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Data-mining techniques for image-
based plant phenotypic traits 
Identification and Classification
Md. Matiur Rahaman  1,2, Md. Asif Ahsan1 & Ming chen1*

Statistical data-mining (DM) and machine learning (ML) are promising tools to assist in the analysis 
of complex dataset. In recent decades, in the precision of agricultural development, plant phenomics 
study is crucial for high-throughput phenotyping of local crop cultivars. Therefore, integrated or a new 
analytical approach is needed to deal with these phenomics data. We proposed a statistical framework 
for the analysis of phenomics data by integrating DM and ML methods. The most popular supervised ML 
methods; Linear Discriminant Analysis (LDA), Random Forest (RF), Support Vector Machine with linear 
(SVM-l) and radial basis (SVM-r) kernel are used for classification/prediction plant status (stress/non-
stress) to validate our proposed approach. Several simulated and real plant phenotype datasets were 
analyzed. The results described the significant contribution of the features (selected by our proposed 
approach) throughout the analysis. In this study, we showed that the proposed approach removed 
phenotype data analysis complexity, reduced computational time of ML algorithms, and increased 
prediction accuracy.

Phenomics technologies have been rapidly developed in plant science. They provide a great potential to gain 
more valuable information than traditionally destructive methods of plant phenotyping. It carried out large-scale 
plant phenotyping facilities that acquire a large number of images of hundreds of plants simultaneously. With the 
aid of automated image processing, the phenotype-image data are converted into phenotype-feature matrices1. 
It is a great challenge to find a suitable techniques or methodologies to analysis phenotype data in the context of 
high-throughput phenotyping. However, extracting data patterns, data assimilation, and features (traits) identi-
fication from this large corpus of data requires the use of data mining (DM) and machine learning (ML) tools1–3. 
Supervised and unsupervised DM and ML algorithms are promising tools to assist in the analysis of complex data 
sets; novel approaches are needed to apply them on phenotyping data of mature plants4.

In agricultural development, there is a demand to control diseases and numerous stresses to maintain food 
quality worldwide and to reduce food-borne illness originated from infected plants. A wide variety of plant 
stresses and diseases caused by the environmental factors, for example, light quantity, light quality, CO2, nutri-
ents, air humidity, water, temperature, drought, salinity or other organisms such as fungi, bacteria, and viruses. 
They hinder agricultural development by disturbing grain production and quality through competing with these 
factors. Thus, it is important to detect and classify the plant infestations5.

Supervised ML methods are useful for biological and plant image analysis1,4,6–9. Linear Discriminant analysis 
(LDA) is a popular supervised ML method widely used for biomedical data classification5,10,11. Among the super-
vised ML algorithms, Random Forest (RF) is a non-parametric method has been applied in several biological 
fields for gene selection, protein sequence selection and disease prediction12–14. RF has been used for accurate 
prediction of plant biomass from image-based features9. Support Vector Machine (SVM) is another powerful 
supervised ML method which can be trained to classify individuals in high-dimensional space15. SVM has been 
widely used in the various biomedical fields as well as neuro-image classification, plant image classification, bio-
mass prediction, stress plant identification based on image-derived features9,16–19. In most cases, symptoms of 
stress and disease in plants result are the change of the plant color9,10. ML approaches can be used to classify 
color-related traits, which obtain from the plant phenotype image pixels under the biotic and abiotic conditions1.

In high-throughput plant studies, most informative phenotypic traits offer better data analysis results. Plant 
biologists train classification model; however need to improve the training data by inspection of the significant 

1Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China. 
2Department of Statistics, Faculty of Science, Bangabandhu Sheikh Mujibur Rahman Science & Technology 
University, Gopalganj, 8100, Bangladesh. *email: mchen@zju.edu.cn

open

https://doi.org/10.1038/s41598-019-55609-6
http://orcid.org/0000-0001-9799-9364
mailto:mchen@zju.edu.cn


2Scientific RepoRtS |         (2019) 9:19526  | https://doi.org/10.1038/s41598-019-55609-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

phenotypic traits. Identifying candidate traits from ten to hundred or even more image-derived phenotypic traits 
for QTL (quantitative traits locus) or GWAS (genome-wide association study) study is also an important chal-
lenging research topic to bridge the genotype-phenotype gap9. This analysis is highly essential in resisting envi-
ronmental stress rates in agronomic importance20–22. Traditional statistical methods are extensively used to deal 
with genomic data analysis1. A powerful statistical approach or analytical framework is essential for describing 
crop cultivars by integrating traditional or novel methods with the complex traits set4.

