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Abstract: Saponins are plant secondary metabolites. There are associated with defensive roles due
to their cytotoxicity and are active against microorganisms. Saponins are frequently targeted to
develop efficient drugs. Plant biomass containing saponins deserves sustained interest to develop
high-added value applications. A key issue when considering the use of saponins for human
healthcare is their toxicity that must be modulated before envisaging any biomedical application.
This can only go through understanding the saponin-membrane interactions. Quinoa is abundantly
consumed worldwide, but the quinoa husk is discarded due to its astringent taste associated with its
saponin content. Here, we focus on the saponins of the quinoa husk extract (QE). We qualitatively
and quantitively characterized the QE saponins using mass spectrometry. They are bidesmosidic
molecules, with two oligosaccharidic chains appended on the aglycone with two different linkages;
a glycosidic bond and an ester function. The latter can be hydrolyzed to prepare monodesmosidic
molecules. The microwave-assisted hydrolysis reaction was optimized to produce monodesmosidic
saponins. The membranolytic activity of the saponins was assayed based on their hemolytic activity
that was shown to be drastically increased upon hydrolysis. In silico investigations confirmed that
the monodesmosidic saponins interact preferentially with a model phospholipid bilayer, explaining
the measured increased hemolytic activity.

Keywords: saponin; quinoa; mass spectrometry; structure activity relationship; microwave heating

1. Introduction

For years, natural molecules have been a hot research topic, not only because of their diversity
but also because of their incredible structural complexity that is associated with specific biological
activities. Numerous pharmaceutical properties have been discovered for these compounds. In addition,
the industrial interest in producing new green drugs has greatly increased. Amongst the relevant
biomolecules, secondary metabolites, such as flavonoids, alkaloids and saponins, represent key target
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molecules for scientific research [1–3]. In particular, saponins are abundantly investigated for their
surface-active properties, such as their amphiphilicity and their cytotoxicity [4,5]. Saponins are
abundant secondary metabolites in plants [3,4,6] and were more recently detected in different marine
invertebrates such as sea stars, holothurians and sponges [7–10]. Even if the saponin family of molecules
is characterized by a huge chemical diversity [7,9,11], the saponin structure invariably associates two
distinct moieties, an apolar steroidic or triterpenoidic aglycone and a polar oligosaccharidic part,
named the glycone.

Based on their amphiphilic structure, saponins are active against numerous organisms such as
bacteria, fungi or cancer cells [3,5,7,12]. Their mode of action is ascribed to their membranolytic
activity [5,13,14]. It is indeed suggested that saponins interact with membrane sterols forming
in-membrane saponin/sterol complexes. Upon extensive saponin molecule incorporation into the
membrane, these complexes aggregate inducing the formation of pores. The concomitant membrane
permeabilization ultimately leads to cell death [5,13–15]. In the last decade, the interaction
between saponins and biological membranes was shown to strongly depend on the structure of
the saponins [5,13–16]. Recently, using theoretical approaches, several groups have investigated
the structure-activity relationship between saponins and biological membranes at the molecular
level [5,13,17,18].

Structural characterization of saponin extracts is a challenging task because of the presence of
numerous saponin molecules, with only subtle structural differences, in a given saponin extract making
their characterization difficult [19]. Today, saponin characterization takes more and more advantage
of the capabilities of mass spectrometry-based methods and LC-MS experiments are very efficient
for saponin mixture characterization [6,9], often using accurate mass measurements (high-resolution
MS–HRMS) and tandem mass spectrometry experiments (collision-induced dissociation–CID) [6,9,20].
We have reported the use of ion mobility spectrometry (IMS) [21,22] for saponin characterization [23,24].
We shown that isomeric saponins presenting different connectivities between the glycone and the
aglycone moieties can be distinguished using IMS [24]. More recently, taking advantage of the
high ion mobility resolution achieved on the newly-introduced cyclic ion mobility experimental
setup [25], we succeeded in distinguishing regioisomeric and steroisomeric saponins from Aesculus
hippocastanum [20,25].

The present study focuses on the saponins contained in the husk of Chilean quinoa (Chenopodium
quinoa). Whereas quinoa is one of the most consumed food across the world due to its high nutritive
value and the resistance of the crop to drought, cold and hard climates [6,26], the quinoa husk is
discarded, mostly due to its astringent taste associated with its high saponin content [26]. Today, the
quinoa husk is an abundant food industry waste that demands valorization to take advantage of
the properties of its saponins. The quinoa saponins have already been described [6,26,27] with up
to 70 compounds being detected by Madl et al. by combining GC-MS and LC-MS/MS [6]. These
saponins are triterpenoid-based and the major aglycones found are phytolaccagenic acid, hederagin
and oleanic acid that are often linked to two different oligosaccharides, attached on C3 and C28, leading
to bidesmosidic molecules, see Figure 1 [6,26,27]. Whereas the oligosaccharidic chains appended
on C3 are characterized by a certain diversity, a single glucose residue (Glc) is invariably present
on C28 [6,27]. The biological activities of the quinoa saponin extracts have been studied and they
are active against several types of bacteria, viruses and animals [26–28]. They are also used as an
adjuvant in vaccines [29]. Recently, quinoa husk saponin extracts were subjected to an alkali treatment
with 1M NaOH at 95–100 ◦C for 2 h to generate modified saponins with enhanced antibacterial [26],
antifungal [30] and molluscicide [28] activities. Even if it is likely that alkali hydrolysis of quinoa
saponins will mostly affect the C28 ester function, as proposed in Figure 1, no in-depth structural
analysis was achieved in these contributions rendering the nature of the saponin molecules in the
reaction mixtures only tentative. However, such an approach represents an elegant way to prepare
modified saponin mixtures with enhanced biological activities [26].
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In the current study, we report on the fast and quantitative bidesmosidic-to-monodesmosidic
saponin conversion (Figure 1) using a microwave-assisted hydrolysis and the comparison between the
cytotoxicity of the modified and the original saponins. The objectives of the present investigation are
numerous and we intend to contribute: (i) to the establishment of the structure/activity relationship
(SAR) of the saponins by specifically modifying their chemical structures and (ii) to the exploration of
avenues for using quinoa husk by quantitatively and qualitatively establishing its saponin content.
The determination of the cytotoxicity of the quinoa husk saponins, including chemical methods to
modify their activity, will also be mandatory for future works exploring high added value applications.
To achieve our objectives, we will rely on state-of-the-art mass spectrometry characterization, including
LC-MS, CID and ion mobility, to fully identify the saponin molecules in the original and hydrolyzed
extracts. As for a model cytotoxicity assay, we will determine the hemolytic activity of saponins,
i.e., their propensity to lyse red blood cell membranes [5]. In addition, in silico investigations will
be achieved using the IMPALA method to describe at a molecular level the insertion mechanism of
saponins within an implicit membrane.

