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ABSTRACT

Motivation: Emergence of genetic data coupled to longitudinal
electronic medical records (EMRs) offers the possibility of phenome-
wide association scans (PheWAS) for disease–gene associations.
We propose a novel method to scan phenomic data for genetic
associations using International Classification of Disease (ICD9)
billing codes, which are available in most EMR systems. We have
developed a code translation table to automatically define 776
different disease populations and their controls using prevalent
ICD9 codes derived from EMR data. As a proof of concept of
this algorithm, we genotyped the first 6005 European–Americans
accrued into BioVU, Vanderbilt’s DNA biobank, at five single
nucleotide polymorphisms (SNPs) with previously reported disease
associations: atrial fibrillation, Crohn’s disease, carotid artery
stenosis, coronary artery disease, multiple sclerosis, systemic lupus
erythematosus and rheumatoid arthritis. The PheWAS software
generated cases and control populations across all ICD9 code
groups for each of these five SNPs, and disease-SNP associations
were analyzed. The primary outcome of this study was replication of
seven previously known SNP–disease associations for these SNPs.
Results: Four of seven known SNP–disease associations using the
PheWAS algorithm were replicated with P-values between 2.8×10−6

and 0.011. The PheWAS algorithm also identified 19 previously
unknown statistical associations between these SNPs and diseases
at P < 0.01. This study indicates that PheWAS analysis is a feasible
method to investigate SNP–disease associations. Further evaluation
is needed to determine the validity of these associations and the
appropriate statistical thresholds for clinical significance.
Availability: The PheWAS software and code translation table are
freely available at http://knowledgemap.mc.vanderbilt.edu/research.
Contact: josh.denny@vanderbilt.edu
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1 INTRODUCTION
Numerous genome-wide association studies (GWASs) have been
performed using disease-specific definitions to identify novel genetic
associations for many diseases (Hindorff et al., 2009). These
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GWAS typically derive their cases and controls from clinical trials,
observational cohorts and, more recently, electronic medical record
(EMR) systems. Several GWASs have successfully investigated
multiple phenotypes using a single cohort of genotyped samples
(Benjamin et al., 2007; Wellcome Trust Case Control Consortium,
2007). The growth of available genomic data, some of which is
linked to rich phenotypic data such as that which is available in
EMR systems, suggests it would be possible to perform a ‘reverse
GWAS’—determining, for a given genotype, the range of associated
clinical phenotypes. The ability to conduct a true phenome-wide
scan in an unbiased way can ultimately become a path to discover
new genetic associations, gain insights into disease mechanisms and
determine whether polymorphisms or variants exist, which confer
broad susceptibility to multiple diseases across the phenome. While
the concept of a phenome-wide scan is not new (Ghebranious et al.,
2007; Masys et al., 2009; Bilder et al., 2009; Jones et al., 2005), to
our knowledge methodology to perform such a scan in a systematic,
high-throughput and reproducible fashion has not been developed. In
this article, we present an algorithm to perform an initial ‘phenome-
wide association scans (PheWAS)’, or phenome-wide association
study. This adaptation uses readily available billing codes to replicate
several known genotype–phenotype associations and suggests novel
possible associations.

Deployment of EMR systems for routine clinical practice has
improved the quality of patient care, reduced cost and has provided
a longitudinal record of care available for clinical and translational
research. Typical EMR systems contain diverse data sources,
including billing data, laboratory and imaging results, medication
records and clinical documentation. These data have proven useful
for applied clinical research studies (Benson et al., 2009; Denny
et al., 2008; Hansen et al., 2007) and for phenotyping in focused
genomic studies (Manolio, 2009). EMR data have also proven useful
in research studies looking across many phenotypes, such as drug-
adverse effect detection (Wang et al., 2009) and mining for genetic
overlaps among diseases (Rzhetsky et al., 2007).

Research involving EMR systems often involves processing both
structured (e.g. billing codes) and unstructured data (e.g. clinical
documentation generated by physicians). In the USA, most clinical
encounters generate International Classification of Disease (ICD),
version 9-CM, codes as a mechanism for billing for a given
procedure, test or clinical visit. The ICD9 coding system contains
over 14 000 disease codes grouped into a multi-level hierarchy of
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codes. These codes are ubiquitously available in hospital systems
and have been successfully used for many types of research
(Herzig et al., 2009; Kiyota et al., 2004; Klompas et al., 2008).
Billing codes and structured laboratory data can be combined with
natural language processing algorithms to extract information from
unstructured clinical documentation to gain greater understanding
of an individual’s phenotype.

