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Abstract

Objective.—Electrical stimulation of the human brain is commonly used for eliciting and 

inhibiting neural activity for clinical diagnostics, modifying abnormal neural circuit function for 

therapeutics, and interrogating cortical connectivity. However, recording electrical signals with 

concurrent stimulation results in dominant electrical artifacts that mask the neural signals of 

interest. Here we develop a method to reproducibly and robustly recover neural activity during 

concurrent stimulation. We concentrate on signal recovery across an array of electrodes without 

channel-wise fine-tuning of the algorithm. Our goal includes signal recovery with trains of 

stimulation pulses, since repeated, high-frequency pulses are often required to induce desired 

effects in both therapeutic and research domains. We have made all of our code and data publicly 

available.

Approach.—We developed an algorithm that automatically detects templates of artifacts across 

many channels of recording, creating a dictionary of learned templates using unsupervised 
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clustering. The artifact template that best matches each individual artifact pulse is subtracted to 

recover the underlying activity. To assess the success of our method, we focus on whether it 

extracts physiologically interpretable signals from real recordings.

Main results.—We demonstrate our signal recovery approach on invasive electrophysiologic 

recordings from human subjects during stimulation. We show the recovery of meaningful neural 

signatures in both electrocorticographic (ECoG) arrays and deep brain stimulation (DBS) 

recordings. In addition, we compared cortical responses induced by the stimulation of primary 

somatosensory (S1) by natural peripheral touch, as well as motor cortex activity with and without 

concurrent S1 stimulation.

Significance.—Our work will enable future advances in neural engineering with simultaneous 

stimulation and recording.
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1. Introduction

Direct electrical stimulation of the brain is a powerful tool in both clinical and basic 

neuroscience; it is useful for probing neural circuitry (Matsumoto et al 2004, Keller et al 
2014), modifying cortical connections (Zanos et al 2018, Keller et al 2018), as well as 

providing direct feedback to brain regions (Caldwell et al 2019, Cronin et al 2016, Collins et 
al 2017, Lee et al 2018, Hiremath et al 2017, Flesher et al 2017). Importantly, electrical 

stimulation has the potential to advance the emerging field of neuroprosthetics (Caldwell et 
al 2019). However, the interpretation of neural activity during concurrent electrical 

stimulation is a substantial challenge. The recorded stimulus artifact induced by electrical 

stimulation is often orders-of-magnitude greater than the neural signals of interest, 

confounding traditional analytic techniques, such as time-frequency and time-series analyses 

(Zhou et al 2018). Both hardware and analytic approaches have been developed to minimize 

the impact of electrical artifacts on neural recordings. Emerging front-end hardware 

solutions are promising (Zhou et al 2018, Weiss et al 2019), but they will likely continue to 

work in concert with further processing after signal acquisition.

There is a wealth of work in the literature developing computational methodology to process 

recordings with concurrent electrical stimulation. These methods can be summarized as 

taking one of five different approaches to manage the stimulation artifact: simple 
interpolation, template subtraction, biophysical modeling of the artifact, frequency-based 
filtering of the signal, and modal decomposition of the artifact from the signal. Fortunately, 

an increasing number of these methods have been made available through toolboxes with 

code and data for rapid dissemination and evaluation of the results (Erez et al 2010, Herring 

et al 2015). Interpolation and curve fitting through the artifact window is a simple but often 

effective approach for short-duration artifacts, especially when the neural responses during 

these short artifacts are not the focus of the study (Wagenaar et al 2002, Heffer et al 2008, 

Voigt et al 2018). Beyond interpolation, a variety of methods have instead subtracted an 

averaged template of the artifact window to estimate the underlying signal (Hashimoto et al 
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2002, Sun et al 2016). Interestingly, these approaches have been extended for proposed real-

time closed-loop stimulation, with validation on simulated ECoG data with real stimulation 

artifacts (Yang et al 2018). The template extraction method has been extended with a 

variation using unsupervised manifold learning (Alagapan et al 2018). An alternative 

approach is to make simplifying assumptions and construct biophysical models of the 

interactions between the electrical stimulation and the tissue to isolate the neural signals 

(Walker et al 2012, Trebaul et al 2016). However, it is challenging to balance adequate 

recovery of the neural signal with complete artifact elimination in these time-domain 

subtraction methods.

The stimulation artifact can also be processed in the frequency domain. A variety of filters 

have been developed to match the characteristics of the artifact, including band-stop filters 

(Jech et al 2006, Sun et al 2014), a Hampel filter (Allen et al 2010), and a recursive Wiener 

filter (Mouthaan et al 2016), to name a few. Even with these advanced filtering methods, it 

remains difficult to isolate the neural signal when the frequency spectra of the signal and the 

artifact overlap (Nagel et al 2000, Lio et al 2018).

By leveraging correlations across multiple, simultaneously-recorded channels, much 

progress has been made using modal decomposition techniques to separate the neural signals 

from the artifacts. Commonly used methods have included independent component analysis 

(ICA, (Gilley et al 2006, Lu et al 2012)) and empirical mode decomposition (EMD, (Al-ani 

et al 2011)). Another recent work models the spatial and temporal correlations among a 

large array of electrical recordings as structured Gaussian processes (Mena et al 2017). 

Modal decomposition has also been used to generate artifact templates by sequential 

principal component regression (PCR), which are subsequently subtracted from the 

recordings (O’Shea et al 2017).

In this paper, we develop a data-driven method based upon dictionary learning to recover 

neural signals from recordings with concurrent electrical stimulation. The method proposed 

here is a type of template subtraction; our innovation lies in using unsupervised machine 

learning to learn a dictionary of artifact templates. In particular, our method is designed to 

perform well with ongoing trains of stimulation across many channels in human intracranial 

recordings. Trains of stimulation are frequently used to provide therapeutic benefit through 

modalities such as deep brain stimulation (DBS) (Ashkan et al 2017, Montgomery et al 
2008, Montgomery et al 2011), responsive cortical stimulation for the treatment of epilepsy 

(Sohal et al 2011), and to provide sensory information in neuroprosthetic applications with 

direct electrical stimulation (DES) of primary somatosensory cortex (S1) (Cronin et al 2016, 

Lee et al 2018, Flesher et al 2017, Hiremath et al 2017). When many stimulation trains are 

used, pulses may have varying stimulation parameters, the recorded waveforms may differ 

depending on the sampling, and their proximity to each other may lead to ambiguity in 

separation from the neural signals. Our method allows for the discovery of independent 

clusters of artifacts across many channels, without user defined onsets and offsets. 