2. Results and Discussion

2.1. Saponin Identification and Quantification in the Quinoa Extract (QE)

The saponin extract from the quinoa husk is analyzed using the MS-based protocol that was
described previously [23,24] that combines MALDI-MS, HRMS, LC-MS, LC-MSMS and LC-IMS.
Saponin identification is then achieved by comparing our MS data to the quinoa saponins qualitatively
described by Madl et al. [6] and Kuljanabhagavad et al. [27]. Chenopodium quinoa husk saponins are
bidesmosidic saponins systematically presenting a glucose residue at the C28 position (see Figures 1
and 2), whereas, in the C3 oligosaccharide chain, two or three sugars, namely glucose (Glc), galactose
(Gal), xylose (Xyl), Arabinose (Ara) and glucuronic acid (GlcA), are often present [6,27]. From the
literature [6], different aglycone moieties are to be considered, i.e., oleanic acid, hederagin, AG489 (MW
488 u, C30H48O5), AG487 (MW 486 u, C31H50O4), serjanic acid and phytolaccagenic acid (see Figure 1).
In addition, Kuljanabhagavad et al. also identified aglycones bearing a C(=O)H group at either C23 or
C27 [27] (see Figure 3).
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Figure 3. General structures of the sapogenins detected in Chenopodium quinoa extract in previous
reports [6,28].

Figure 4 presents the MALDI mass spectrum of the quinoa saponin extract. All the saponin
molecules appear as sodium adducts, [M + Na]+, and basically two groups of MS signals are detected.
The elemental compositions of the saponin ions are first confirmed based on accurate mass measurement,
as presented in Table 1. Based on the measured mass-to-charge ratios (m/z), we detect 10 different
elemental compositions that correspond to saponin ions (vide infra). The first group of saponin ions in
the m/z 1100–1160 range includes four-saccharide saponins, whereas the saponins detected between m/z
950–1000 are three-saccharide saponins. The MALDI data must be complemented by LC-MS analysis
to: (i) evaluate the presence of isomeric saponins, (ii) evaluate the monosaccharide sequence using
LC-MSMS [23] and (iii) confirm the bidesmosidic nature of the detected saponins using LC-IMS [24].
In Table 1, we summarize all the MS data including the retention times in LC-MS and the saponin ion
collision cross sections (TWΩN2->He) as determined using ion mobility experiments [31]. By associating
the HRMS data to the LC-MS and MSMS information, we detect and (partially) identify 12 saponins
(see Table 1) including three original molecules (shaded cells). The saponin names come from the
literature [6].
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Figure 4. Mass spectrometry analysis of the quinoa saponin extract: MALDI-MS (+) spectrum
(DHB/DMA as the matrix) and schematic representation of the [2 + 1] and [3 + 1] saponin structures.
Ions detected at m/z 791 and 833 are fragment ions from the intact saponin ions. This is demonstrated
using LC-MS analysis as shown in the SI.
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All the CID spectra (collision-induced dissociations) that helped us to identify the saponins are
gathered in the supplementary information. In particular, the aglycone identifications in Figure 3 are
based on the mass-to-charge ratios of the aglycone ions detected in the CID spectra in Figures S1–S24.
Doing so, saponins containing oleanic acid, hederagin, AG489, serjanic acid and phytolaccagenic acid
are detected. For the saponins observed at m/z 967, we here detect two different isomers that are
barely distinguished using MS methods with similar CID spectra and identical collision cross sections,
TWCCSN2→He. They are only distinguishable upon liquid chromatography with a retention time (tR)
difference close to 1 min, see Table 1. For the time being, no structural information is available to
establish the corresponding structures, and isolation of the compounds to allow nuclear magnetic
resonance measurements is out of the scope of the present study. As far as the m/z 965 and 1127
saponins are concerned, both saponin compositions are original and we propose that they are only
distinguished by the presence of an additional monosaccharide on the R3 sugar chain in the latter. This
is clearly observed using LC-MSMS experiments (see SI1a-x). In these CID spectra, the sapogenin ions
are detected at m/z 487. The sapogenin ions also suffer, upon extensive ion activation, consecutive
losses of two water molecules and carbon monoxide (28 u). In their publication, Madl et al. also
detected a 28 u loss they assigned to C2H4 loss [6] allowing them to introduce AG487 (Figure 1) as a
new sapogenin [6]. Based on our HRMS measurements, we rather propose that the corresponding
sapogenin must present a C(=O)H group at C23 or C27 like the saponins detected by Kuljanabhagavad
et al. and characterized using NMR [28]. Again, compared to the proposed sapogenins I and II
in [27], our HRMS measurements points to the presence of an additional oxygen atom on the aglycone
leading to the detection of a new sapogenin, that should deserve further characterization before being
unambiguously identified (question mark in Table 1). Isolation of these new aldehyde-containing
saponins will represent a time-consuming task and we are now rather exploring the possibility to
conduct liquid chromatography-Infrared Ion Spectroscopy to highlight the presence of the aldehyde
group since infrared spectroscopy is known to be sensitive to the presence of C=O bonds [32].
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Table 1. Chenopodium quinoa natural extract (see Figure 2 for the general saponin structure): identification by MS-based methods of the saponin content. Hed, SA,
OA and PA stand respectively for hederagin, serjanic acid, oleanic acid, and phytolaccagenic acid. AG489 corresponds to the aglycone #489 as defined in [6] and
presented in Figure 3. RT stands for Retention Time in LC-MS experiments. CCS correspond to collision cross sections determined using traveling wave (TW) ion
mobility with Nitrogen as the buffer gas and converted in CCS against Helium using a calibration procedure [31], namely TWCCSN2→He using the newly introduced
nomenclature [33]. The Molar Proportion (% in the quinoa husk extract) and the mass fraction (mg·g−1 of the quinoa husk powder) of each saponin is estimated based
on the ion signal ratios as determined by mass spectrometry experiments (LC-MS), with hederacoside C as an external standard.

