into CAR-constructs, such as inducible caspase 9 (iC9). By applying agents that bind to the
promotor regions of this gene, CAR-T cells are eliminated irreversibly from the patient; thus,
the severe side effects should be reduced [229]. For a more elegant application, reversible
control over CARs—on-and-off switch domains that temporarily inhibit CAR-signaling
but do not destroy them entirely—have been transduced to CAR-T cells [230,231]. These
approaches demonstrate the possibility of gaining more precise control over the doses
and toxicities of ACT. Further engineering of CAR platforms aims at increasing safety,
e.g., by the ligation of two different antigens in the target tissue or the introduction of an
interposed soluble adaptor module providing antigen specificity and a universal binding
motif recognized by CAR-T cells [232–234].

3.3. Overcoming T Cell Exhaustion and Dysfunction
3.3.1. Hostile Environment for T Cells in the Tumor

As stated earlier, TIL therapy not only impressively demonstrates the reinvigoration
of T cells towards antitumor activity but also poses the question of why these T cells could
not control the tumor in the first place. Beyond infiltrating the tumor, their high frequencies
in the TCR repertoire suggest that the TCR clones had most likely already recognized their
target. Still, these T cells became immunosuppressed in the TME at a certain point. Several
different immunosuppressive mediators (e.g., TGF-β, IL-10, prostaglandins, soluble FAS,
adenosine, and reactive oxygen species (ROS)) and ligands were secreted or expressed in the
TME by tumor cells, cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells
(MDSCs), tumor-associated macrophages (TAMs), neutrophils, mast cells, or Tregs [235].

Of these, the latter may be directly involved in the inhibition of effector T cell functions
via the inhibition of costimulatory signals of CD80 and CD86 on the DCs via CTLA4, com-
petitive IL-2 consumption by high-affinity IL-2 receptors (CD25), the secretion of inhibitory
cytokines such as TGF-β or IL-10, and further mechanisms [236]. Treg in the TME express
several surface markers, including CD25, CTLA4, PD-1, ICOS, GITR, CCR3, and CCR8.
These markers can be used to deplete Treg cells, which is primarily attempted by the use
of antibodies [236]. For example, CAR NK cells targeting CD25 have been tested with the
aim of depleting Treg populations and overcoming immune escape [237]. However, since
many of these surface receptors are shared with activated effector T cells, a more precise
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counteraction of Treg-associated immunosuppression is needed. By the CRISPR/Cas9-
mediated knockout of the endogenous TGF-β receptor II (TGFBR2) in CAR T cells, their
conversion towards Treg phenotypes can be prevented while increasing the in vitro and
in vivo effector function of these CAR T cells in TGF-β-rich TMEs [238]. As mentioned
earlier, introducing a dominant-negative TGF-β receptor lacking the intracellular signaling
motif, but directly competing with the wild-type receptor, could scavenge TGF-β and
prevent its immunosuppressive activity [139,150].

Furthermore, hypoglycemic and hypoxic conditions in the tumor detrimentally affect
T cell activation. Activated T cells switch from oxidative phosphorylation to glycolysis,
facilitating their fast proliferation and fiercely competing with tumor cells for glucose. A
lack of glucose results in lowered AKT/mTOR signaling, downregulated glucose receptor
1 (GLUT1)-expression, reduced glycolysis capacity, and lowered IFN-γ secretion [239].
Moreover, supported by the reduced uptake of glucose, mitochondrial fragmentation and
the production of large amounts of ROS metabolic impairment in CD8+ TILs has been
reported. This points to another important metabolic stressor for T cells in the TME:
oxidative stress [240]. To increase the protection of infused CAR-T cells from ROS-inflicted
oxidative stress, the coexpression of the hydrogen peroxide-reducing enzyme catalase, for
example, leads to improved proliferative and cytotoxic profiles in CAR-T cells [241]. This
implicates the potential metabolic switches might have for T cell engineering in the TME.

