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OBJECTIVE—Diabetic cardiomyopathy is associated with in-
creased mortality in patients with diabetes. The underlying
pathology of this disease is still under discussion. We studied the
role of the kinin B1 receptor on the development of experimental
diabetic cardiomyopathy.

RESEARCH DESIGN AND METHODS—We utilized B1 recep-
tor knockout mice and investigated cardiac inflammation, fibro-
sis, and oxidative stress after induction of streptozotocin (STZ)-
induced diabetes. Furthermore, the left ventricular function was
measured by pressure-volume loops after 8 weeks of diabetes.

RESULTS—B1 receptor knockout mice showed an attenuation
of diabetic cardiomyopathy with improved systolic and diastolic
function in comparison with diabetic control mice. This was
associated with a decreased activation state of the mitogen-
activated protein kinase p38, less oxidative stress, as well as
normalized cardiac inflammation, shown by fewer invading cells
and no increase in matrix metalloproteinase-9 as well as the
chemokine CXCL-5. Furthermore, the profibrotic connective
tissue growth factor was normalized, leading to a reduction in
cardiac fibrosis despite severe hyperglycemia in mice lacking the
B1 receptor.

CONCLUSIONS—These findings suggest that the B1 receptor is
detrimental in diabetic cardiomyopathy in that it mediates in-
flammatory and fibrotic processes. These insights might have
useful implications on future studies utilizing B1 receptor antag-
onists for treatment of human diabetic cardiomyopathy.
Diabetes 58:1373–1381, 2009

D
iabetic cardiomyopathy, as it occurs in patients
with diabetes, carries a substantial risk con-
cerning the subsequent development of heart
failure and increased mortality (1). Different

pathophysiological stimuli are involved in its development
and mediate tissue injury leading to left ventricular sys-
tolic and diastolic dysfunction. Accumulation of cardiac
fibrosis with distinct changes in the regulation of the
extracellular matrix (2,3), excessive generation of reac-

tive oxygen species (4), and cardiac inflammation (5,6),
characterized by increased levels of proinflammatory
cytokines and transendothelial migration of immuno-
competent cells, plays a role in the manifestation of
diabetic cardiomyopathy. Experimental stimulation of the
local tissue kallikrein-kinin system has been shown to be
beneficial in different forms of cardiomyopathies (7–11).
Most of these effects are attributed to the kinin B2
receptor (B2R), while the role of the kinin B1 receptor
(B1R) in cardiac failure is still under discussion. In con-
trast to the B2R, which is constitutively expressed in the
cardiac tissue, the B1R is expressed at very low levels
under basal conditions. Nevertheless, it is highly induc-
ible under pathological conditions by pathological me-
diators such as bacterial lipopolysaccharide (12),
cytokines (13), and ischemia but also by hyperglycemia
(14), as can be shown in different animal models of
cardiomyopathy. Also, in endomyocardial biopsies of pa-
tients with end-stage heart failure, this upregulation could be
demonstrated and correlated with increased expression of
proinflammatory cytokines in those patients (15). Whether
B1R upregulation is cardioprotective, parallel to that of the
B2R (16,17), or is cardiotoxic (13,18,19) remains debated. To
further clarify the role of the B1R in the pathogenesis of
diabetic cardiomyopathy, we investigated the left ventricular
function in an animal model of streptozotocin (STZ)-induced
type 1 diabetes using B1R knockout mice. Furthermore,
changes in the left ventricular remodeling, inflammation, and
oxidative stress were analyzed.