Composition
m/z
[M +
Na]+

∆(m/z)
(ppm) R1 R2 Aglycone R3

RT
(min)

CCS (Å2)
[M +
Na]+

CCS (Å2)
[M + H]+

Molar
Proportion(%)

Mass
Fraction
(mg·g−1)

I C47H76O18 951.4929 2.1 - CH3 - CH2OH Hed Glc – Ara - 7.3 234 254 14.9 6.1

Unknown-1 C47H74O19 965.4722 0.2 ? ? ? Glc – Ara - 5.3 235 254 1.9 0.8

19 C47H76O19 967.4878 4.9
- CH2OH - CH2OH AG489 Xyl - Glc - 4.0 238 254 1.6 0.7

19a - CH2OH - CH2OH AG489 Xyl - Glc - 4.8 238 256 0.3 0.1

H C48H76O19 979.4878 1.5
- COOCH3 - CH3 SA Glc – Ara - 7.1 235 NA 1.6 0.7

70 - CH3 - CH3 OA Glc – GlcA - 7.5 235 NA 0.9 0.4

Q C48H78O19 981,5035 0.8 - CH3 - CH2OH Hed Glc – Gal - 6.5 235 260 0.2 0.1

B C48H76O20 995.4828 3.2 - COOCH3 - CH2OH PA Glc – Ara - 4.9 243 260 61.7 25.3

61 C53H86O23 1113.5458 1.6 - CH3 - CH2OH Hed Glc – Glc –
Ara - 5.9 275 290 0.7 0.3

Unknown-2 C53H86O24 1127.5251 2.1 ? ? ? Glc – Glc –
Ara - 4.5 270 290 1.7 0.7

G C54H86O24 1141.5407 3.6 - COOCH3 - CH3 SA Glc – Glc –
Ara - 5.7 266 291 3.0 4.6
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Based on LC-MSMS experiments, the distinction between the monodesmosidic and the
bidesmosidic topologies is difficult to achieve [6]. In a recent report [24], we observed that [M + H]+

and [M + Na]+ saponin ions present different mobilities depending on whether the molecule is
monodesmosidic or bidesmosidic. Indeed, the [M + Na]+ bidesmosidic ions are always significantly
more compact than their [M + H]+ homologues, whereas for the monodesmosidic molecules the CCS
are almost identical for the [M + H]+ and [M + Na]+ ions [24]. As a typical example (see Figure 5), the
saponin B ions, detected at m/z 973 and 995 for [M + H]+ and [M + Na]+ ions, respectively, present
significantly different collision cross-sections, TWCCSN2→He, at 260 and 243 Å2 respectively. In our
previous work, we noted that a CCS difference, say ∆CCS = (CCS[M + Na] − CCS[M + H])/CCS[M + H],
of around 10% identifies a bidesmosidic structure [24]. As shown in Table 1, all the saponin molecules
detected in the quinoa extract are confirmed to be bidesmosidic saponins using ion mobility experiments.
Indeed, the averaged ∆CCS amounts to 7.4 ±1.3 Å2. Note that in the present paper, we will use the
[x + y] symbolism to count the number of monosaccharide residues appended at C3 (x) and C28 (y).
For instance, [2 + 1] and [3 + 0] respectively characterize trisaccharide saponins presenting bidesmosidic
and monodesmosidic topologies.
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Figure 5. Ion mobility experiments on quinoa saponin ions: Arrival Time Distributions (ATD) of
protonated (m/z 973) and sodiated (m/z 995) Saponin B. The TWCCSN2→He presented at the top of the
signals are calculated using the calibration procedure presented in the experimental section. For the
instrumental conditions used in the ion mobility experiments, see the Experimental Section. The signals
marked with (*,#) correspond to the doubly-charged [M + 2Na]2+ ions and to a fragment of ionized
saponin O–The loss of glucose at C28 upon ion activation from [Saponin O + Na]+ generates [Saponin
Oh + Na]+ (see Figure 1) that is the monodesmosidic isomer of [Saponin B + Na]+.