3.3.2. T Cell Exhaustion due to Chronic Activation

The factors described above support a hostile environment for intratumoral T cells by
counteracting their activity. However, constant TCR signaling itself might be one of the
most important factors impairing T cell fitness. Throughout recent years, more attention
has been paid to the investigation of dysfunctional T cell states in the TME. Transcriptomic
signatures of tumor-reactive TCR clonotypes have been explored on a single-cell level and
can be distinguished from virus-specific bystander T cell populations by the upregulation
of several inhibitory receptors and an overall dysfunction-associated signature [63,65].
Comparing the TME-setting to acute infections, the persistence of the antigen instead of its
clearance leads—similarly to chronic viral infections—to continuous TCR signaling, which
eventually exhausts T cells. This perhaps most prominent form of T cell dysfunction in the
tumor setting, termed T cell “exhaustion”, is generally defined by functional impairment
associated with an upregulation of inhibitory surface receptors such as PD-1, Tim3, Lag3,
or TIGIT [242,243]. Numerous investigations have categorized subgroups and precursor
populations within the exhausted T cells [244,245]. Recently, a four-stage model suggested
a transgression in a hierarchical order, dependent on the transcription factors TCF1, T-BET,
and TOX, from the TCF1+ progenitor toward terminally exhausted cells [245]. TCF1+, non-
exhausted, tumor-reactive T cell clonotypes were detected in the draining lymph nodes.
Direct migration to the tumor tissue suggested one possible source for the replenishment
of intra-tumoral T cell populations and posed the question of whether the non-exhausted
precursor population was situated in the tumor or in the surrounding lymph nodes [246].
To date, it remains elusive which T cell population in the TME exerts antitumor activity
most potently, which one replenishes the pool of tumor-reactive T cells, and whether those
two are identical. Determining both subsets will be crucial to improving engineering
strategies and tilting the balance in the TME back to T cell functionality.

3.3.3. T Cell Senescence

Dysfunction is not solely caused by exhaustion. It also appears in the context of
senescence. Since exhausted and senescent cells share several overlapping phenotypic and
functional features, such as a defective effector capacity, cell cycle arrest, and impaired
proliferation, it is hard to distinguish them from each other. In contrast to exhaustion,
senescence depends more on the replicative shortening of telomeres in the cell (replicative
senescence) or other external disruptive factors, resulting in cellular damage (e.g., DNA
damage, oncogenes, oxidative stress, chemotherapy, and mitochondrial dysfunction). Yet,
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the reasons for senescence are not fully understood [247,248]. Not surprisingly, the injection
of initially more stem-like, less differentiated and as such naïve stem cell memory or central
memory T cell populations (TN, TSCM or TCM) has been associated with improved therapy
outcomes due to increased T cell fitness [249,250]. Instead of enriching these populations,
other approaches try to retard T cell differentiation through the addition of PI3Kδ-inhibitors
during T cell culture, which at least partly restores functional capacity [251].

3.3.4. Strategies to Counteract T Cell Dysfunction

Since antigen encounter is necessarily linked to cellular differentiation, completely
preventing all forms of dysfunction will not be feasible. However, both forms of dys-
function in T cells are reversible up to a certain point, which bears therapeutic potential
through the reversion of T cell fates in the TME [252]. First, the intrinsic regulators of
exhaustion and senescence can be targeted to reverse cellular inhibition. The interactions
of inhibitory receptors upregulated during chronic TCR stimulation and their ligands in
the TME become known as immune checkpoints and various treatment regimens based
on ICI are already in the clinical stage. Programmed death receptor-1 (PD-1), which is
transiently upregulated during T cell activation [253], is the most illustrative example
of an inhibitory receptor that is consistently and highly expressed in exhausted T cells.
Its primary biological function is the maintenance of T cell responses within a desired
physiological range, preventing autoimmunity. According to its expression pattern, PD-1
primarily depicts a marker of activated T cells of which exhausted and thereby chronically
activated cells represent one group [254]. Upon binding to its ligands, namely, PD-L1 or
the lower expressed PD-L2, several intracellular mechanisms, which are not understood in
detail, dampen T cell effector functions. The involvement of tyrosine-protein phosphatases
SHP1 and SHP2 as well as a role of the phosphoinositide 3-kinase (PI3K), AKT, and RAS
pathways were reported, amongst other effects on T cell signaling [255,256]. Preventing
this receptor–ligand interaction by an administration of either PD-1- (pembrolizumab and
nivolumab) or PD-L1- (avelumab or atezolizumab) blocking antibodies could achieve a
convincing prolongation of progression-free survival (PFS) in multiple clinical trials across
different entities [2,3,257–260].

However, monotherapy with PD-1 blockade alone generally does not lead to durable
remissions in most malignancies. In advanced melanoma, for example, a combination
therapy of nivolumab and ipilimumab performed better. [261,262] The latter is a blocking
antibody for cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), dampening T cell
activation by competition with the costimulatory molecule CD28 for its ligands (B7-1/CD80
and B7-2/CD86) and thereby depriving T cells of important costimulatory signals [263].
This superiority of combination therapy is not surprising, considering the compensatory
upregulation of other non-redundant inhibitory receptors upon the blockade of one single
inhibitory pathway [264,265].