RESEARCH DESIGN AND METHODS

Twenty-five B1R knockout mice (B1R�/�) on a C57/BL6 genetic background
and 25 littermates (B1R�/�) aged 2 months were obtained from the Max-
Delbrück Center for Molecular Medicine (Berlin-Buch, Germany) (13). Diabe-
tes was induced by injection of STZ (50 mg/kg i.p. for 5 days) in 15 B1R�/�

(B1R�/�-STZ) and 15 C57/BL6 mice (B1R�/�-STZ), while the others served as
nondiabetic controls (B1R�/� and control). Hyperglycemia (glucose �22
mmol/l) was confirmed 7 days later using a reflectance meter (Acutrend;
Boehringer, Mannheim, Germany), as well as at the end of the study (glucose
�30 mmol/l). The investigation conformed to the Guide for the Care and Use

of Laboratory Animals published by the National Institutes of Health (NIH
publ. no. 85-23, revised 1985).
Surgical procedures and hemodynamic measurements. Eight weeks after
induction of diabetes, left ventricular function was analyzed using pressure-
volume loops. The animals were anesthetized (125 mg/g i.p. thiopental),
intubated, and artificially ventilated. As described recently (20), a 1.2-F
microconductance pressure catheter (SciSense, Ontario, Canada) was posi-
tioned in the left ventricle for registration of left ventricular pressure-volume
loops in a closed-chest model. Indexes of cardiac function were derived from
pressure-volume data obtained both at steady state and during transient
preload reduction by occlusion. Systolic function was quantified by left
ventricual end systolic pressure (mmHg), by dP/dtmax (mmHg/s), and by
ejection fraction (%). Global cardiac function was quantified by the end
systolic volume (�l), end diastolic volume (�l), stroke volume (�l), cardiac
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output (�l/min), the ratio of cardiac output to body weight (ml � min�1 � g�1),
and heart rate (beats/min). Diastolic function was measured by left ventricular
end diastolic pressure (mmHg), left ventricular pressure fall (dP/dtmin)
(mmHg/s), and diastolic stiffness. Diastolic stiffness was calculated from the
end diastolic pressure-volume relationship [EDP � C � exp (b � Ved)] where
b is for stiffness (21). Moreover, mean arterial blood pressure was analyzed
from measurements in the arteria carotis (22). Cardiac tissue was harvested

and snap frozen for later measurements. All following measurements were
performed in 10 animals per group.
Histological measurements. Immunohistochemistry was carried out using
primary antibodies for collagen type 1 and type 3, the connective tissue
growth factor (CTGF), the matrix-metalloproteinase-9 (MMP-9), and CD3�,
CD11b�, CD45�, and CD68� cells as well as nitrotyrosine and myeloperoxi-
dase (MPO) (all from Serotec, Munich, Germany) followed by the DAKO
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FIG. 1. Representative pressure-volume loops during a preload reduction of control mice (B1R�/�) or mice lacking the B1R (B1R�/�) under basal
conditions and 8 weeks after induction of STZ-induced diabetes. The thick black line at the bottom indicates the left ventricular stiffness, which
is increased in B1R�/�-STZ (indicated by the thick black arrow).

TABLE 1

B1R�/� B1R�/� B1R�/�-STZ B1R�/�-STZ

Body weight (g) 27 � 1 28 � 1 17 � 1* 17 � 1*
Glucose levels (mmol/l) 6 � 0.2 6 � 0.2 31 � 2* 32 � 2*
Hemodynamic function

Heart rate (beats/min) 465 � 22 486 � 32 302 � 27* 389 � 35
End diastolic volume (�l) 53 � 2 48 � 4 49 � 4 47 � 3
End systolic volume (�l) 18 � 4 15 � 3 28 � 5 23 � 5
Stroke volume (�l) 35 � 6 31 � 4 19 � 6* 24 � 5
Cardiac output (ml/min) 16.1 � 1 15.8 � 1 6.3 � 0.6* 9.3 � 1†
Cardiac output/body weight (ml � min�1 � g�1) 0.61 � 0.02 0.57 � 0.04 0.41 � 0.04* 0.56 � 0.03
Left ventricular systolic pressure (mmHg) 98 � 4 103 � 5 72 � 5* 86 � 6†
dP/dtmax (mmHg/s) 6,658 � 346 6,858 � 256 3,215 � 201* 5,214 � 286†
Ejection fraction (%) 66 � 4 64 � 5 38 � 7* 51 � 4†
Left ventricular diastolic pressure (mmHg) 2.5 � 1 2.8 � 1 9.4 � 2* 4.4 � 2†
dP/dtmin (mmHg/s) �5,896 � 301 �5,485 � 285 �2,248 � 247* �4,257 � 244*†
Left ventricular stiffness (ml�1) 0.027 � 0.002 0.034 � 0.002 0.127 � 0.001* 0.047 � 0.004*†
Mean blood pressure (mmHg) 95 � 4 98 � 5 68 � 7* 88 � 6*†