Using hederacoside C (Sigma-Aldrich) as an internal standard, we determine the mass proportions
of all the saponins detected in the quinoa extract using LC-MS experiments, as presented in Table 1.
Hederacoside C is commercially available and extracted from ivy leaves [34]. We also represent the
semi-quantitative analysis results using sector diagrams that are constructed from mass spectrometry
data [23], including LC retention times (tR), m/z ratios and TWCCSN2→He values, see Figure 6. This
schematic representation has been recently introduced [23] to facilitate data interpretation since it
allows for a direct and fast comparison, both in terms of compositions and relative proportions of the
saponins in different extracts. Using the semi-quantitative analysis, we also estimate that the saponin
content amounts to around 90% by weight of the quinoa extract.
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Figure 6. Molecular diversity of the three and four-sugar saponins from the quinoa extract. Integration
of the MALDI-ToF, LC-MS(MS), and LC-IMS-MS data with (a) the retention times in LC (min) and
(b) the collision cross sections in IMS (Å2). Section areas are associated with LC-MS semi-quantitative
analysis using Hederacoside C as the internal standard and correspond to molar proportions (% in the
quinoa husk extract). The relative proportions are also given in Table 1.

2.2. Selectivity of the Microwave-Assisted Hydrolysis of Saponins

As shown in Figures 1 and 2, the bidesmosidic saponins of the quinoa extract present two different
aglycone-monosaccharide linkages, i.e., a ketal-type glycosidic bond at C3 and an ester bond at C28.
One of the objectives of the present study is to convert bidesmosidic saponins to their monodesmosidic
form by withdrawing one of the oligosaccharide chains under microwave activation. The presence of
the hydrolysable ester function is obviously targeted, and we envisage to use a basic hydrolysis to
avoid hydrolysis of the glycosidic bonds [26]. However, other water-sensitive functions, such as the
methyl ester functions at C29, in serjanic acid (Figure 3) for Saponins H, G and in phytolaccagenic acid
(Figure 3) for Saponins B and O, are also present on the saponin molecules listed in Table 1. Using
microwave heating, the tunable parameters are the pH, the temperature and the irradiation time.
We decided to use 5 min irradiation time as the starting point for the microwave-assisted hydrolysis.
For optimizing the hydrolysis conditions, we pay attention to the hydrolytic decompositions of Saponin
B that is the most abundant saponin in the quinoa extract, as reported in Table 1. This saponin contains
phytolaccagenic acid acid as the hydrolysable aglycone. Therefore, upon basic hydrolysis, we can
expect two different hydrolysis products; i.e., saponin B’ (hydrolysis at C28–glucose loss) and saponin
B” (hydrolysis at C28 and at C29–glucose and methanol losses) as presented in Figure 7. The targeted
hydrolysis product is Saponin B’ (m/z 833) and is already known in the literature as esculentoside C,
a compound that can be extracted from the roots of Radix phytolaccae [35]. To analyze the influence of
the pH on the specificity of the hydrolysis reaction, we estimate the relative proportions of the Saponins
B, B’ and B” using LC-MS experiments by considering the ion signal intensities of the [M + H]+ and
[M + Na]+ for the three compounds. From Figure 7 starting from the saponin composition in the
natural extract, we observe that the optimal pH is around 10.
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Figure 7. Microwave-assisted hydrolysis of the quinoa bidesmosidic saponins (5 min at 150 ◦C):
influence of the pH on the extent of the consecutive hydrolysis reactions from Saponin B as determined
using LC-MS. The given m/z ratios correspond to the [M + Na]+ ions, but for the estimation of the
relative proportions, both the [M + H]+ and the [M + Na]+ ions have been considered.

The hydrolyzed saponin solution is then analyzed by MALDI-MS and the recorded mass spectrum
is compared to the mass spectrum of the initial saponin solution in Figure 8. The influence of the
temperature on the hydrolysis reaction progress is also monitored using MALDI analysis as presented
in Figure 9 and we note that quantitative hydrolysis is obtained for 5 min irradiation around 150 ◦C at
pH 10.
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Figure 9. Microwave-assisted hydrolysis of the quinoa bidesmosidic saponins (5 min at pH 10):
influence of the temperature (60,90,120,150,180 ◦C) on hydrolysis reactions from quinoa husk saponin
determined by MALDI-MS.

Figure 8b presents the MALDI mass spectrum of the hydrolysate obtained in those experimental
conditions. We note the disappearance of the [3 + 1] saponin ions, whereas the signals at m/z 789 and
833 are now more intense. The C28 glucose loss upon hydrolysis converts [3 + 1] and [2 + 1] saponins
into, respectively, [3 + 0] and [2 + 0] saponins, see Figure 8. The [2 + 0] saponin ions are detected
at m/z 789 and 833, whereas the [3 + 0] ions and the [2 + 1] ions are isomers and detected in the m/z
950–995 range. Using LC-MS experiments, we can establish that the m/z 950–995 signals uniquely
correspond to [3 + 0] saponins and that no residual [2 + 1] saponins are present. Indeed, as presented
in the sector diagrams of Figure 10, the m/z 951, 965, 979 and 995 ions are each characterized by a single
retention time when submitted to LC-MS separation. Ion mobility experiments further confirm the
monodesmosidic nature of the produced saponins. As for a typical example, for the m/z 995 [M + Na]+

ions, their CCS appear significantly different, 243 Å2 (Figure 6) and 258 Å2 (Figure 10), for respectively
the [2 + 1] and [3 + 0] topologies. In Table 2, the CCS for the [M + H]+ and [M + Na]+ ions are given
allowing to calculate an average value for ∆CCS = −1.1 ± 2.0 Å2. This value can be compared to the
∆CCS for the non-hydrolyzed saponins in Table 1 (7.4 Å2) confirming the monodesmosidic nature
of the saponins (see Figure 11) present in the hydrolysate. We will name the hydrolyzed saponins
starting from the name of the parent molecules by just adding a superscript “h”. For instance, Saponin
B becomes Saponin Bh. All saponin structures are reported in Table 2.
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Figure 11. Schematic structure of the hydrolyzed saponins extracted from the quinoa husk. All the 
functions in R1, R2 and R3 are described in Table 2. 