Furthermore, outlier stimulation pulses and trials may be excluded by the automatic 

clustering algorithm employed (HDB-SCAN), preventing the contamination of the most 

salient, core artifact clusters present throughout a recording.
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We demonstrate the performance of our method on several different human intracranial 

experiments, including stimulation of S1 and DBS. For the S1 stimulations, we also compare 

the evoked cortical responses across the array of recording electrodes for DES and natural 

haptic touch. In addition, we show that our method extracts adjacent motor cortical activity 

with concurrent S1 stimulation. Such signal extraction is important for simultaneous motor 

decoding and sensory stimulation for closed-loop neuroprosthetics. Furthermore, our 

extraction of neural signals in response to DBS shows the utility of our method for 

understanding the neural response to this clinical application of electrical stimulation. We 

have made all of the code and data publicly available to accelerate future research in neural 

engineering with concurrent stimulation and recording. Our datasets include five different 

subjects performing five different tasks; we hope that these datasets will serve as common 

testbeds for others pursuing future algorithmic developments. We believe our method and 

work here advances the field of artifact processing in neural data due to the combination of 

advanced unsupervised clustering techniques, automatic artifact detection, application across 

many channels and with trains of closely spaced stimulation pulses, demonstrations of 

failure modes, and open-source code with five unique human datasets.

2. Methods and datasets

2.1. Human subjects

Human subjects with medically intractable epilepsy undergoing inpatient invasive 

electrophysiologic mapping of their seizure focus were implanted at Harborview Medical 

Center (Seattle, WA) with subdural electrocorticographic (ECoG) grids (8 by 8 contacts, 2.3 

mm exposed diameter, Ad-tech Medical, Racine, WI, USA). ECoG grid placement was 

determined solely based on clinical needs without consideration of research benefits. 

Although the clinical management of each patient was tailored to their specific medical 

needs, the subjects’ antiepileptic medications generally were weaned or fully discontinued 

during the period of monitoring until a sufficient quantity of seizures had been captured to 

adequately localize their seizure focus, following which they resumed taking full doses of 

their anti-epileptic medications. We conducted all stimulation studies after subjects were 

back on their anti-epileptic medications, after approximately one week of clinical 

monitoring.

Human DBS subjects were implanted at University of Washington Medical Center (Seattle, 

WA) with DBS leads (Medtronic) and subdural ECoG strips (1 by 8 contacts, Ad-tech 

Medical, Racine, WI, USA).

All patients gave informed consent under protocols approved by the University of 

Washington Institutional Review Board.

2.2. Cortical reconstructions

We performed cortical reconstructions using previously described techniques (Blakely et al 
2009, Hermes et al 2010, Wander et al 2016).
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2.3. Data acquisition and stimulation

Neural data were acquired at 1221, 12 207 or 48 828 Hz using a Tucker Davis Technologies 

(TDT) System 3 with the RZ5D and PZ5 Neurodigitizer (Tucker Davis Technologies, 

Alachua, Florida, USA). Neural data were acquired from the non-stimulating electrodes. All 

datasets, except for the DBS dataset, were acquired with 64 contact macro ECoG grid 

arrays, while the DBS dataset was acquired with 4 contact cylindrical DBS leads and 8 

contact macro ECoG strips. We delivered stimulation through the TDT IZ2H-16 stimulator 

and LZ48–400 battery pack (Tucker Davis Technologies), with the precise stimulation 

parameters determined by the particular experiment (detailed below). For all experiments, 

the stimulation pairs of electrodes were adjacent electrodes on the electrode array.

2.4. Haptic touch dataset

The neural data acquired for comparisons between stimulation of S1 and natural haptic 

touch are from previously described experiments (Caldwell et al 2019), in which subjects 

received stimulation of hand S1 somatosensory cortex and peripheral haptic touch of the 

corresponding region of the hand during a response timing task. Briefly, a pair of electrodes 

through which to apply bipolar stimulation of hand S1 was selected informed by anatomic 

locations of the electrodes and prior clinical mapping. Stimulation was then applied, and 

using verbal feedback of the subjects, a pair of electrodes which elicited reproducible 

percepts on the subject’s hands was selected for further sensory experiments. The haptic 

touch was then applied to the cutaneous area where subjects reported the sensation from 

stimulation of hand S1. We used 200 Hz, biphasic (200 μs pulse width), bipolar, 2 mA 

constant current stimulation trains of 400 ms duration.

2.5. Non-uniform train dataset

The neural data acquired for the non-uniform train set were sampled at 12 207 Hz. 

Stimulation waveforms consisted of two, 3 mA pulses followed by 38,1.5 mA pulses at 200 

Hz, for a total of 200 ms of bipolar, biphasic (200 μs pulse width) stimulation.

2.6. Button press dataset

The neural data acquired during motor behavior with stimulation of sensory cortex was 

acquired with a subject performing a self-paced motor button pressing task with and without 

concurrent, random stimulation of S1. The subject was instructed to press the button firmly 

and consistently, while an experimenter randomly stimulated S1 during the activity. The 

subject was told not to respond differently based on the stimulation and was able to 

complete the button pressing task both with and without stimulation. We used 200 Hz, 200 

μs pulse width, biphasic, bipolar,1.5 mA constant current stimulation trains of 200 ms 

duration.

2.7. DBS dataset

The DBS data were acquired intraoperatively during DBS lead placement, with stimulation 

and recording through the TDT system on a four-contact implanted Medtronic lead. Subjects 

received 15 epochs of 4 different stimulation amplitudes (1.5, 2, 2.5, 3 V, all of 500 ms 
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duration) with 185 Hz, bipolar, monophasic (60 μs pulse width) constant voltage stimulation, 

for a total of 60 epochs.