Data are means � SE. Hemodynamic function of control mice (B1R�/�) or mice lacking the B1R (B1R�/�) under basal conditions and 8
weeks after induction of STZ-induced diabetes. *P � 0.05 vs. nondiabetic controls; †P � 0.05 vs. B1R�/�-STZ. dP/dtmax, contractility; dP/dtmin,
relaxation.

KININ RECEPTOR TYPE 1 IN DIABETIC CARDIOMYOPATHY

1374 DIABETES, VOL. 58, JUNE 2009



Envision horseradish peroxidase technique (DAKO, Glostrup, Denmark).
Histological costainings were performed using prinamry antibodies for CD68,
tumor necrosis factor (TNF)-� (R&D Systems, Wiesbaden, Germany), sarco-
meric actin, and TAB-1 (Cell Signaling Technology, Danvers, MA).
Real-time RT-PCR. Real-time RT-PCR (ABI Prism 7900 HT Sequence Detec-
tion System software, version 2.2.2.; Perkin Elmer) was carried out as
previously described (23) using primers for B1R and B2R, the cytokine
interleukin (IL)-1	, TNF-�, and IL-6, as well as for the chemokine CXCL-5. 18S
was used as a housekeeping gene.
Western blot for evaluation of total p38 mitogen-activated protein

kinase and p38 phosphorylation. Total p38 mitogen-activated protein
kinase (MAPK) and phosphorylated p38 MAPK were detected with each
specific antibody. Moreover, TAB-1 (all from Cell Signaling Technology) was
detected. The blots were visualized with a chemiluminescene system (Amer-
sham Bioscience, Buckinghamshire, U.K.). Quantitative analysis of the inten-
sity of the bands was performed with NIH Image 1.63 software (National
Institutes of Health, Bethesda, MD).
Statistical analysis. All data are expressed as means � SE. Statistical
significance between multiple groups was determined using ANOVA and post
hoc analysis with a Bonferroni test. Values of P � 0.05 were considered
significant.

RESULTS

Eight weeks after induction of STZ-induced diabetes, glucose
levels were found to be highly increased in B1R�/�-STZ and
B1R�/�-STZ mice but did not differ between both diabetic
groups. Body weight decreased in both groups when com-
pared with controls (Table 1).
Hemodynamic data. Lack of B1R had no effect on cardiac
function under normoglycemic conditions. The heart rate
was significantly decreased in B1R�/�-STZ mice when
compared with controls, due to the known effect of
diabetic cardiac autonomy (24), while B1R�/�-STZ mice
were not statistically different from their controls. No
ventricular dilatation was demonstrated in either STZ
group when compared with their controls, while stroke
volume was smaller in STZ, which contributed to impaired
cardiac output in comparison with the controls. This
decline of cardiac output could be partly prevented by B1R
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FIG. 2. mRNA levels of cardiac cytokines in control mice (B1R�/�) or mice lacking the B1R (B1R�/�) under basal conditions and 8 weeks after
induction of STZ-induced diabetes with increased levels of IL-1�, IL-6, and TNF-� in STZ measured by real-time RT-PCR. Moreover, the figure
shows mRNA levels of the chemokine CXCL-5 levels as well as mRNA levels of the B1R and B2R. *P < 0.05 vs. B1R�/� and B1R�/� STZ. #P < 0.05
vs. B1R�/�.
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knockout but was still impaired when B1R�/�-STZ mice
were compared with controls. The systolic and diastolic
parameters end systolic pressure, dP/dtmax, and ejection
fraction were significantly decreased; the end diastolic
pressure as well as diastolic stiffness was increased when
STZ was compared with the control group. However, the
impairment in these parameters was much less pro-
nounced in B1R�/�-STZ mice (Table 1 and Fig. 1).
Cardiac inflammation and oxidative stress. In the
myocardium of the diabetic mice, the mRNA abundance of
the proinflammatory cytokines IL-1	, IL-6, and TNF-� as
well as the chemokine CXCL-5 were significantly in-
creased by B1R�/�-STZ compared with controls (Fig. 2).
This was associated with increased numbers of CD3�,
CD11b�, CD45�, and CD68� cells (Fig. 3) and the protein
abundance of MMP-9 (Fig. 4). This upregulation was
prevented by B1R�/�-STZ, resulting in normalized levels
compared with controls. Moreover, a major part of TNF-�
is produced by inflammatory cells (CD68) (Fig. 5). The
abundance of nitrotyrosine and myeloperoxidase was in-
creased in the cardiac tissue of the STZ group, as an
indicator of increased oxidative stress (Fig. 4). The lack of
the B1R reduced this increased expression of nitrotyrosine