To enhance the power of EMR systems for genetic research, some
institutions are linking EMR records to DNA biorepositories. EMR-
linked biorepositories, such as BioVU, the Vanderbilt DNAdatabank
(Roden et al., 2008), offer the advantages of scale, cost efficiency
and detailed, longitudinal information produced as a byproduct
of healthcare. Many of these biobanks, including Vanderbilt’s,
accrue patients in a disease-neutral fashion, a prerequisite for
ultimately conducting an unbiased, comprehensive phenome-wide
scan. While the relevance of these resources for genetic research
is currently being explored, the potential of EMR use to explore
the range of human disease for genetic research has been largely
untapped.

In this article, we used custom groupings of ICD9 billing codes
to approximate the clinical disease phenome. As a proof of concept
and test of the algorithm, we present results on five initial single
nucleotide polymorphisms (SNPs) studied in an EMR population.
Our method is implemented in a freely downloadable software
program.

2 METHODS

2.1 Population and genotyping
BioVU accrues DNA samples extracted from blood remaining from routine
clinical testing after they have been retained for 3 days and are scheduled
to be discarded. A full description of this resource and its associated ethical,
privacy and other protections has been published elsewhere (Roden et al.,
2008). All patients age ≥18 years with an outpatient laboratory draw, who
have a signed consent to treatment form, and that have not made a formal
indication to opt-out are potential inclusions in BioVU. The resource is linked
to a de-identified version of the EMR called the synthetic derivative (Roden
et al., 2008). As of January 18, 2010, the resource included 75 769 DNA
samples.

The study population consisted of the first ∼6000 European–Americans
accrued into BioVU. The only selection criteria were that they met the general
conditions for eligibility for BioVU; no clinical inclusion or exclusion
criteria were applied. In the current analysis, we selected five SNPs with
previously known disease associations: rs1333049 [coronary artery disease
(CAD) and carotid artery stenosis (CAS)], rs2200733 [atrial fibrillation
(AF)], rs3135388 [multiple sclerosis (MS) and systemic lupus erythematosus
(SLE)], rs6457620 [rheumatoid arthritis (RA)], and rs17234657 [Crohn’s
disease (CD)]. (Some other potential associations exist for some SNPs,
such as progression of carotid atherosclerosis and rs1333049, but are not
represented well through ICD9 codes.) The primary outcome of this study
was identification of the prior statistical associations with MS, CD, AF, CAD,
SLE, CAS and RA.

Genotyping was conducted by the Vanderbilt DNA Resources Core
using the mid-throughput Sequenom® genotyping platform (rs1333049,
rs3135388 and rs17234657; genotyping efficiency 98.4–100%), which is
based on a single base primer extension reaction coupled with mass
spectrometry, or using a TaqMan assay (rs6457620 and rs2200733;
genotyping efficiency 99.4% and 99.0%, respectively). Quality control
procedures included examination of marker and sample genotyping
efficiency, allele frequency calculations and tests of Hardy–Weinberg
equilibrium.

2.2 Development of ICD9 translation file
The ICD9 coding system describes diseases, signs and symptoms, injuries,
poisonings, procedures and screening codes. Disease or symptom codes
consist of a three-digit number (termed a ‘category’) followed, in most
cases, by one or two additional specifying digits. For example, the three-
digit code ‘427’ specifies cardiac arrhythmias and further digits are added
to specify the type of arrhythmias, such as ‘AF’ (427.31). In most cases,
physicians are required to specify codes to the fourth or fifth digit to bill the
patient’s insurance, although some diseases lack further specification (e.g.
042, human immunodeficiency virus). Some diseases of common etiologies
cover multiple ICD9 categories based on acute and chronic effects, the
anatomical areas affected or the disease severity and associated other events.
ICD9 categories are further grouped hierarchically into sections and chapters.