2.8. Rubber hand illusion dataset

The neural data to illustrate inadequate sampling for stimulation epoch processing using the 

dictionary learning method were sampled at 1221 Hz, as previously described in (Collins et 
al 2017). 100 Hz,2.2 mA constant current, biphasic (200 μs pulse width), bipolar stimulation 

was used.

3. Signal recovery algorithm

Our goal was to develop an algorithmic approach to recover neural signals recorded 

concurrently with electrical stimulation. We have designed our algorithm based on three key 

assumptions about the neural data. First, stimulation artifacts are assumed to be additive and 

do not interact nonlinearly with the signal, so that once estimated, they can be subtracted 

from the recording. Second, we assume that the data are acquired by recording amplifiers 

that do not saturate during stimulation, are capable of oversampling, and are synchronized 

between recording and stimulation devices. Third, we assume that the timing of artifact 

windows may be extracted in all channels by the stimulation onset from a single channel; 

this assumption draws on knowledge that volume conduction is much faster than neural 

signal propagation. Our software includes options to recover stimulation-evoked pulses, and 

to dynamically detect the offset of stimuli pulses on a channel and pulse-wise basis. In our 

online code repository and associated readme file, we discuss the meanings of various 

parameters, as well as guidance in selecting their values.

Figure 1 illustrates the overall algorithm; each step in the pipeline is elaborated in the 

subsequent sections. Briefly, raw recorded data during stimulation epochs from many 

channels are taken as input; these typically include trains of stimulation (figure 1(a)). 

Individual stimulation-evoked pulses within each of these epochs are detected (figures 1(b) 

and 3) and clustered using a density-based algorithm (HDB-SCAN, or (hierarchical density-

based spatial clustering of applications with noise) (Campello et al 2013)) to learn a 

dictionary of artifact templates. Since this step is crucial for the success of our signal 

recovery, it is shown in more detail in figure 2. Next, each individual pulse is compared to 

this dictionary, and the closest template (figure 1(c)) is subtracted from the raw pulse. After 

subtraction, subsequent analyses in the time and frequency domains may be performed on 

the recovered signals directly (figure 1(d)).

3.1. Detection of artifact windows

We begin with e epochs of data that are each t time snapshots by c channels, so the size of 

the input is (t × c × e). Instead of relying on alignment to stimulation pulses, we detect 

artifact windows by leveraging timing information on the channel with the largest electrical 

artifact magnitude. To estimate artifact onset and offset, we use a Savitzky-Golay filter 

(Savitzky et al 1964) to reduce high frequency noise (3rd order, 7 samples, or 0.57 ms at 12 

207 Hz). We have empirically found an absolute Z-score threshold of 1.5 on the epoched 
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signal to successfully detect the onset of the artifacts, but this parameter can be modified by 

the user.

We then define a window size (an example is below) around each stimulation pulse and align 

the start of these windows to extract pulses from all epochs (figures 1(b) and 2(a)). We used 

a time window of 0.8 ms before the detected onset of stimulation for all datasets. We 

subsequently used a Z-score percentage threshold on both the raw smoothed voltage and 

differentiated smoothed signal (we used a 75% cutoff for both of these values for figures 1–

5), and used the threshold that selected the furthest time point from artifact onset for the end 

of each stimulation pulse. This estimate was individually computed for each pulse, in each 

epoch, and in each channel. An extra 1 ms was added after the end of each artifact to ensure 

that the entire artifact had been adequately sampled for all datasets. In this way, we 

transform the t × c × e input data to be a cell of size (tp×c × (e × p)), where tp is an index for 

the time window for each pulse on each channel and p is the number of pulses. The 

smoothed signal is not used further in the signal recovery pipeline.

To make these extracted individual pulses suitable for unsupervised clustering, we equalized 

the pulse lengths by zero-padding the end of each pulse within a channel, so that they are all 

the same length (figure 2(a)). In order to eliminate the baseline offset of the artifact window, 

a user defined number of samples is used to define a period over which an average is 

calculated, and this average is subtracted from the entire pulse. In this work, we have used 

the first 3 samples of the artifact window, as this is empirically what has worked well with 

our data sets, but longer time periods, as well as mean of each window could be used. These 

onset times, offset times, percentage thresholds, and number of samples included for offset 

correction are all parameters in the algorithm and are tunable by the user to the particular 

nuances of their data. For instance, the time window before the artifact onset and after the 

artifact offset can be manually changed to ensure that the entire artifact is captured, while 

minimizing the amount of uncontaminated neural signal that is included in artifact 

processing. In order to the determine the number of samples which should be included for 

baseline offset correction, the selected points should not extend too far before the 

stimulation onset to minimize the inclusion of temporally distant recorded signals. The Z-

score percentage threshold for estimation of artifact offset can be modified to ensure that the 

end of the artifact is appropriately detected. We find that a higher percentage threshold offset 

resulted in better performance on our DBS datasets (see Results section). A higher 

percentage (e.g. 99%) would ensure the capturing of a longer duration artifact, potentially 

more appropriate for longer lasting exponential artifacts, while a smaller percentage 

threshold (75%) is potentially more appropriate for a shorter lasting artifact.

3.2. Comparison to recovery by alternative methods

Once each stimulus pulse has been isolated, the next step aims to reduce the artifact present 

within this window. The electrical artifact is typically many orders-of-magnitude larger in 

amplitude than the underlying neural signals (figure 3(a)), making this task particularly 

challenging. Additionally, the effect of the artifact extends into frequencies other than just 

the stimulation frequency and its harmonics. We compare our proposed method (figure 3(b)) 

with other commonly used strategies to recover the signal.
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One strategy is an interpolation scheme that ignores the artifact itself, filling in the data 

between the endpoints of the stimulus artifact. As noted, variants of these have been used for 

electrophysiologic recordings with concurrent stimulation. Figure 3(c) shows the results of a 

shape-preserving piece-wise cubic interpolation scheme using data points adjacent to the 

stimulus artifact. Code to perform this interpolation is provided in our repository. While the 

recovered signal in the time domain is continuous and in the right order-of-magnitude in 

voltage, figure 3(c) shows that the interpolation scheme has introduced large, undesirable 

signals in the frequency domain.