In this study, we propose a statistical framework for quantitative image data pre-processing, and improve the 
training dataset for estimating ML model by inspecting important phenotypic traits using DM technique. We 
explore how performance varies with the selected number of traits, and investigate the performance of each ML 
method (classifier) mentioned earlier. We used plant phenotype dataset that has different types of phenotypic 
features (geometrical and physiological). We also used cross-validation technique, which is important because it 
is needed to evaluate the performance of a classifier, and needs to be done many times in training a classifier in an 
iterative fashion. The next part describes the dataset, the approach and the supervised ML methods used in this 
study. The last part consists of results and discussions.

Materials and Methods
Data description. Simulated data. To investigate the performance of ML methods based on selected fea-
tures through our proposed approach, we generated simulated training and test dataset from m = 2 (Π1 and Π2) 
multivariate normal distributions and the data structure is:

D n N V n N V: ( , ), ( , )p p1 1 1 1 2 2 2 2µ µΠ ∼ Π ∼ .

Where n1 and n2 are the numbers of individuals; N V( , )p 1 1µ  and µN V( , )p 2 2  are p-variate normal distributions with 
mean vector μ1 and μ2, and covariance matrix V1 and V2, respectively. We considered here, V1 = V2 = V; and 
μ2 = μ1 + ϵ with ϵ = 0, 1,…, 10 such that μ1 = μ2 for ϵ = 0, otherwise μ1 ≠ μ2, where the scalar quantity ϵ denotes 
the common difference between two corresponding mean components of μ1 and μ2. We considered constant 
covariance matrices for the normal populations and the generated data vectors are arranged in a n × p matrix to 
obtain training and test data sets respectively, where n = n1 + n2.

Plant phenomics data. The Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 
Germany has generated a high-throughput phenomics dataset. We downloaded the quantitative phenomics data-
set from http://iapg2p.sourceforge.net/modeling/#dataset, and the details description of this dataset is available at 
Chen et al.9. The summarized description of the dataset according to the Chen et al.9 as follows:

A mini core set of 16 German two-rowed spring barley cultivars and two parents of a DH-mapping popu-
lation (cv Morex and cv Barke) were screened. Plants grew under controlled greenhouse conditions and were 
phenotyped using the automated LemnaTec-Scanalyzer 3D (LemnaTec GmbH, Aachen, Germany) phenotyping 
and imaging platform consisting of conveyor belts, a weighing and watering station, and imaging sensors. The 
experiments were performed under two treatments: well-watered (control treatment) and water limited (drought 
stress treatment). Drought stress was imposed by intercepting water supply from 27 days after sowing until days 
44. Stressed plants were re-watered at days 45. Control plants remained well watered. After the stress period 
(27–44 days), all plants were watered to 90% field capacity (FC) and kept well-watered again until the end of the 
experiment. The greenhouse growth conditions were set to 18 °C and 16 °C during the day and night, respectively. 
The daylight period lasted ~13 h started at 7 AM. During each treatment, six plants per DH parent and nine plants 
per core set cultivar were tested. For each plant, top and side cameras were used to capture images daily at three 
different wavelength bands: visible light, FLUO, and NIR.

Chen et al.9 performed image analysis through IAP software to extract quantitative information from the 
barley plant images23. Images were exported and analyzed using the barley analysis pipeline with optimized 
parameters. Image processing operations included steps: pre-processing, to prepare the images for segmentation; 
segmentation, to divide the image into foreground and background parts of the images, and feature extraction. 
The analyzed features were exported in .csv file format.

phenomics data processing and features selection. We proposed a statistical framework (Fig. 1) 
which is depicted in two phases: (a) Processing and (b) Ranking. A description of the framework elements are 
given below.