Using Hederacoside C as an internal standard, we determine the mass proportions of all the 
saponins detected in the QE hydrolysate using LC-MS experiments. The results are presented in Table 
2 and Figure 10. The direct comparison of the sector diagrams in Figures 6 and 10 indicates that the 
hydrolysis reaction is quantitative and converts the natural saponins in their hydrolyzed 
monodesmosidic counterparts while conserving the relative proportions.

Figure 10. Microwave-assisted alkaline hydrolysis (5min, pH 10, 150 ◦C) of Chenopodium quinoa
saponin extract: composition of the hydrolysate. Integration of the MALDI-ToF, LC-MS(MS), and
LC-IMS-MS data with (a) the retention times in LC (min) and (b) the collision cross sections in IMS
(Å2). Section areas are associated with LC-MS semi-quantitative analysis using Hederacoside C as the
internal standard and correspond to molar proportions (% in the hydrolyzed quinoa husk extract).
The relative proportions are also given in Table 2.
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Figure 11. Schematic structure of the hydrolyzed saponins extracted from the quinoa husk. All the
functions in R1, R2 and R3 are described in Table 2.

Using Hederacoside C as an internal standard, we determine the mass proportions of all the
saponins detected in the QE hydrolysate using LC-MS experiments. The results are presented in
Table 2 and Figure 10. The direct comparison of the sector diagrams in Figures 6 and 10 indicates
that the hydrolysis reaction is quantitative and converts the natural saponins in their hydrolyzed
monodesmosidic counterparts while conserving the relative proportions.
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Table 2. Microwave-assisted alkaline hydrolysis (5min, pH 10, 150 ◦C) of Chenopodium quinoa saponin extract: identification by MS-based methods of the saponin
content. Hed, SA, OA and PA stand respectively for hederagin, serjanic acid, oleanic acid, and phytolaccagenic acid. AG489 corresponds to the aglycone #489 as
defined in [6] and presented in Figure 3. RT stands for Retention Time in LC-MS experiments. CCS correspond to collision cross sections determined using traveling
wave (TW) ion mobility with nitrogen as the buffer gas and converted in CCS against Helium using a calibration procedure [31], namely TWCCSN2→He using the
newly introduced nomenclature [33]. The Molar Proportion (% in the hydrolyzed quinoa husk extract) of each saponin is estimated based on the ion signal ratios as
determined by mass spectrometry experiments (LC-MS), with hederacoside C as an external standard.

Composition m/z
[M + Na]+

∆(m/z)
(ppm) R1 R2 Aglycone R3

RT
(min)

CCS (Å2)
[M + Na]+

CCS (Å2)
[M + H]+

Molar
Proportion

(%)

Ih C41H66O13 789.4401 0.8 - CH3 - CH2OH Hed Glc – Ara - 10.7 224 219 16.5

Unknown-1h C41H64O14 803.4194 0.4 ? ? ? Glc – Ara - 7.2 225 221 2.4

19h
C41H66O14 805.4350 0.7

- CH2OH - CH2OH AG489 Xyl - Glc - 5.6 227 221 2.2

19ah - CH2OH - CH2OH AG489 Xyl - Glc - 5.8 NA NA 0.1

Hh
C42H66O14 817.4350 2.1

- COOCH3 - CH3 SA Glc – Ara - 9.4 240 NA 2.2

70h - CH3 - CH3 OA Glc – GlcA - 13.1 235 NA 1.0

Qh C42H68O14 819.4501 0.6 - CH3 - CH2OH Hed Glc – Gal - 9.4 228 222 0.1

Bh C42H66O15 833.4299 1.1 - COOCH3 - CH2OH PA Glc – Ara - 9.9 234 227 61.4

61h C47H76O18 951.4929 1.3 - CH3 - CH2OH Hed Glc – Glc –
Ara - 10.2 250 253 0.4

Unknown-2h C47H74O19 965.4722 2.5 ? ? ? Glc – Glc –
Ara - 7.1 252 254 0.9

Gh C48H76O19 979.4879 0.5 - COOCH3 - CH3 SA Glc – Glc –
Ara - 9.4 265 NA 2.7

Oh C48H76O20 995.4828 0.4 - COOCH3 - CH2OH PA Glc – Glc –
Ara - 7.6 258 263 10.1
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2.3. Activity Modulation–Hemolytic Activity Assay

QE saponins have already been demonstrated to be active against bacteria, cancer cells and other
organisms [26,28]. Evaluation of the cytotoxicity of saponins is often performed based on the hemolytic
activity assay, i.e., determining the propensity of saponins to induce the rupture of the red blood
cell membranes and the release of the free heme into the solution [5]. The hemolytic activity is then
quantified using a colorimetric assay targeting the heme concentration in solution (absorbance at
540 nm) [5]. In Figure 12, we compare the evolution of the absorbance at 540 nm with regards to
the increasing saponin extract concentration for the QE saponins and the hydrolyzed saponins. The
concentration is expressed in µg of saponins per ml of the red blood cell solution suspension. We note
that the QE saponins remain inactive even at a concentration of 500 µg/mL that corresponds to the
solubility limit of the saponins in the red blood cell suspension. On the contrary, already at 100 µg/mL,
the hydrolyzed saponins start to be active against red blood cells since the 540 nm absorbance steadily
increases with increasing saponin concentration. The experiments with hydrolyzed saponins is limited
to an upper concentration of 300 µg/mL for solubility reasons.
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Figure 12. Estimation of the membranolytic property of the natural and hydrolyzed saponins via the
hemolytic activity assay. Monitoring the free heme absorbance (540 nm) with regards to the increasing
saponin concentration. Hydrolyzed saponins appear to be more cytotoxic than the non-hydrolyzed
ones. Hemolytic activity experiments were performed in triplicates and the average data as well as the
standard deviations are gathered in Table S1.