Another common approach is low pass filtering, which as shown in figure 3(d) and (e) 

overly smooths the time-domain signal and either eliminates neural signal in the time-

frequency domain (figure 3(d), or fails to remove the stimulation artifact (figure 3(e)). We 

here use filtering across the entire pulse train, rather than filtering individually detected 

pulses. Although the time-series signal may look smooth, the normalization to baseline may 

reveal spectral artifacts incompletely removed by the filtering process due to the 

characteristics of the filter, which include the roll-off, order, and center frequency. We used 

acausal, 4th order Butterworth filters for the low pass filtering. We believe the spectral 

components represented in the 100 Hz low pass filter case are due to the incomplete 

suppression of artifact components in the 100–300 Hz regime, which are revealed by the 

normalization to baseline.

Another approach is ICA. Here, an ICA implementation that selectively removed ICA 

components with very high frequency (200 Hz) spectral peaks was used to eliminate the 

stimulus artifacts. This implementation resulted in reasonable performance in the time-

frequency domain (figure 3(f)) for the same channel as panels (a–f), but there were residual 

artifacts present in the time-series signal. Most importantly, other channels (e.g. figure 3(g)) 

had large residual artifacts. This points to the difficulty in blind source separation using ICA, 

even with domain-specific optimization for signals that have artifact components orders-of-

magnitude greater than the neural signals of interest, that are not consistent in shape across 

channels.

3.3. Dictionary learning with unsupervised clustering to extract artifact templates

Stimulation artifacts recorded at each pulse on each channel have different waveforms. 

Consequently, the mean artifact waveform is a poor representation of individual artifacts. 

Differences in artifact morphology arise from a few different sources, including slight 

temporal offsets due to windowing, fine differences in timing of sampling, different 

stimulation parameters during and across epochs, as well as varying factors at each 

electrode-tissue interface. Nevertheless, there are stereotypes of artifact waveforms, and here 

we have implemented a data-driven strategy for learning these templates. In particular, we 

created a dictionary of artifact waveforms from all pulses and all epochs of each channel 

using unsupervised clustering.

Our algorithm uses a modified HDBSCAN algorithm for clustering (Campello et al 2013), 

which is in turn a variant of the classic DBSCAN algorithm (Ester et al 1996). We use a 

MATLAB implementation of HDBSCAN openly distributed on GitHub (Sorokin et al 
2018). This algorithm discovers dense regions (clusters) within a noisy dataset; the 
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algorithm determines the number of clusters that explain the data, given three key 

parameters that must be chosen by the user. The first parameter is the number of neighbors k 
used in the density computation; increasing this parameter restricts clusters to increasingly 

dense areas. The second parameter is the minimum cluster size n, which is to say, the 

minimum number of data points considered a cluster. The third parameter is the outlier score 

threshold θ = [0, 1], above which an observation is considered to be noise. For our haptic 

touch, variable stimulus amplitude, and DBS datasets, we specified k = 2, n = 3, and θ = 0.9. 

For our button press dataset, we used k = 15, n = 10, and θ = 0.95. We used euclidean 

distance between artifact pulses as our distance metric, but other distance metrics for 

clustering could be used as desired.

In order to choose appropriate values for the parameters described above, the user should 

first look at the raw individual pulses and decide if there are numerous visible artifact 

shapes, and approximately the percentage of pulses represented by each artifact shape. An 

overly high minimum cluster size n may fail to capture clusters which represent rarer 

artifacts. Similarly, how tightly the individual points cluster within their described clusters, 

and the noisiness of the data, helps inform how many neighbors k should be used, and the 

outlier score threshold θ.

All the pulses for each channel are clustered together. Figure 2(a) illustrates the input data 

matrix for the clustering; 12 features were used in the clustering, taken as 6 samples (0.5 ms) 

on either side of the time at which the maximum absolute value voltage occurred. The 

number of features can be defined by the user depending on how many informative data 

points are contained within a given artifact pulse. This number of features is independent of 

the window length, and allows for selection of the maximally separable number of points by 

the user for any arbitrary window length. We chose this part of the artifact to manage the 

dimensionality of the clustering task, focusing on the time-point features that are most 

informative about the separability of stimulus artifacts. Two of these time-point features are 

used as axes in figure 2(b), showing the clustering of artifacts into 4 distinct regions in this 

example.

3.4. Signal recovery by template matching and artifact subtraction

The mean waveforms of every cluster form the dictionary of artifact templates (figure 2(c) 

and (d)). The correlation of each individual pulse in the signal with each of the templates in 

the dictionary is calculated, and the maximally correlated template is chosen. We use 

correlation to minimize the impact of scaling and normalization in our template selection. 

Once the best template has been selected, it is subsequently scaled by the ratio of the 

template’s range to the individual pulse’s range. This is to adjust for slight changes in 

stimulation pulse amplitude across pulses. Finally, the scaled template is linearly subtracted 

from the time window for that pulse to recover the neural signal (figures 2(c) and (d)). We 

also implement for comparison an average within epoch template subtraction scheme, as 

well as an average across all stimulation pulses subtraction scheme, for each channel (data 

not shown). Under simple cases, these methods may perform as well as the more complex 

method detailed above, but for varying amplitude waveforms and stimulation pulses with 
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different sampling times, our more advanced method outperforms these other approaches 

(see below).