(a) Data pre-processing and features selection (Processing). Given a set of phenotype data Ωn, we need to set data 
configuration based on color, shape structure, genotype, etc. for plotting and frequently used in the analysis. 
After that data filtering is needed, for example, removing ‘0’ values (in the image data are empty values), out-
lier detection, trait reproducibility assessment. For outlier detection, Grubbs test24 is a useful method based on 
assumption of the normal distribution of phenotype data points for repeated measures on replicated plants of a 
single genotype for each trait9. Bonferroni Outlier Test is another outlier detection method for identifying outliers 
from the image dataset, and need to remove outliers that could bias the results25. Then feature processing needs to 
continue, reasoned that phenotypic information should be more robust and informative. Features reproducibility 
test can be evaluated by the Pearson correlation coefficient. Resulting data sets may contain redundant features 
that are correlated with each other. To remove this problem and feature selection, stepwise variable selection 
using variance inflations factors9, principal component analysis25, RF4 are useful methods to get an optimal set of 
meaningful features.

https://doi.org/10.1038/s41598-019-55609-6
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(b) Features ranking by SVM-RFE (Ranking). In this step, we have described phenotypic features ranking pro-
cedure using a ML method called Support Vector Machine-Recursive Feature Elimination (SVM-RFE). The 
SVM-RFE algorithm is an iterative procedure for SVM. A cost function β computed on training samples is used as 
an objective function. Expanding β in Taylor series to the second-order using the OBD algorithm26, and neglect-
ing the first order-term at the optimum of β, yielding:

β
δ β
δ

∆ = ∆i
w

w( ) 1
2

( )
i

i

2

2
2

Here, wi
2 was used as a ranking criterion27,28. We present below the outlines of the SVM-RFE for phenotype 

dataset as follows:
Features Ranking

Figure 1. Framework of plant phenotype image-based traits (features) selection.

Rank Features Accuracy

ML Methods 10% 20% 30% 40% 50% All features (100%)

LDA 98.21 98.87 99.41 99.63 99.86 100.00

RF 97.30 97.56 97.70 97.78 97.81 97.90

SVM-l 98.08 98.65 99.07 99.22 99.39 99.53

SVM-r 97.88 98.34 98.55 98.61 98.67 98.53

Table 1. Average classification accuracy (%) of the simulated data (p = 25) subjected to 100 repeats of 10-cross-
validation based on rank features.

https://doi.org/10.1038/s41598-019-55609-6
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Supervised machine learning methods. Supervised learning have input variables (x) and an output var-
iable (y) and we use an algorithm to learn the mapping function from the input to the output.

y f(x)=

The goal is to approximate the mapping function. When we have new input data (x) that we can predict the 
output variables (y) for that data. It is called supervised learning because the process of an algorithm learning 
from the training dataset. The algorithm iteratively makes predictions on the basis of training data and learning 
stops when the algorithm achieves an acceptable level of performance.There is no single supervised ML (clas-
sification) algorithm which outperforms on all datasets. Every classification method has its own strengths and 
limitations29,30. From the literature review, in this study, we have tested popular three ML algorithms for classifi-
cation: Linear Discriminant Analysis (LDA); Random Forest (RF); and Support Vector Machine (SVM). SVM we 
differentiated based on linear and radial basis kernel functions. These algorithms belong to the type of supervised 
classification require of a training stage before performing the classification process. The details of the implemen-
tation and tuning of the parameters of these classifiers are as follows:

•	 Linear Discriminant Analysis (LDA): Linear Discriminant Analysis is a useful ML algorithm when features 
are linearly independent and normally distributed. LDA tries to maximize the separation between classes by 
estimating class boundedness as a linear combination of the features. It does not need parameter tuning. We 
choose this supervised classifier because it is conventionally considered to be a good benchmark classifier31. 
R package MASS is used for LDA method.

•	 Random Forest (RF): Random forest is a classifier that consists of many decision trees. It outputs the class 
that is the mode of the classes output by individual trees. To achieve excellent performance, RF requires tun-
ing parameter, mtry, the number of input features tried at each split for building each tree4,12,32. We used the 
cforest function in the R Party package and, mtry = p was tuned, where p is the amount of selected phenotypic 
features.

•	 Linear support vector machine (SVM-l): Linear support vector machine is used for large data sets where 
with/without nonlinear mapping gives similar performance31,33. To reduce training and testing times, SVM-l 
requires only one hyper parameter C. The search for the optimal hyper parameter C was performed on values 
C ∈ [20, 21, …, 24].

•	 Support vector machine with radial basis function (SVM-r): Generally, the Support vector machine with 
radial basis function classifier is better in performance and is tolerant to irrelevant and interdependent fea-
tures31,33. SVM-r is a useful method when data is not linearly separable but slower because of the hyper 
parameters C and γ optimization problem. For a selection of parameters C and γ, parameter tuning was 
performed on values C ∈ [20, 21,…, 24] and γ ∈ [2−8, 2−7, …, 1].