Since it has been suggested that ICI therapies unleash T cell activity within the preex-
istent tumor-specific repertoire, it was reasonable to test those agents in combination with
adoptively transferred T cells. Preclinical studies combining CAR-T cells and PD-1 block-
ade resulted, in some studies, in enhanced proliferation and effector functions (e.g., IFN-γ
production and granzyme B expression) [266,267], while pembrolizumab reinvigorated al-
ready exhausted CAR-T cells [268]. Nonetheless, preclinical data substantiating an effect of
anti-PD-1 antibodies on adoptively transferred T cells are currently lacking. Several clinical
studies for testing the combination of systemically administrated checkpoint inhibitors and
CAR-T cell therapies have been launched to date (see Table 2). While some of these trials
yielded promising responses, a PD-1 blockade could not further enhance T cell expansion
or tumor regression in others [269,270]. Since the systemic administration of checkpoint
inhibitors comes at the expense of several toxicities [271,272], other forms of administration
might be considered. The local production of PD-L1 antibodies delivered by an oncolytic
adenovirus in the TME enhanced CAR-T cell killing [273]. Further combining this approach
with a CD44v6-specific BiTE and the immunostimulatory IL-12—all expressed by the same
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virus—significantly improved tumor control, mediated by HER2-specific CAR T-cells and
non-transgenic native TCRs engaged via the BiTE included [274]. This impressive number
of combined therapeutic approaches underlines the relevance of combinatorial approaches,
owing to the fact that no single cancer immunotherapy will likely defeat all the evasion
mechanisms of solid tumors on its own.

Table 2. Selected clinical studies for combinatorial treatment of solid tumors: CAR-T cells and
immune checkpoint inhibition (information from clinicaltrials.gov).

CAR Target CAR-
Elements

Checkpoint
Inhibitor Entity Sponsor Phase n 1 Start Study ID 2 Ref.

CART-
EGFRvIII EGFR 41BB Pembrolizumab glioblastoma University of

Pennsylvania I 7 2019 NCT03726515

iC9.GD2-CAR3 GD-2

CD28
OX40

+
iCaspase9

Pembrolizumab neuroblastoma Baylor College
of Medicine I 11 2013 NCT01822652 [270]

HER2-CAR T HER2 CD28 Pembrolizumab/
Nivolumab sarcoma Baylor College

of Medicine I 25 2021 NCT0499500/
HEROS 3.0

iCasp9M28z MSLN
CD28

+
iCaspase9

Pembrolizumab

malignant
pleural disease,
mesothelioma,
lung Cancer,

breast Cancer

Memorial Sloan
Kettering

Cancer Center
I/II 113 2015 NCT02414269 [275]

IL13Ra2-CAR IL13Rα2
41BB

+ truncated
CD19

Nivolumab +
Ipilimumab glioblastoma City of Hope

Medical Center I 60 2019 NCT04003649

1 estimated number of patients enrolled or to be enrolled at the time of publication of this review, 2 source:
clinicaltrials.gov.

Instead of a systemic or local administration of blocking antibodies, T cell-intrinsic
engineering strategies could also aim at unleashing antitumor effector functions. Some
examples for fusion receptors of TIGIT or CD40L and CD28 [206,207] have been outlined
above. Beyond manipulating single extracellular receptors, various preclinical models have
investigated the manipulation of whole transcription factor axes for ACT. Mackall and col-
leagues forced the overexpression of c-Jun in CAR-T cells, leading to exhaustion resistance
with reduced PD-1- and CD39-expression, as well as enhanced functional capacities by
the direct activation of AP-1 [276]. In another example, TOX- and NR4A-deletion—both
involved in a positive feedback loop inducing exhaustion in PD-1high TIM-3high CAR-T
cells—increased cytokine secretion and decreased inhibitory receptor expression. [277] The
various pathways of T cell signaling potentially useful as adjustment screws in improving
ACT approaches, have been reviewed elsewhere in more detail [278].

The first pilot trial of CRISPR-Cas9-engineered NY-ESO-1-TCR-transgenic T cells infused
into patients within a clinical study was recently published by Stadtmauer et. al. [279]. On
top of deleting the α- and β-chain locus of the endogenous TCR of these T cells to reduce
the mispairing of TCR chains, PD-1 was knocked out (KO) in these T cells. In previous
publications, PD-1-deficient CAR-T cells were shown to exert a superior antitumor function
in xenograft mouse models [280,281]. Yet, in this study, the contraction of putative PD-
1 KO-T cells identified by sequenced editing events in the gene from 25% to 5% of all
T cells within four months after an adoptive T cell transfer rather suggests a deficit in
longevity [279]. Other publications assigned a critical role to PD-1 in limiting the early
overactivation and promoting the stability of exhausted T cell responses to chronic antigen
exposure [282]. Inhibitory receptors, such as PD-1 or LAG-3, upregulated on T cells upon
activation—transiently during early activation and permanently in exhausted cells—may
be essential as a rheostat function for T cells [283,284].