3.5. Post-processing and visualization

Following signal recovery, we performed averaging of the epochs to obtain the average time-

series visualized in this paper. For figure 6, we performed common average rereferencing 

against the non-stimulation channels to remove common noise. On each epoch, we use non-

analytic Morlet wave-lets (Wander et al 2016, Bruns et al 2004) to calculate amplitude in 

time and frequency bins. We used 10 ms bins as our time resolution for the wavelet 

processing. We visualized the 5–300 Hz region to avoid including lower frequencies where 

edge effects from the wavelet processing may exist, and to focus on signals such as 

broadband gamma (Miller et al 2008). We considered broadband gamma to be an aggregate 

of local neuronal activity and to be more easily separated from lower frequency oscillations 

above 50 Hz. The time-frequency plots for the haptic touch datasets were Z-scored 

normalized relative to a baseline period from 800 ms to 5 ms before stimulation or before 

touch onset within each frequency band. In the button press datasets, the plots were Z-score 

normalized relative to the trial for –900 ms before button press to 900 ms after button press, 

as there was no consistent baseline period before each trial.

4. Results

Here we show that our unsupervised clustering approach to learning artifact templates is 

reproducible and robust, recovering underlying neural signals recorded concurrently with 

electrical stimulation. We demonstrate that the signals recovered in a variety of different 

human intracranial recording datasets are interpretable and physiologically valid. 

Importantly, our method protects time-points outside the stimulation epochs from 

processing, mitigating any adverse effects of the signal recovering algorithm on data without 

artifacts. Figure 4 compares the raw and recovered signals for one stimulation train epoch of 

one channel from an array of intracranial recordings; results from the rest of the channels for 

this subject and a second subject are shown in figures A1–A2.

4.1. Comparison between direct electrical stimulation of S1 and natural haptic touch

To demonstrate that the recovered neural activity is physiologically meaningful and valid, 

we highlight results comparing neural recordings from direct electrical stimulation of S1 to 

those from peripheral haptic touch. As illustrated in figure 5(d), the haptic touch was 

localized to the same region where the stimulation sensation was localized. Figures 5(a) 

and(e) show the raw signals recorded on the same channel, one adjacent to the stimulation 

electrode, where the 200 Hz stimulation train dominates the recording. Despite these large-

amplitude stimulation train artifacts present in the raw signal, we observe that the overall 

structure of the neural response in the time domain of the recovery signal (figure 5(b)) 

closely resembles the raw signal from the haptic touch (figure 5(e)). The slight delay seen 

between the raw evoked signal and haptic touch onset at t = 0 is due to previously published 

latencies induced by the custom electronic touch probes comprised of force-sensitive 

resistors used in the experiments (Caldwell et al 2019, Collins et al 2017). Crucially, the S1 

stimulation and natural haptic touch signals show strong similarities in the time-frequency 
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domain (figures 5(c) and (f)). In addition, there is no evidence of aliasing in the spectrogram 

at the stimulation frequency band (200 Hz).

4.2. Comparison between motor activity with and without DES of S1

In a related experiment, we analyzed neural responses at an electrode that showed motor 

activity during a self-paced button pressing task; we compared epochs with and without 

concurrent stimulation of the ipsi-lateral hand S1 cortex. In figure 6, the data were aligned 

and averaged using the timing of the self-paced button presses. We observed a striking 

overlap in both the time-series and time-frequency domain between epochs with and without 

stimulation, as well as no evidence of residual power in the stimulation frequency band of 

200 Hz. The size of the artifacts in the averaged signal before processing is smaller than in 

figure 5 because the epochs here are aligned not on stimulation onset, but rather on button 

press, resulting in the stimulation pulses being averaged out across trials.

4.3. Recovery with non-uniform stimulation trains

A key feature of our algorithm is its ability to adapt to time-varying stimulation pulse 

amplitudes (figure 7). In this scenario, an approach where the template is computed as an 

average within stimulation epoch would fail. Non-uniform stimulation trains are useful 

because neural activity is frequently non-uniform in amplitude over time. For instance, 

object contact onset and offset is coded by neurons in S1 primarily through the highest firing 

rate during touch onset and offset, and decrease their firing during the maintenance of touch 

(Pei et al 2009). Therefore, stimulation with trains that mimic the natural firing patterns of 

neurons may be more effective for neuroprosthetic applications to encode contact with an 

object (Tabot et al 2013). When using a non-uniform stimulation train, we are able to 

recover rapid evoked potentials after the onset of each stimulation pulse which occur within 

2 ms of the stimulus, which would be missed if the artifact windows were not carefully 

selected (figures 7(c) and (d)). In addition, the time-frequency representation of the 

processed signal appears to have response in the frequency band of stimulation (200 Hz), 

which we believe to be a real response component driven by the rapid onset evoked 

potentials triggered from the 200 Hz stimulation (figure 7(b)). We emphasize that we have 

used one set of parameters for all of the channels within this ECoG array and have been able 

to achieve good results across the array without detailed fine-tuning (figures A3–A4 show 

the time-series and time-frequency responses for the entire array).

4.4. Extraction of early-evoked potentials in DBS recordings and concurrent ECoG 
recordings with DBS stimulation

In some stimulation paradigms, signals are known to exhibit long exponential recovery to 

baseline. We isolated early, rapid evoked potentials in deep brain stimulation (DBS) 

electrodes with concurrent stimulation (figure 8(a)), where Figures 8(b) and (d) show the 

recovered evoked potentials. In addition, using the same parameters for a concurrently 

recording ECoG strip yielded good performance in acquiring the resultant surface cortical 

activity (figure 8(f)).
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4.5. Limitation of the algorithm

Despite meaningful signal recovery in a number of circumstances, there are conditions under 

which the algorithms presented here are unable to recover the neural signal. One example of 

this failure is shown in figure 9, which shows a dataset acquired at a lower sampling rate 

(1221 Hz) as previously described in (Collins et al 2017). In particular, when the stimulation 

waveforms are not well resolved, such as when the signal is under-sampled, our algorithm 

performs poorly in discovering clusters and artifact templates (figure 9(a)). Since the 

template learning procedure failed, our method was unsuccessful in recovering the neural 

signals (figure 9(e)). We define unsuccessful signal recovery here as residual artifacts on the 

scale of the original signal, as well as no additional insight to the underlying neural activity 

(figure 9(e)).