R package e1071 is performed for SVMs implementation. We have repeated simulated and real datasets sub-
jected to 100 repeats of 10-cross-validation throughout the analysis.

Results
Simulated data results. We analysis simulated dataset where n1 = n2 = 150; p = 25, 50, 100 for evaluating 
the performance of rank features during the classification. The classification accuracy of 10% to 50% rank features 
and all features were evaluated.

When the considered features p = 25, Table 1 shows that the classification accuracy is around 98% for only 
10% rank features. We calculated classification accuracy for 20%, 30%, 40%, 50% rank features. All has provided 
almost same classification accuracy like a non-rank all features. Here, up to 50% rank features have reduced 
and provided good results (≥98%). The more features means more complexity during training the model, and 

1. Procedure: Process (Ω, K)

Where Ω is phenotypic traits space, K is the set of labels (treatment or genotype)

2. Ψs ← Trait Selection (Ω, K)

3. Inputs: Training sample (Processed phenotypic image dataset)

= … …Ψ Ψ Ψ Ψ× × × ×X x x x x[ , , , , , ]x s k s n s
T

0 1 2

4. Group labels K = {0,1,…m}

5. Initialize: Ψs = [1, 2,…, p]; surviving traits

6.          Trait ranked list, r = []; Repeat until ψs = []

7.          α ← svm-train(X0, K); train the classifier.

8.       w ← α∑ X Kt t t t; the weight of each selected trait of t-th training pattern.

9.    Ri ← (wi)2, ∀ i; ranking criteria for the i-th trait.

10.    g ← argmin(R); trait with the lowest ranking.

11.   r ← [Ψs(g), r]; renew the trait-ranking list.

12.   Ψs ← Ψs (1:g-1, g + 1:length(ψs)); eliminate the trait with lowest ranking.

13. return ()

14. End procedure.

https://doi.org/10.1038/s41598-019-55609-6
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sometimes it provides misleading results due to the lack of meaningful features in the dataset. Figure 2 is an illus-
tration of the performance of the number of percentages of rank variables based on computational times. It indi-
cates that, as the percentage of the variable increases, the computational time also increases. However, from 10% 
to 50% rank features based classification model computational time is much lower than that the computational 
time of the model which contains all the features, but performance is similar.

For p = 50, 10% rank features classification accuracy is more than 90%, 20% rank features classification accu-
racy is around 93%, 30% rank features classification accuracy is 93%, 40% and 50% rank features classification 
accuracy are almost same as like as without rank features for all ML methods except RF. But RF accuracy is more 
than 91% (Table 2).

When p = 100, all the ML methods prediction accuracy was more than 80% with 10% rank features. We 
increased the percentage of the rank features, and then prediction accuracy also increased. When we choose rank 
features up to 50%, LDA and SVM-l accuracy are more than 90%. However, when we used all the features during 

Figure 2. Performance of the number of percentage of the rank features according to the computational time.

Rank Features Accuracy

ML Methods 10% 20% 30% 40% 50% All features (100%)

LDA 91.97 93.29 94.32 95.19 95.78 100.00

RF 91.15 91.48 91.66 91.73 91.79 91.91

SVM-l 91.82 92.90 93.62 94.23 94.73 95.07

SVM-r 91.48 92.62 93.33 93.67 93.75 93.13

Table 2. Average classification accuracy (%) of the simulated data (p = 50) subjected to 100 repeats of 10-cross-
validation based on rank features.

Rank Features Accuracy

ML Methods 10% 20% 30% 40% 50% All features (100%)

LDA 84.97 87.23 89.30 91.10 92.43 94.88

RF 83.55 83.80 83.89 83.92 83.87 83.87

SVM-l 84.49 86.53 88.21 89.50 90.39 91.45

SVM-r 84.42 86.78 88.03 88.62 89.04 87.21

Table 3. Average classification accuracy (%) of the simulated data (p = 100) subjected to 100 repeats of 
10-cross-validation based on rank features.

https://doi.org/10.1038/s41598-019-55609-6
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classification, the prediction accuracy was equivalent to the 50% rank features. The classification accuracy of all 
the ML methods for p = 100 is shown in Table 3. In the simulation study, it was also noticeable that, among the 
ML algorithms RF prediction accuracy has decreased only when the number of variables in the dataset increased 
(p = 100). Otherwise, their performance was almost similar in all cases.