The observation of the increased membranolytic activity of the hydrolyzed saponins when
compared to the natural molecules can be readily associated with the monodesmosidic topology of the
hydrolyzed molecules allowing them to interact more strongly with the cell membrane. The increased
cytotoxicity of monodesmosidic vs bidesmosidic saponins is already reported in the literature for
quinoa saponins [26,36].

2.4. Activity Modulation–In Silico Evaluation of the Mono- vs. Bidesmosidic Saponin Activities

In order to further understand the nature of the interaction with the cell membrane discussed
above, an in silico approach called the IMPALA [37], was applied to analyze the propensity of the
saponins to insert into an implicit lipid bilayer mimicking a plasma membrane [18]. For the present
simulation, we selected Saponins O and Oh that are represented in Figure 1. In Figure 13, the Z-axis
represents the position of the mass center of the saponin molecules when orthogonally penetrating in a
36 Å-thick (2 x 18 Å) bilayer membrane. The intercept between the Z-and the Y-axis corresponds to the
center of the bilayer membrane. The Y-axis presents the energies of the interaction between the implicit
bilayer and the saponin molecule. From Figure 13, we can note that the two studied saponins possess
two stable positions (most negative total restraint energies). In addition, the highly positive energies of
interaction observed in the hydrophobic center (alkyl chains) of the phospholipid bilayer (±15.75 to
±0 Å) indicate that the amphiphilic nature of both saponins inhibits them from passively crossing the
bilayer. The most stable positions for each saponin, highlighted by red circles, are at ± 16 Å with an
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energy of −17,7 kcal/mol for Saponin O and at ± 15 Å with an energy of −22.4 kcal/mol for Saponin Oh.
For the hydrolyzed saponin, this indicates that the center-of-mass of the saponin is located deeper in
the membrane and in particular is now positioned below the hydrophilic/hydrophobic interface of the
phospholipid bilayer (± 15.75 Å–purple vertical line in Figure 13). Moreover, the increased penetration
of the hydrolyzed molecule into the membrane goes hand in hand with an increased stabilization. This
difference in energy indicates an increase stabilization of the hydrolyzed saponin within the membrane.
The monodesmosidic Saponin Oh has a more favorable interaction than the bidesmosidic, yielding
Saponin Oh with the more stable position at the polar/apolar interface of the implicit bilayer.
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Figure 13. IMPALA simulation of Saponin O (dark line) and Saponin Oh (grey line) traversing a 36 Å
thick implicit membrane. The “energy-like” profile of the saponin traversing the implicit bilayer. The
Z-axis corresponds to the position of the center of mass of the saponin along an axis orthogonal to the
membrane, the center of the bilayer corresponding to the intersection with the Y-axis. The different
circles represent the two most stable positions of both molecules the center of the bilayer corresponds to
the Y-axis with the red circles corresponding to the most stable positions. The vertical lines represent the
water/membrane interface (pink), the hydrophilic head/hydrophobic tail interface of the phospholipid
bilayer (purple), and the center of the bilayer (yellow).

In concordance with hemolytic data, we propose that monodesmosidic molecules have a stronger
interaction with membrane phospholipids than bidesmosidic saponins, thus disturbing the membrane
to a greater extent. The removal upon hydrolysis of the glucose bonded at C28 creates in the hydrolyzed
saponin molecules a more defined separation between the polar and the apolar moieties, allowing for
more favorable interactions with membrane phospholipids and thus increasing their hemolytic activity.

3. Conclusions

Chenopodium quinoa seed is a staple food and a superfood widely used around the world due to
high nutritive values and the resistance of the crop to drought, cold and hard climate. However, the
husk represents a waste that contains huge amounts of saponins that certainly deserve valorization.
In the present study, we quantitatively converted a complete set of bidesmosidic saponins into their
monodesmosidic analogs using a fast and green approach based on a microwave assisted hydrolysis
in water.The optimized reaction conditions for the hydrolysis was heating at 150ºC, for 5 min while
maintaining pH at 10. Using mass spectrometry, we qualitatively and quantitively characterized the
natural extract as well as the hydrolysate, and we confirmed the quantitative and selective hydrolysis of
the ester linkage in C28. The influence of the topology on the membranolytic properties of the saponin
molecules, natural bidesmosidic vs generated monodesmosidic ones, was then monitored using the
hemolytic activity assay. The cytotoxicity of the hydrolyzed saponins appears significantly increased
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in agreement with the associated structural modifications. In silico investigations, using the IMPALA
in silico procedure, further confirmed that the monodesmosidic saponins interact more preferentially
with bilayer phospholipids than bidesmosidic saponins, therefore explaining the increased hemolytic
activity that was detected experimentally.

To the best of our knowledge, this study represents the first work that associates the complete
structural characterization of chemically modified saponins to their cytotoxic activities. Such a work
will pave the way to the valorization of quinoa husks via the ecofriendly modification of the contained
saponins. Moreover, the thorough structural characterization performed in the study may afford
valuable pieces of information towards the elucidation of the structure-activity relationship of saponins.

4. Materials and Methods

Chemicals, Plant Sampling and Saponin Extractions

Chemicals

For saponin extractions, alkaline hydrolysis and mass spectrometry analysis, technical grade
methanol, hexane, dichloromethane, chloroform and isobutanol, as well as HPLC grade water,
acetonitrile and methanol, were purchased from CHEM-LAB NV (Somme-Leuze, Belgium).
N,N-Dimethylaniline (DMA) and 2,5-dihydroxybenzoic acid (DHB) were provided by Sigma-Aldrich
(Diegem, Belgium). Disodium phosphate was purchased from Merck (Overijse, Belgium) and sodium
hydroxide from VWR.