5. Discussion

Analyzing signals acquired with concurrent exogenous stimulation and recording is 

complicated, in large part because both the physics of direct electrical stimulation and 

subsequent neural responses are not well understood (Borchers et al 2012). Therefore, there 

is no true ground truth on which to train and evaluate signal recovery algorithms. Previous 

work have made use of synthetic datasets to validate signal recovery. While simulations offer 

the advantage of knowing precisely what ought to be recovered, synthetic data do not 

accurately recapitulate key features of real data (Yang et al 2018). Artifacts can be different 

across individual channels and over time during the recordings, and may not be fully 

described by simple analytic models. For instance, past work has assumed constant voltage 

stimulation, where in our experiments we use constant current stimulation (Trebaul et al 
2016). Beyond a simple RC circuit for the electrode-tissue interface, there are additional 

considerations from Faradaic and non-Faradaic reactions (Merrill et al 2005).

Therefore, we highlight here examples with meaningful recovery of biologically 

interpretable signals as the goal. This pattern of cortical responses during overt motor 

control is a well established phenomenon, having been observed throughout the systems 

electrophysiological literature (Miller et al 2007), and the cyclic nature of the pattern 

observed is illustrative of the rapid, self timed nature of the task for this subject. Similarly, 

the overlap in the time-series and time-frequency plots in figure 5 supports that we have 

extracted biologically grounded signals from our stimulation case.

5.1. Comparisons to commonly used signal processing techniques

Signals that are similar in the time domain may be quite different in the frequency domain 

(figure 3). This discrepancy points to the importance of examination of the data in both the 

time and frequency domains following processing. Simple filtering approaches can either 

overly attenuate the frequency components of interest (figure 3(d)) or fail to eliminate 

artifact components in the frequency domain (figure 3(e)). Modal decomposition techniques, 

such as our ICA implementation in figure 3(f, g), can exhibit superior performance to 

interpolation and filtering approaches, but it is difficult to ensure satisfactory performance 

across the entire array of electrodes (figure 3(g)). Methods such as ICA rely on common 

temporal structures across various recording sites for optimal performance, while our 
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method considers channels independently in the detection, clustering, and subtraction 

process, which enables it to work well on datasets where there are small numbers of 

recording electrodes within an array (strip electrodes), as well as larger numbers (grid 

electrodes). Other advanced modal decomposition techniques as discussed in the 

introduction (Mena et al 2017, O’Shea et al 2017), make different assumptions about the 

nature of the neural and artifact components of the data. For instance, Mena et al 2017 use 

knowledge about the electrical signals known in advance from spontaneous activity to guide 

artifact suppression, while O’Shea et al 2017 utilize information regarding the spatial spread 

of the artifact and neural signals to separate the two. Future work could explore the 

possibility of extending these approaches to intracranial human datasets.

In our time-frequency plots (figures A2, A4), we do not see aliased power at frequencies 

lower than the stimulation frequency, which is a potential issue with template approaches on 

epoched data without sufficient oversampling and artifact removal (Lio et al 2018). The 

extent of our oversampling is visible in figure 1, where the maximum and minimum values 

for each of the stimuli within a stimulation epoch do not vary greatly. We acknowledge that 

our approach is not appropriate for all instances of human electrophysiologic data.

5.2. Comparison to other template approaches

There has been much progress in the past decades with other template subtraction 

approaches (Hashimoto et al 2002), and the methods described here are an extension of 

these ideas. Our algorithm leverages information across many channels at once, on a pulse-

wise, channel-wise basis, by determining the likely window of the artifacts, and by 

clustering templates even in the presence of noisy outlier trials. The results shown in figure 4 

may be captured by a simpler approach where templates are computed as means within each 

epoch. However, in the case of more complex waveforms with varying parameters within a 

stimulation train (figure 7), an average template during a train would be unsuccessful in 

recovering the underlying neural signal. Even so, our use of unsupervised clustering for 

template learning inherits some of the limitations of density-based methods (Aghabozorgi et 
al 2015). Specifically, artifacts with many points require clustering in higher dimensions, 

which is both less computationally efficient and requires more densely sampled data.

5.3. Physical basis of the structure in the data

Within each single-pulse artifact, there are physiologic, thermal, and electronic noise 

contributions. These are likely reflected in the heterogeneity seen within the learned clusters 

(figure 2b). The variance around the clusters suggests these variables are continuously 

distributed around discrete learned clusters. As our ideal stimulation waveforms are square 

pulses, even with a high sampling rate, it is very difficult if not impossible to optimally 

oversample the resulting waveforms, depending on the actual slew rate of the stimulator and 

shape of the delivered waveform. The discrete clusters in our datasets are likely due to the 

partial synchronization of the recording and stimulation hardware, where the recording 

hardware is operating at a lower frequency than the stimulator and overall clock of the 

device. In the event of perfectly synchronized hardware, and optimally over-sampled data, 

we would expect there to a single cluster, with continuously distributed variance around the 

center of the cluster. One of the advantages of our method is that it automatically discovers 
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unique, independent clusters on each electrode, which makes it appropriate for events where 

there multiple or single clusters, which could be different on different electrodes.

Stimulation artifacts, and more so trains of stimuli, are multifactorial, and consist not only of 

single-pulse artifacts, but also onset and offset artifacts at the beginning and end of 

stimulation trains, the buildup of capacitive charge during a train of stimulation. Our work 

here primarily addresses the issue of consistent single pulse artifacts. The other issues are 

outstanding issues in the field of artifact processing, and will require future work to further 

eliminate the influences of these factors on the neural data. Advanced modal decomposition 

techniques, as well as in-vitro characterization of the precise set of electrodes and 

stimulation parameters used, may allow for further insight into the nature of these other 

artifacts and aid in their removal.

5.4. Practical recommendations

The code provided includes default parameters that perform reasonably well for the included 

datasets. A key point is that all channels within a given data-set were processed with the 

same parameters. Better performance could be achieved with tuning of parameters for 

individual or different groups of channels. Future work could include an optimized 

parameter search for the various parameters utilized in our approach such as the minimum 

number of neighboring points for a cluster or the cutoff threshold for being labeled as noise, 

with the use of an objective function to select the set of parameters that results in the most 

representative recovery of neural signal. This remains a challenging problem due to the 

difficulties in knowing what the best objective function and ground truth signal for optimal. 