and myeloperoxidase in comparison with STZ, despite
severe hyperglycemia when B1R�/�-STZ was compared
with B1R�/�-STZ (Fig. 4).

Protein levels of endothelial nitric oxide synthase levels
(eNOS) were downregulated in both diabetic groups.
Nevertheless, the mRNA content was only downregulated
significantly in the the B1R�/�-STZ but not in the B1R�/�-
STZ mice (Fig. 4). Furthermore, the phosphorylation state
of the MAPK p38, known to contribute to tissue inflamma-
tion, was increased in STZ mice compared with controls,
again an effect that was reduced in B1R�/�-STZ mice when
compared with controls. Moreover, TAB-1 protein was
significantly inreased in diabetic wild-type compared with
B1R�/�-STZ mice (Fig. 6).
Kinin receptor regulation. The B1R mRNA was in-
creased by STZ-induced diabetes in wild-type mice. The
B2R mRNA was also increased due to diabetic condition in
wild-type mice. In B1R�/� animals, the B2R expression
was higher compared with wild-type mice under basal
conditions. Interestingly, there was no further B2R mRNA
upregulation due to diabetic conditions as seen in wild-
type mice (Fig. 2).
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FIG. 3. Increased inflammatory cells (CD3�, CD11�, CD45�, and CD68�) in the cardiac tissue of B1R�/�-STZ with representative pictures of all
groups for CD11� and CD68� cells in control mice (B1R�/�) or mice lacking the B1R (B1R�/�) under basal conditions and 8 weeks after induction
of STZ-induced diabetes. *P < 0.05 vs. B1R�/� and B1R�/� STZ. (A high-quality digital representation of this figure is available in the online issue.)
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Cardiac fibrosis. CTGF was highly increased in diabetic
animals. This increase in CTGF was accompanied by
increased levels of collagen type 1 and 3, as an indicator of
cardiac fibrosis. In contrast, CTGF was normalized in
B1R�/�-STZ, which translated into normalized collagen
type 1 and type 3 levels as well, when compared with the
controls (Fig. 7).

DISCUSSION

The salient finding of this study is that B1R gene deletion
attenuates cardiac systolic and diastolic dysfunction in
experimental diabetic cardiomyopathy. Diabetic cardio-
myopathy is characterized by an increase in the phosphor-
ylation state of the MAPK p38, which was associated with
augmented cardiac inflammation, cardiac fibrosis, and
oxidative stress in cardiac tissue. These changes were
normalized in mice lacking the B1R, despite the occur-
rence of comparable severe hyperglycemia.