Saponin Extraction from Quinoa Husks

For the quinoa source, integuments of mature achenes were obtained from pooled samples
from the Quinoa Breeding Program from Instituto Nacional dé Investigación Agraria (INIA) Chile.
To separate kernels from the outer husk, seeds were subjected to physical shearing and the kernels were
discarded. The remaining husks have a particle size less than 1 mm in diameter and were immediately
submitted to the extraction method adapted from Van Dyck et al. [20]. The weighed powder is stirred
in methanol for 24 h at room temperature followed by filtration. The extracts are diluted to 70%
methanol with MilliQ water. These methanolic extracts are partitioned (v/v) successively against
n-hexane, dichloromethane and chloroform. Finally, the hydromethanolic solution is evaporated at
low pressure in a double boiler at 46 ◦C using a rotary evaporator. The dry extract is diluted in water
to undergo a last partitioning against isobutanol (v/v). The butanolic phase is washed twice with water
to remove salts and impurities. The organic solution contains the saponins and is evaporated to obtain
a powder.

Microwave Hydrolysis

The hydrolysis is adapted from Sun et al. [26]. Quinoa husk extract-butanolic fraction (4 mg) is
solubilized in 4 mL of different buffer solution covering a range of pH values. pH 7: 50mL of KH2PO4

0.1 mol/L is added to 29.1 mL of NaOH 0.1mol/L and brought to 100 mL with Milli-Q water. pH 8:
50 mL of KH2PO4 0.1 mol/L is added to 46.7 mL of NaOH 0.1 mol/L and brought to 100 mL with
Milli-Q water. pH 9: 50 mL of borax 0.025 mol/L is added to 4.6 mL of HCl 0.1 mol/L and are brought
to 100 mL with Milli-Q water. pH 10: 50 mL of borax 0.025 0.1mol/L is added to 18.3 mL of NaOH
0.1 mol/L and brought to 100 mL with Milli-Q water. pH 11: 50 mL of Na2HPO4 0.05 mol/L is added
to 4.1 mL of NaOH 0.1 mol/L and brought to 100 mL with Milli-Q water. pH 12: 50 mL of Na2HPO4

0.05 mol/L is added to 26.9 mL NaOH 0.1 mol/L and brought to 100 mL with Milli-Q water. pH 13:
0.4 g of NaOH is dissolved in 100 mL Milli-Q water to reach 0.1 mol/L. pH 14: 4 g of NaOH is dissolved
in 100 mL Milli-Q water to reach 1 mol/L. The sample is heated at 150 ◦C for 5 min using an Initiator
Classic microwave setup (Biotage®, Uppsala, Sweeden). After cooling at R.T., the pH of the solution is
adjusted to 7 with hydrochloric acid (0.1%). The aqueous solution is extracted with isobutanol (v/v).
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The organic phase is recovered and washed twice with water to remove salts. The organic layer is
finally evaporated under reduced pressure to obtain a white solid (50% yield).

Mass Spectrometry Analysis

We developed a mass spectrometry protocol based on MALDI-HRMS, LC-MS, LC-MSMS and
LC-IMS analysis to perform a thorough saponin characterization [23,24]. The saponin extract from
butanolic fraction is first analyzed using MALDI-MS on a Q-TOF Premier mass spectrometer (Waters,
Manchester, UK) in the positive ion mode. The MALDI source is constituted of a Nd-YAG laser,
operating at 355 nm, with a maximum pulse energy of 104.1µJ delivered in 2.2 ns to the sample at 200 Hz
repeating rate. All samples contained the matrix, a mixture of 25 mg of DHB in 250 µL water/acetonitrile
(v/v) with 6 µL of DMA. The dried-droplet method is selected to prepare the sample/matrix co-crystal on
the target plate. In this method, the saponin extract is not premixed with the matrix. A sample droplet
(1 µL) is applied on top of a fast-evaporated matrix-only bed. For the recording of the single-stage
MALDI-MS spectra, the quadrupole (rf-only mode) is set to pass ions between m/z 250 and 2000 and
all ions are transmitted into the pusher region of the TOF analyzer where they are mass-analyzed
with an 1s integration time. Accurate mass measurements are also performed using MALDI with
PEG600-1500 as the external standard (lock masses). This first step allows to validate the presence of
saponin congeners based on the measure of their elemental composition (Table 1).

LC-MS Analyses

These are performed with a Waters Acquity H-class liquid chromatography device coupled to a
Waters Synapt G2-Si mass spectrometer. The HPLC part consists of a vacuum degasser, a quaternary
pump and an autosampler. Sample volumes of 1 µL are injected. Chromatographic separation is
performed on a non-polar column (Acquity UPLC BEH C18; 2.1 × 50 mm; 1.7 µm; Waters) at 40 ◦C.
The mobile phase is programmed with a constant flow (0.25 mL/min) and consists of an elution
gradient starting with 85 % of eluent A (water, 0.1 % formic acid) and 15 % of eluent B (acetonitrile)
and reaching 60 % of eluent A and 40 % eluent B at 6 min. This ratio is maintained for 3 min, then
modified again to reach 5 % eluent A and 95 % eluent B at 11 min. This second ratio is maintained for
1 min and, finally, brought back to 85 % eluent A and 15 % eluent B at the end of the chromatographic
run (13 min). For the mass spectrometer parameters, the electrospray ionization (ESI) conditions are
the same regardless of the ion mode (positive or negative mode); capillary voltage 2.5 kV; cone voltage
40 V; source Offset 80 V; source temperature 100 ◦C; desolvation temperature 300 ◦C. Dry nitrogen is
used as the ESI gas with a flow rate of 500 l/h for the desolvation gas. For the LC-MS analysis, the
quadrupole is set to pass ions from m/z 50 to 2000 and all ions are transmitted into the pusher region of
the time-of-flight analyzer for mass-analysis with 1 s integration time.