Without adequate oversampling, alternative approaches using upsampling (Sun et al 2016) 

may be appropriate, or in a worst case, interpolation could be performed to estimate the time 

course of lower frequency signals. Where residual low frequency aliasing occurs, a Hampel 

filter, which has been successfully used for concurrent DBS/EEG stimulation and recording, 

could be used (Lio et al 2018). The use of simulated artifacts added to synthetic or recorded 

neural data could be an additional method of algorithm validation, as in Sellers et al 2019, 

and parameter exploration in the future.

In our experience, 200 Hz stimulation trains with pulse widths of 200 μs, sampled at 1221 

Hz (figure 9) were too under-sampled for use with our algorithm. In our work here, we have 

focused on stimulation frequencies of 185 and 200 Hz due to the nature of the experiments 

from which this data was acquired. Future work could extend the approaches here to validate 

its performance on a wider range of stimulation frequencies. In our work, we have focused 

on adjacent, bipolar pairs of stimulating electrodes. Pairs of electrodes which are not 

adjacent may have different performance upon processing with our algorithm, and this could 

be addressed by future work. Our work focused primarily on recording and stimulation 

through grid macro ECoG arrays, with an additional DBS dataset containing ECoG strip and 

DBS lead data.

5.5. Future extensions

The analysis of electrical recordings with concurrent stimulation may benefit from future 

developments driven by modern methods in simulation and machine learning. A 

Caldwell et al. Page 14

J Neural Eng. Author manuscript; available in PMC 2020 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



combination of model-based and data driven approaches would help construct a more 

principled set of templates to separate neural activity from electrical artifacts. Deep learning, 

which has begun to find applications in signal processing (Yu et al 2011) and ECoG 

processing (Wang et al 2018), could also benefit the artifact processing community if 

enough training data were available. Future work could extend these approaches to 

penetrating depth electrodes and micro ECoG arrays, as we would expect the artifact signals 

and neural data to behave similarly for processing.

6. Conclusions

Electrical stimulation applied concurrently with recording results in signals that contain both 

neural activity and electrical artifacts. Here we developed a novel algorithm that 

automatically detects electrical artifacts across many channels of recording, constructs a 

dictionary of learned templates using unsupervised clustering, and performs pattern 

matching to best extract the underlying neural activity. Rather than evaluate our method on 

synthetic data, we demonstrated the efficacy of our approach on real human stimulation data 

in both electrocorticographic (ECoG) arrays and deep brain stimulation (DBS) recordings. 

Further, we showed that the signals recovered have physiologically meaningful neural 

signatures in two datasets, providing good ecological validity for our method. In the first 

dataset, we showed that responses to stimulation of primary somatosensory (S1) and natural 

peripheral touch elicited similar responses. In the second, we showed that motor cortex 

activity in a button pressing task was similar with and without S1 stimulation. All of the 

code we developed and data sets we used have been made openly and publicly available.

7. Code and data availability

Full MATLAB code and a link to the data in the paper is available at https://github.com/

davidjuliancaldwell/artifactRejection.

We hope these datasets may serve as benchmark datasets for future algorithm development 

and testing.
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Appendix A. Array-wide processed signals

To better illustrate the performance of our algorithm across all channels processed, we 

highlight the method’s performance on two subjects, where we used one set of parameters 

for all of the channels. Parameter tuning for subsets of channels would result in better 

performance of the algorithm, but we seek to highlight that with one global set of parameters 

reasonable performance is achieved.
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Figure A1. 
Average time-series responses following processing across cortex. Gray window highlights 

stimulation time period, example data file 1. Turquoise bipolar waveforms indicate the 

stimulation channels. (Lower right inset) Cortical reconstruction for this subject, where the 

sites of electrical stimulation are indicated by ⊕ and ⊖ signs.
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Figure A2. 
Average time-frequency responses following processing across cortex for example data file 

1. Black bar indicates the beginning of the stimulation window. Turquoise bipolar 

waveforms indicate the stimulation channels.
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Figure A3. 
Average time-series responses following processing across cortex. Gray window highlights 

stimulation time period, example data file 2. Turquoise bipolar waveforms indicate the 

stimulation channels. (Lower inset) Cortical reconstruction for this subject, where the sites 

of electrical stimulation are indicated by ⊕ and ⊖ signs.
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Figure A4. 
Average time-frequency responses following processing across cortex for example data file 

2. Black bar indicates the beginning of the stimulation window. Turquoise bipolar 

waveforms indicate the stimulation channels. The x,y, and colorbar scales are the same as for 

figure A2.
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Figure 1. 
Schematic overview of our method for signal recovery with stimulation artifacts. (a) Raw 

stimulation signal epochs (time × channel × epoch) are recorded across an array of 

electrodes, as shown on a cortical reconstruction of one patient. The two electrode locations 

indicated by blue ⊕ and ⊖ signs were the sites of the electrical stimulation. These are the 

input for our algorithm. (b) Individual pulses are identified and extracted within each of 

these stimulation epoch time periods across all the channels in the array. A small random 

subset are visualized here. (c) An unsupervised hierarchical density-based clustering 

technique (HDBSCAN) is used to cluster the individual pulses. Each pulse is colored by the 

artifact template to which it clustered.(d) Signals are recovered by subtraction of the closest 

artifact template for each pulse. Subsequent analyses can then be performed directly on the 

output signals, which are the same size as the input data.
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Figure 2. 
Clustering, dictionary learning, and template matching. (a) The input to clustering is a 

matrix of mean-subtracted raw voltages following artifact onset and offset detection, shown 

here as a heatmap for a small subset of trials, with the subset of data points within the 

artifact window used for clustering shown. The sampling rate for this data is 12 207 Hz. (b) 

Example voltages at two time features used for clustering, which are input into an 