Experimental stimulation of the kallikrein-kinin system
by gene transfer (25,26) and/or by the use of transgenic
kallikrein overexpressing animals (10) attenuates diabetic
cardiomyopathy. This is in agreement with other studies
showing potent cardioprotective effects of the kallikrein-

kinin system in animal models of ischemic (27–29), pres-
sure overload (8), and septic (12) and hypertensive (9)
cardiomyopathy. We, and others, using the STZ model of
diabetes, were able to show that these cardiobeneficial
effects of kallikrein-kinin mediate anti-inflammatory and
antifibrotic effects and, furthermore, reduce oxidative
stress (10,30,31) as well as improve glucose utilization and
lipid metabolism (26,32). Both receptors of the system, the
B1R and the B2R, are upregulated in the diabetic heart
(14). The cardioprotective effects are mediated mainly by
the B2R, since pharmacological inhibition of the B2R was
seen to abolish these cardioprotective effects (31). The
relationship between B1R and the development of heart
failure is still under investigation. Recently, it was shown
that the B1R may yield similar effects when compared with
the B2R in an animal model of myocardial infarction (17).
Nonetheless, other researchers have shown that a lack of
the B1R reduced infarct size in ischemia reperfusion injury
(19,33), a finding that indeed may imply an opposite
function compared with that of the B2R. While there is
good evidence that the B1R plays a detrimental role in
autonomic diabetic nociception (34), obstructive nephrop-
athy (35), and stroke (36) by modulating inflammatory
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high-quality digital representation of this figure is available in the online issue.)
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processes and increasing inflammation, its role in the
development of diabetic cardiomyopathy has not yet been
directly investigated.

We demonstrated recently that diabetic cardiomyopathy
is associated with increased cardiac inflammation (2,5,10).

These inflammatory processes were associated with in-
creased oxidative stress and cardiac fibrosis, all contrib-
uting to systolic and diastolic dysfunction under diabetic
conditions. Since the B1R is known to be upregulated by
IL-1	 (37) and hyperglycemia (14,38) and mediate tissue
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FIG. 5. Immunofluorescent stainings of cardiac tissue of a diabetic wild-type mouse with stainings for CD68, TNF-�, as well �-sacromeric actin
and DAPI (for cell nuclei) showing that TNF-� is secreted by inflammatory CD68� cells. (A high-quality digital representation of this figure is
available in the online issue.)
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inflammation by increasing invading cells and proinflam-
matory cytokines in airway diseases (39), we investigated
its role during the development of diabetic cardiomyopa-
thy. On one hand, in nondiabetic mice with gene deletion
of the B1R, the cardiac function remained unchanged
when this was compared with control mice in the current
study. That is a finding that is in agreement with others
(17,40–42). On the other hand, attenuated cardiac dys-
function despite severe hyperglycemia indicates a detri-
mental role of the B1R in diabetic cardiomyopathy when
systolic and diastolic function of B1R�/�-STZ were com-
pared with STZ.

One intracellular pathway of the B1R was shown to be
dependent on the MAPK p38 (43). The current study
shows an activation of the p38 pathway in the STZ group,
which was normalized in the B1R�/�-STZ group. P38
phosphorylation can be induced by TAK-1 binding protein
(44). In line with these findings, increased protein content
of TAB-1 in diabetic wild-type mice compared with B1R�/

�-STZ mice could be documented here. Since p38 activa-
tion plays a role in diabetic cardiomyopathy by inducing
cardiac inflammation (45), we documented increased car-
diac levels of cytokines in the STZ group, namely of Il-1	,
IL-6, and TNF-�, known to cause myocardial dysfunction
and mediate leukocyte infiltration during tissue inflamma-
tion (46). This cytokine induction was decreased in dia-
betic mice lacking the B1R.