This classification accuracy we have obtained based on the mean difference of populations (m) which was 9 to 
10 by 0.01. We have generated simulated data 100 times and taken average corresponding ML methods classifi-
cation accuracy. Since simulation study proved that up to 50% rank features prediction accuracy is almost same 
when we are using all the non-rank features. Therefore, we used up to 50% rank features after processing real data-
set for plant status detection, and validating/evaluating the performance of the rank features based on prediction 
accuracy of the ML methods used in this study.

Figure 3. Plant phenotype dataset. Dataset preparation based on features categories of two plant growing 
period.

Figure 4. Performance of rank features for stress period data set. ‘Geo’ is geometrical, ‘Phy’ is Physiological and 
‘Geo + Phy’ is combined Geometrical and Physiological features.

https://doi.org/10.1038/s41598-019-55609-6
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Real data results. We analysis two growing period (stress period and recovery period) plants phenotype 
datasets, and divided it into six datasets based on phenotypic traits category. The last day of stress and recovery 
period datasets with geometrical (Geo) and physiological (Phy) traits has been analyzed (Fig. 3). These datasets 
have processed and obtained meaningful traits by following the first phase of our proposed framework (pro-
cessing) summarized from Chen et al.9. Then we ranked (the second phase) ‘geometrical’, ‘physiological’ and 
‘geometrical + physiological’ traits, and evaluate the selected traits (features) performance by the prediction of 
plant status (stress/non-stress).

Using k-fold cross-validation method, we split the dataset and k-1 set data was used for the training model, 
and rest set of data was used for testing, here k = 10. This procedure was repeated 100 times. The obtained results 
were an average of the classification accuracy for each sets of data. In stress period dataset, only the first two 
ranked features have provided almost 100% classification accuracy for all categories of features. Then we sequen-
tially added four to ten features and observed that the accuracy has unchanged (Fig. 4). In recovery period data, 
classification accuracy is 99.99% for Geo (geometrical) rank features, whereas Phy (physiological) rank features 
classification accuracy is 80% when a number of rank features are 2. After sequentially adding rank Phy features, 
classification accuracy has improved and when a number of rank Phy features is 10 then the prediction accu-
racy turn into 100%. Similar accuracy results were found for the SVM-l and SVM-r, whereas RF has provided 
lower accuracy (≤85%) for Phy rank features. However, in this dataset, combined Geo and Phy (Geo + Phy) rank 
features prediction accuracy is 99.98% for all ML methods on average (Fig. 5). The standard error among the 
accuracy is ≈0.

Figures 6 and 7 describe a comparison among the ML methods for both stress and recovery period data-
set, respectively. In the case of stress dataset, LDA and SVM-r prediction accuracy are 100% for Geo, Phy and 
Geo + Phy rank features (the number of rank features are 2, 4, 6, 8, and 10) except when Phy rank features are 2. 
SVM-l outperforms than others and its prediction accuracy is 100% for all categories rank features. Although, RF 
is slightly worse classification accuracy than LDA, SVM-l and SVM-r; however its prediction accuracy is more 

Figure 5. Performance of rank features for recovery period data set. ‘Geo’ is Geometrical, ‘Phy’ is Physiological 
and ‘Geo + Phy’ is combined Geometrical and Physiological features.

https://doi.org/10.1038/s41598-019-55609-6
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than 97% on average. For recovery period data, LDA and SVM-l prediction accuracy are 99.99% and 99.15% 
when the number of rank features are 10 of Geo + Phy and Phy, respectively. Whereas LDA accuracy is 100% 
when the number of rank features of Geo are 10. RF suffers lower performance and its prediction accuracy of all 
categories features is more than 97% except Phy features, even though a number of rank features we have taken up 
to 10. However, there is no noticeable difference in the performance of LDA and SVM-l for the recovery period 
dataset. Overall, all the ML methods in the real data analysis, the classification accuracy reached an acceptable 
level of performance for all cases throughout the analysis.

Discussion
DM and ML is an inherently multidisciplinary approach to data analysis that draws inspiration, and borrows 
heavily, from statistics, probability theory, decision theory, optimization, and visualization. DM and ML methods 
are typically useful in situations where big data problems are available. Several image-based studies have used 
and evaluated DM and ML methods performance in biology and images obtained in high-throughput screen-
ing31,34–37. The enormous volume, variety, velocity, and veracity of imaging and remote-sensing data generated by 
such real-time platforms represent a ‘big data’ problem.