HDBSCAN clustering algorithm. (c) The voltage data sorted by matched templates, color 

coded to match the clusters in panel (b). (d) The four extracted artifact template clusters for 

the raw traces in panel (a).
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Figure 3. 
Comparisons between artifact rejection with our dictionary learning method and alternative 

methods as illustrated with a single channel. (a) Average raw stimulation signal across trials, 

from concurrent stimulation and recording. The broad spectral nature of these artifacts 

reveals significant overlap between spectral features of interest and the stimulation 

frequency. The time-frequency plot illustrates the broad spectral nature of the stimulation 

artifacts during the train of stimulation pulses, as well as onset and offset artifacts. (b) Signal 

recovery by our method has leveraged the data to account for variable artifacts in the raw 

voltage and timing across different channels. Our approach captures both time-series and 

time-frequency information (here shown averaged across all trials) well. (c) Piece-wise cubic 

spline interpolation locally reduces the time-domain artifact, but the time-frequency plot 

illustrates how large, undesirable signals have been introduced, highlighting how similar 

time-series traces can have significantly different spectral content. (d) Low pass filtering at 
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25 Hz with a 4th order acausal Butterworth filter eliminates the high frequency artifact at 

200 Hz, but flattens the time-series signal and eliminates the 100 Hz activity recovered in 

panel (b). (e) Low pass filtering at 100 Hz fails to eliminate the high frequency artifact at 

200 Hz, and flattens the time-series signal. (f) An ICA derived method that selectively 

removes components with a dominant 200 Hz spectral component removes the 200 Hz 

artifact, but also attenuates the time-varying spectral information in panel (b). (g) The same 

ICA derived method results in incomplete signal separation on other channels within the 

array, leaving large residual artifacts.
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Figure 4. 
Details of the raw and recovered time-series signals. (a) The raw (black) and recovered 

(orange) time-series data for one epoch, with gray windows indicating the artifact windows. 

The channel highlighted is channel 28 in figures A1–A2. The blue bar indicates the period of 

time shown as zoomed in time in panel (b). (b) Zoomed-in region of panel (a), highlighting 

the onset and offset for each individual artifact, and the recovered signal. (c) and (d) 

Corresponding raw and recovered signals at a smaller voltage scale for panel (b), 

highlighting the preservation of signal outside of the artifact window. Signal recovery within 

the artifact window has no obvious discontinuities.
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Figure 5. 
Signal recovery shows meaningful neural activity after artifact subtraction in a comparison 

of electrical stimulation with peripheral haptic touch. We compared responses at an 

electrode (yellow circle) that showed robust responses to both haptic and direct S1 

stimulation. The site of the touch was matched to where the stimulation sensation was 

localized on the hand, as illustrated in (d). (a) The raw time-series trace, averaged over all 

stimulation epochs, aligned on stimulation train onset at time t = 0 ms, showing prominent 

stimulation artifacts (a train of pulses at 200 Hz applied for 400 ms). (b) The average of the 

recovered signal. (c) The time-frequency plot of the signal in panel (b). (d) The experimental 

paradigm. (e) and (f) The mean time-series and time-frequency plots of the haptic touch 

experiment aligned on touch onset, which occurs at time t = 0 ms. The small delay seen 

between the neural signals and t = 0, where touch onset is marked to occur, is due to 

previously published latencies resulting from custom electronic touch probes comprised of 

force-sensitive resistors (Caldwell et al 2019, Collins et al 2017).
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Figure 6. 
Signals recovered during a self-paced button pressing task with and without concurrent 

stimulation are comparable. We analyzed responses at one electrode (yellow circle in panel 

(d)) in motor cortex. (a) Average raw time-series trace during S1 stimulation (200 Hz trains 

at turquoise electrodes in (d)), zero aligned to time of button presses. (b) and (c) The average 

recovered signal, shown as time-series and time-frequency plots. (d) The experimental 

paradigm, where the subject perform a self-timed button pressing task and received electrical 

stimulation in S1 of the same hand on some of the trials. (e) and (f) The average time-series 

and time-frequency plots of the stimulation-free conditions.
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Figure 7. 
Recovery of signals from non-uniform stimulation trains and recovery of rapid evoked 

potentials. (a) Overlaid raw and processed signal for channel 15 for a single stimulation train 

epoch in figures A3–A4, highlighting two initial high amplitude pulses, followed by a train 

of lower amplitude pulses. Average epoched template subtraction would fail to recover the 

correct signal here. (b) Time-frequency plot of the recovered signal, highlighting the 

representation of the reproducible rapid evoked potentials in the time-frequency domain. The 

units are normalized Z-Score power as in other figures. (c) Zoomed-in average raw signal 

highlighting rapid evoked potentials following each stimulation pulse. (d) Recovered 

average signal highlighting the preservation of these early evoked potentials.
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Figure 8. 
Recovery of early evoked potentials on DBS electrodes. (a) Bipolar, monophasic stimulation 

through DBS electrodes, with concurrent recording on the other channels. The example DBS 

and ECoG recordings are show by the purple rectangle and blue circle. (b) Raw and 

recovered example epoch, with the artifact windows highlighted. (c) Raw average signal on 

a DBS channel within the same probe as the stimulation electrodes. (d) Recovered average 

signal after template matching on the corresponding signal shown in (c), illustrating an early 

evoked potential. (e) Raw average signal on an ECoG electrode during stimulation through 

the DBS electrodes. (f) Recovered signal corresponding to (e).
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Figure 9. 
An illustration of failure to recover signal where the S1 stimulation data had been acquired 

at a lower sampling rate (1221 Hz) (Collins et al 2017). Partly due to the lower sampling 

rate, there were a number of failure modes as described below. (a) The density-based 

clustering method did not produce distinct clusters (compare to figure 2). Gray points 

represent individual trials which were classified as outliers and were not part of a cluster. (b) 

The template selected was not an ideal match and was imperfectly scaled. (c) The wrong 

template was selected. (d) The end of the template was not accurately calculated. (e) The 

result of these mismatches was unsuccessful separation of neural signal from the stimulation 

artifacts, shown here for an example epoch. We define unsuccessful signal recovery here as 

residual artifacts on the scale of the original signal, as well as no additional insight on the 

underlying neural activity.
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