So far, most engineering strategies in adoptive T cell transfer aimed at an increase in
the activation potential and stimulation to in turn increase antitumor response. Still, it was
reported that the exhaustion and dysfunction in T cells was determined by the initial T cell
activation early after antigen encounter [285]. As mentioned earlier, Shakiba et. al. recently

clinicaltrials.gov
clinicaltrials.gov
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showed that the TCR stimulation strength was responsible for the maintenance of T cell
effector function and that overly high and overly low stimuli impaired functionality [204].
The group suggested an intermediate stimulation level as optimal for the preservation of T
cell populations and questioned the design of T cell engineering strategies, which could
be highly dependent on the individual TCR employed for ACT in its interplay with the
tumor cells [own unpublished data]. An increase in T cell activation might be beneficial
for some TCRs (or CARs) as well as for initial effector function and tumor rejection, which
require strong T cell activation. On the other hand, this could come at the expense of
impairing T cell longevity. The long-term maintenance of T cell populations and durable
tumor-control in the patient were still highly limited throughout the clinical studies for ACT,
even amongst the most immunogenic entities [286]. It is possible that both require a much
finer, more precise modulation of T cells (e.g., in TCR strength, the interplay of activatory
and inhibitory cosignaling molecules) with respect to antigen density and co-signaling
molecules expressed by the tumor. Modifications of therapy regimens (e.g., multiple
infusion timepoints with differently modified T cells) may help sustain T cell functionality.

4. Conclusions

Despite the substantial progress in ACT over the past several years, solid tumors
remain a major challenge. At best, the current technologies help to debulk the tumor
burden, but permanent complete remissions are still rarely observed. Most likely, a single
receptor—TCR or CAR—or even several will not be able to eradicate an entire tumor
without immune escape. Therefore, setting an inflammatory trigger in the TME that results
in the reinvigoration of endogenous adaptive and innate immune responses will be an
important aim for T cell-based ACT in solid tumors. So far, we have not found a “master
solution” for permanently tilting the equilibrium in the TME back to tumor control, and it is
probable that no single therapeutic regimen will fit every patient. However, the multitude
of engineering strategies for TME, as well as transferred T cells themselves, of which some
were outlined in this review, show great potential for combinatorial treatment strategies.
Tedious strategic preclinical and clinical assessments of all these tools will be necessary to
find synergisms and will gradually pave the way for transgenic T cells into solid tumors.
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3. Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al.
Five-Year Outcomes with Pembrolizumab Versus Chemotherapy for Metastatic Non-Small-Cell Lung Cancer with PD-L1 Tumor
Proportion Score ≥ 50. J. Clin. Oncol. 2021, 39, 2339–2349. [CrossRef] [PubMed]

4. Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.;
Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019,
381, 1535–1546. [CrossRef]

5. Mack, M.; Riethmüller, G.; Kufer, P. A small bispecific antibody construct expressed as a functional single-chain molecule with
high tumor cell cytotoxicity. Proc. Natl. Acad. Sci. USA 1995, 92, 7021–7025. [CrossRef]

http://doi.org/10.1038/s41590-019-0312-6
http://www.ncbi.nlm.nih.gov/pubmed/30778252
http://doi.org/10.1093/annonc/mdw174
http://www.ncbi.nlm.nih.gov/pubmed/27117531
http://doi.org/10.1200/JCO.21.00174
http://www.ncbi.nlm.nih.gov/pubmed/33872070
http://doi.org/10.1056/NEJMoa1910836
http://doi.org/10.1073/pnas.92.15.7021


Cancers 2022, 14, 4192 21 of 33

6. Viardot, A.; Goebeler, M.E.; Hess, G.; Neumann, S.; Pfreundschuh, M.; Adrian, N.; Zettl, F.; Libicher, M.; Sayehli, C.; Stieglmaier,
J.; et al. Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B-cell
lymphoma. Blood 2016, 127, 1410–1416. [CrossRef]

7. Garfall, A.L.; June, C.H. Trispecific antibodies offer a third way forward for anticancer immunotherapy. Nature 2019, 575, 450–451.
[CrossRef]

8. Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.;
Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377,
2531–2544. [CrossRef]

9. Davila, M.L.; Riviere, I.; Wang, X.; Bartido, S.; Park, J.; Curran, K.; Chung, S.S.; Stefanski, J.; Borquez-Ojeda, O.; Olszewska,
M.; et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med.
2014, 6, 224ra25. [CrossRef]

10. Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers,
G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378,
439–448. [CrossRef]

11. Munshi, N.C.; Anderson, L.D., Jr.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al.
Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [CrossRef]

12. Morgan, R.A.; Dudley, M.E.; Wunderlich, J.R.; Hughes, M.S.; Yang, J.C.; Sherry, R.M.; Royal, R.E.; Topalian, S.L.; Kammula, U.S.;
Restifo, N.P.; et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006, 314, 126–129.
[CrossRef]

13. Kershaw, M.H.; Westwood, J.A.; Parker, L.L.; Wang, G.; Eshhar, Z.; Mavroukakis, S.A.; White, D.E.; Wunderlich, J.R.; Canevari,
S.; Rogers-Freezer, L.; et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin.
Cancer Res. 2006, 12, 6106–6115. [CrossRef]

14. Rosenberg, S.A.; Yang, J.C.; Sherry, R.M.; Kammula, U.S.; Hughes, M.S.; Phan, G.Q.; Citrin, D.E.; Restifo, N.P.; Robbins, P.F.;
Wunderlich, J.R.; et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer
immunotherapy. Clin. Cancer Res. 2011, 17, 4550–4557. [CrossRef]

15. Robbins, P.F.; Kassim, S.H.; Tran, T.L.N.; Crystal, J.S.; Morgan, R.A.; Feldman, S.A.; Yang, J.C.; Dudley, M.E.; Wunderlich,
J.R.; Sherry, R.M.; et al. A Pilot Trial Using Lymphocytes Genetically Engineered with an NY-ESO-1-Reactive T-cell Receptor:
Long-term Follow-up and Correlates with Response. Clin. Cancer Res. 2015, 21, 1019–1027. [CrossRef]

16. Pagès, F.; Berger, A.; Camus, M.; Sanchez-Cabo, F.; Costes, A.; Molidor, R.; Mlecnik, B.; Kirilovsky, A.; Nilsson, M.; Damotte,
D.; et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med. 2005, 353, 2654–2666.
[CrossRef]

17. Fuchs, T.L.; Sioson, L.; Sheen, A.; Jafari-Nejad, K.; Renaud, C.J.; Andrici, J.; Ahadi, M.; Chou, A.; Gill, A.J. Assessment of
Tumor-infiltrating Lymphocytes Using International TILs Working Group (ITWG) System Is a Strong Predictor of Overall Survival
in Colorectal Carcinoma: A Study of 1034 Patients. Am. J. Surg. Pathol. 2020, 44, 536–544. [CrossRef]

18. James, F.R.; Jiminez-Linan, M.; Alsop, J.; Mack, M.; Song, H.; Brenton, J.D.; Pharoah, P.D.P.; Ali, H.R. Association between tumour
infiltrating lymphocytes, histotype and clinical outcome in epithelial ovarian cancer. BMC Cancer 2017, 17, 657. [CrossRef]

19. Mlecnik, B.; Tosolini, M.; Kirilovsky, A.; Berger, A.; Bindea, G.; Meatchi, T.; Bruneval, P.; Trajanoski, Z.; Fridman, W.H.; Pagès,
F.; et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction.
J. Clin. Oncol. 2011, 29, 610–618. [CrossRef]

20. Al-Shibli, K.I.; Donnem, T.; Al-Saad, S.; Persson, M.; Bremnes, R.M.; Busund, L.T. Prognostic effect of epithelial and stromal
lymphocyte infiltration in non-small cell lung cancer. Clin. Cancer Res. 2008, 14, 5220–5227. [CrossRef]

21. Mahmoud, S.M.; Paish, E.C.; Powe, D.G.; Macmillan, R.D.; Grainge, M.J.; Lee, A.H.; Ellis, I.O.; Green, A.R. Tumor-infiltrating
CD8+ lymphocytes predict clinical outcome in breast cancer. J. Clin. Oncol. 2011, 29, 1949–1955. [CrossRef]

22. Fridman, W.H.; Pagès, F.; Sautès-Fridman, C.; Galon, J. The immune contexture in human tumours: Impact on clinical outcome.
Nat. Rev. Cancer 2012, 12, 298–306. [CrossRef]

23. Hamann, D.; Baars, P.A.; Rep, M.H.; Hooibrink, B.; Kerkhof-Garde, S.R.; Klein, M.R.; van Lier, R.A. Phenotypic and functional
separation of memory and effector human CD8+ T cells. J. Exp. Med. 1997, 186, 1407–1418. [CrossRef]
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