Ion mobility experiments are performed using the TWIMS cell constituting the so-called Tri-Wave
setup, composed of three successive T-wave elements named the Trap cell, the IMS cell, and the
Transfer cell, in which the wave speed and amplitude are user-tunable. The trap and transfer cells are
filled with argon whereas the IMS cell is filled with nitrogen. A small rf-only cell filled with helium is
fitted between the trap and the IMS cell. This mass spectrometer is used for the recording of the ESI
full scan mass spectrum, for the collision-induced dissociation (CID) as well as for the ion mobility
experiments. Ion mobility parameters are tuned to have the highest separation between different
ion structures. The IMS cell conditions are gas flow 110 mL/min, wave velocity 400 m/s and wave
height 40 V. TWIMS data are analyzed using the Waters MassLynx SCN 901 software. Arrival time
distributions (ATDs) are recorded by selecting the most abundant isotope for each ion composition
to avoid unspecific selection. ATDs are converted into collisional cross-section (CCS) distributions
in helium by means of a polymer calibration following a procedure detailed in the literature using
commercial PEG samples with average molecular weights of 600 and 1000 g.mol−1. [31] The CCSs are
determined at the APEX of the CCS distributions.
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Semi-Quantitative Analysis

As already discussed in previous publications [23], absolute quantification of saponins in an extract
would require the availability of samples of each purified saponin as an external standard. This is to date
impossible and we will only use relative quantification: (i) to determine the mass fraction of saponins in
the quinoa extract (QE) (see Table 1) and (ii) to estimate the relative abundances of each saponin within
the extract. This will be achieved by spiking a known amount of Hederacoside C (Sigma-Aldrich),
a commercially available saponin purified from Hedera helix, as the internal standard. [4] The integration
of the LC-MS signals will then allow estimating the concentration–relative to hederacoside C - of each
saponin in the extract. The total saponin mass in the quinoa husk extract is further compared to the
mass of the quinoa husk powder submitted to the extraction procedure (see Tables 1 and 2) to estimate
the saponin content contained in the quinoa husk.

Hemolytic Activity

The hemolytic activity is determined on bovine red blood cells. Fresh blood samples are collected
in a citrate solution (0.11 mol/L) and stored in a fridge (4 ◦C). The erythrocyte lysis causes the release of
hemoglobin and heme. The hemolytic activity is based on the determination of the heme concentration.
In a 50mL vial, 10 mL of citrated are added to 40 mL of phosphate buffer saline (PBS). The sample is
centrifuged (1000× g, 10 min) in a Heraeuos Biofuge Stratos centrifuge (Waltham, MA, USA) to wash
the erythrocytes and the supernatant is removed until it becomes colorless. The pellet is conserved
and diluted in PBS to reach a concentration of 2 % (2 mL erythrocyte in 98 mL of PBS). At the same
time, solutions containing saponin extract are prepared at different concentrations. After that, 15 µL
of extract solutions are placed in 1485 µL of erythrocyte suspension, each sample is carried out in
triplicates. The final concentration is formulated in µg of extract per mL of 2 % erythrocyte suspension
at 0.5/1/2/3/4/5/10/20/30/40/50/100/200/300. Due to the poor water solubility of hydrolyzed quinoa, the
saponin concentration cannot exceed 300 µg·mL−1. The solutions are shaken in the incubator (T-Mix,
Analytik Jena, Endress Houser Co., Jena, Germany) during 1 h at 500 rpm to allow the interaction
between saponins and erythrocytes. After that, samples are centrifuged (1000× g, 10 min). The
supernatant containing heme of each sample is retrieved and 100 µL is placed in a 96-well plate. Finally,
the absorbance of each well is read at 540 nm in spectrophotometer (which one) and subtracted by the
absorbance of a blank (saponin-free solution) to determine the hemolytic activity.

In silico Study

The most probable 3D conformations of the saponins of interest are first determined by considering
the main torsional angles of the molecules and intramolecular energies of interaction, using an empirical
force field previously described [18,37]. Using these 3D structures, the in silico IMPALA technique as
first described by Ducarme et al. [37] is used to assess the extent to which an amphiphilic molecule is
likely to penetrate a model phospholipid bilayer. The IMPALA method uses a membrane model in
which the membrane bilayer is implicitly modeled by an empirical function C(z), see Equation (1).
This model assumes that the properties of the implicit membrane are constant in the X,Y plane and
only vary along the perpendicular Z (in Å) axis that originates at the bilayer center. C(z) varies from 1
(completely hydrophilic) to 0 (completely hydrophobic):

C(z) = 1−
1

1 + e∝(|z|−z0)
(1)

where α is a constant equal to 1.99, z0 is the position of the hydrophilic/hydrophobic interface in the
membrane and z is the position in the membrane. The total thickness of the bilayer was set at 36 Å.

The IMPALA method uses two energy restraints [18], a hydrophobic restraint and a lipid
perturbation restraint, to simulate the interactions between the molecule of interest and the lipid bilayer.
The saponin is translated across the implicit bilayer along the Z axis 1 Å at a time and rotated 360◦ at
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each position z(i), and the sum of the two restraints is calculated to predict the most stable position
(with the lowest energy) into the implicit membrane.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/7/1731/s1:
Figures S1–24: LC-MSMS analysis of Chenopodium quinoa husk saponin extract: CID spectra recorded for all
the saponin ions from Tables 1 and 2; Table S1: Hemolytic activity assay of the hydrolyzed and natural extract
saponins. Average and standard deviation of the free heme absorbance (540 nm) with regards to the increasing
saponin concentration.
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