High-throughput plant phenomics technologies have resulted in an inundation of high-resolution images 
and sensor data of plants. Extracting these data patterns and features requires powerful statistical approaches for 
increasing amount of phenotyping information of plants. Combining DM and/or integrating ML methods for 
plant phenomics data pre-processing, variable selection and group classification, respectively, might overcome 
this big data analysis problem4. One of the major benefits of using DM and ML approaches for plant breeders, 
physiologists, pathologists, and biologists is the opportunity to search large data sets to discover patterns and 
govern discovery by simultaneously looking at a combination of factors instead of analyzing each feature (trait) 
individually. Previously, this was a major bottleneck because the high dimensionality of individual images makes 

Figure 6. Comparison of classification accuracy of ML methods based on rank features for stress period data 
set. The Number of rank features is shown on the left and features categories are shown in the right of panels, 
respectively. In each column of panels, the results from a different type of ML methods are shown. Every 
ML method was subjected to 100 repeats of 10-cross-validation and the results shown are the average of the 
classification accuracy. The value in each cell is color coded (0, 1), ranging from red to blue.

https://doi.org/10.1038/s41598-019-55609-6
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them extremely hard to analyze through conventional techniques. Another key challenge that the underlying 
processes for linking the inputs to the outputs are too complex to derive mathematical models3.

Previous studies have applied ML methods for feature selection, feature ranking and classification based on 
root features of phenomics data4,7,9. Integrated methods or powerful techniques improved the accuracy of the 
data analysis confirming earlier results by Löw et al.38 and Zhao et al.4. We combined DM and ML methods for 
feature selection, feature ranking and classification, and the performance accuracy is much better (≥98%) for all 
the classifiers on an average.

We used shoot image features in this study. Our results clearly demonstrated the importance of selecting 
important features to obtain efficient classification results for the phenomics dataset. The improved accuracy 
probably benefits from alleviating the ‘curse of dimensionality’ through rank features selection by removing less 
informative features during classification. The ‘Geo’ features are the most important features performing better 
than ‘Phy’ feature in case of recovery period data for all ML methods. Although, ‘Phy’ features performing same 
as like as ‘Geo’ features in case of stress data set. The combined ‘Geo’ and ‘Phy’ feature performing well in both 
cases of the datasets. The classification performance of ML methods increases when rank features not more than 
50%. The overall prediction accuracy of the ML methods was cross-validated.

In summary, our study advocates that among the considered ML methods except RF, there is no noticeable 
difference among the classification accuracy, when the features was selected through our proposed approach. This 
approach reduces the computational time as well as increases the classification accuracy power by adding rank 
features sequentially for achieving acceptable performance of the algorithms. However, LDA is good when data 
are normally distributed and there is no curse of dimensionality, otherwise it does provide misleading results. RF 
accuracy is much lower than other ML methods for both the simulated and real dataset used in this study. SVMs 
are the appropriate choice for high-throughput phenomics data analysis (especially SVM-l in the iterative training 
of the classifier to classify all the phenotype data including classifying unlabeled plant phenotype dataset).

Figure 7. Comparison of classification accuracy of ML methods based on rank features for recovery period 
data set. The Number of rank features is shown on the left and features categories are shown in the right of 
panels, respectively. In each column of panels, the results from a different type of ML methods are shown. Every 
ML method was subjected to 100 repeats of 10-cross-validation and the results shown are the average of the 
classification accuracy. The value in each cell is color coded (0, 1), ranging from red to blue.
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1 0Scientific RepoRtS |         (2019) 9:19526  | https://doi.org/10.1038/s41598-019-55609-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

conclusions
The accurate classification of stress plant (accuracy more than 98% on average) indicates that rank features per-
formed well which were selected through our proposed approach. In particular, this study showed that the com-
bined DM and ML method for trait identification and classification, respectively, can overcome problems in 
applying ML approaches to analysis phenotype data. Hence, the proposed approach is generally useful to make 
plant phenotype data analysis more effective and robust throughout the classification. We conclude that this pro-
posed analytical approach, in advance our views can be useful for image-based plant phenotype data processing 
and finding complex traits for the study of QTL (Quantitative Trait Locus) or GWAS (Genome-wide Association 
Study), stress identification, disease prediction, and for further statistical investigation of phenomics dataset in 
plant growth and development research.

Data availability
The phenotype image data we downloaded from http://iapg2p.sourceforge.net/modeling/#dataset, and the R code 
is available upon request.
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