Moreover, the number of invading immunocompetent
cells was increased in the STZ group, thus yielding another
marker of cardiac inflammation. These increased numbers
were normalized in mice lacking the B1R. This is impor-
tant, since those invading cells are one major source of
cytokine production within the cardiac tissue (e.g., as
shown here by the colocalization of TNF-� with CD68�

cells). Furthermore, we show that the protein levels of
MMP-9 were also increased in STZ and decreased in
diabetic mice with gene deletion of the B1R. Recent
findings (47) suggest that especially MMP-9 modulates the
transendothelial migration of leukocytes from the vessel
to the tissue, where an inflammatory progress is ongoing.
This can be explained by the fact that MMP-9 does not

solely cleave gelatin but indeed processes and activates
many chemokines and cytokines and thereby directly
modulates inflammation. In line with these effects, it was
shown in a mouse model of hepatitis that MMP-9 knockout
mice were protected against invading leukocytes undergo-
ing transendothelial migration (48). Only recently could it
be shown that induction of MMP-9 expression is triggered
by bradykinin, using cell culture rat astrocytes (49). Al-
though those authors showed that B2R antagonism inhib-
ited this increase (49), our data also suggest that the B1R
plays a role in MMP-9 expression in cardiac tissue under
diabetic conditions. Moreover, recently, the B1R was
shown to be essential for IL-1	–driven cell recruitment of
immunocompetent cells by inducing the chemokine
CXCL-5 in endothelial cells (50). This recruitment of
CXCL-5, known to be one important player in leukocyte
recruitment to sites of tissue inflammation, was abolished
in mice without the B1R or when a pharmacological B1R
antagonist was applied (50). In line with these data, we
show here that the chemokine CXCL-5 was increased
under diabetic conditions. This effect was completely
normalized in mice lacking the B1R despite severe hyper-
glycemia. The normalized levels of CXCL-5 and MMP-9
result in reduced migration of inflammatory cells into the
cardiac tissue. Therefore, inflammation leading to cardiac
damage due to invasion of these cells was attenuated in
diabetic B1R�/�-STZ mice compared with diabetic con-
trols with increased levels of CXCL-5 and MMP-9.

Furthermore, it was shown that the B1R, but not the
B2R, increases the mRNA abundance of the profibrotic
CTGF and thereby increases collagen mRNA and pro-
tein production in human fibroblasts, an effect that
could be blocked by a B1R antagonist (51). Following
these findings, we show increased levels of CTGF in the
cardiac tissue of STZ mice, leading to increased colla-
gen accumulation, which is known to be a hallmark in
the development of diabetic cardiomyopathy leading to
increased cardiac stiffness contributing to diastolic and
systolic failure. Together with those findings, this mech-
anism could not be observed in mice with B1R gene
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deletion, thus showing no increase in CTGF or collagen
accumulation.

Much evidence has indicated that oxidative stress plays
an important role in the failing diabetic heart (52). This can
be attenuated by the kallikrein-kinin system (8,10). Con-
sistently, we show increased nitrotyrosine and myeloper-
oxidase protein levels (expressed from inflammatory
cells) in the cardiac tissue of the STZ group. Together with
reduced inflammatory cells, nitrotyrosine and myeloper-
oxidase were reduced in the B1R�/�-STZ group. These
data suggest that the B1R might play a role in the gener-
ation of oxidative stress, most probably due to the in-
creased recruitment of inflammatory cells resulting in
increased myeloperoxidase present in the cardiac tissue.
Future studies have to investigate whether this effect is
only mediated by the B1R or if changes in basal B2R level
expression, as shown in this study, are also influencing
generation of oxidative stress in the B1R�/�-STZ group.

The protein content of eNOS, known to exert antioxi-
dative effects, was similarly reduced in both diabetic
groups. Interestingly, B1R�/�-STZ showed no significant
downregulation on mRNA levels. Despite these changes in
mRNA content, which may be explained by posttranscrip-
tional modification, these data suggest that the diabetes-
induced downregulation of eNOS protein is not mainly
regulated by the B1R knockout. Again, further studies
have to reveal the impact of B2R regulation on these
effects. In conclusion, this study demonstrates that a lack
of the B1R attenuates the development of STZ-induced
diabetic cardiomyopathy with a decrease of cardiac in-
flammation, fibrosis, and oxidative stress.
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