Since the ICD9 terminology was designed primarily for billing and
administrative functions, we developed custom ‘case groups’ of ICD9 codes
to better allow for large-scale genomic research involving ICD9 codes.
In general, we used the existing three-digit categories as a guide in designing
our case groups. We performed one of several functions on the original ICD9
terminology: (i) we combined three-digit codes that represented common
etiologies [e.g. creating a single ‘tuberculosis’ code group from 010 to
018 (primary tuberculosis), 137 (late effects of tuberculosis) and 647.3
(tuberculosis complicating the peripartum period)]; (ii) for clinically distinct
phenotypes that are combined in a single three-digit code, we divided the
existing ICD9 classification (by adding a fourth digit), such as Type 1
and Type 2 diabetes (both part of code ICD9 category 250); and (iii) we
marked as ‘ignorable’ other ICD9 codes that were unlikely to be useful in
a genetic context, such as contamination with foreign objects, non-specific
signs and symptoms [e.g. 790.6 (other abnormal blood chemistry)], non-
specific laboratory results, elective abortions and iatrogenic complications
of medical care. There were 395 fully specified diagnosis-related ICD9 codes
ignored from the analysis. When combining ICD9 codes from disparate parts
of the code groupings (e.g. tuberculosis above contains codes in the ICD9
chapters ‘infectious and parasitic diseases’ and ‘complications of pregnancy,
childbirth and the puerperium’), we chose the case group number most
closely related to the etiology of the disease (e.g. we grouped all tuberculosis
ICD9 codes under ‘010’ in the ‘infectious and parasitic diseases’ chapter of
ICD9 codes).

In addition, we used the ICD9 coding system to generate comparison
groups (‘controls’) for all case groups, which included all patients that did
not have a prevalent ICD9 code belonging to a specified list of disease
exclusions defined for each case group. The exclusions for most diseases
closely followed the existing section groupings in the ICD9 hierarchy,
which groups related conditions. Control groups for CD, for instance,
excluded CD, ulcerative colitis and several other related gastrointestinal
complaints. Similarly, control groups for myocardial infarction excluded
patients with myocardial infarctions, as well as angina and other evidence
of ischemic heart disease. There are 105 unique control exclusions groups.
The custom ICD9 case and exclusion groupings are available from
http://knowledgemap.mc.vanderbilt.edu/research.

2.3 PheWAS analysis
All distinct ICD9 billing codes from each of the individuals’ records were
captured and translated into corresponding case groupings. For our purposes,
a ‘case’ is a record that has a single, valid ICD9 code that maps to PheWAS
case group. Other individuals were marked as ‘controls’ for a given case if
they did not have any ICD9 codes belonging to the exclusion code grouping
corresponding for that case. The PheWAS algorithm, then calculates case and
control genotype distributions and calculates the χ2 distribution, associated
allelic P-value and allelic odds ratio (OR). For those χ2 distributions in which
observed cell counts fell below five, Fisher’s exact test was used to calculate
the P-value using the R statistical package (http://www.r-project.org/). Since
many phenotypes, even after ICD9 code groupings, occur rarely, we selected
only those that occurred in a minimum of 25 cases (0.42% of genotyped
patients) as a threshold of clinical interest.
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After the initial study, we conducted a failure analysis on the previously
associated phenotypes that did not replicate using the PheWAS method.
To investigate these further, we performed a physician chart review
on all individuals with SLE and CAS by PheWAS code groups and
analyzed the electrocardiograms of all patients with ICD9 codes indicative
of AF. Our gold-standard definition of SLE required that a treating
physician document an SLE diagnosis and immunosuppressive treatment
via a clinical note or problem list. True positive cases of CAS required
presence of carotid duplex sonography, traditional angiography, computed
tomography angiography or magnetic resonance angiography demonstrating
hemodynamically significant stenosis of the common or internal carotid
artery. We assessed AF cases by processing all electrocardiograms using
a previously validated natural language processing algorithm (Denny
et al., 2005).

2.4 Implementation
The algorithm is implemented as a PERL program. This program takes as
its inputs a list of ICD9 codes for each individual, the race/ethnicity of the
individual and the genotypes for the given SNPs. Each input file is expected
as an entity-attribute-value tab-delimited file. The ICD9 code translation file
is another input into the program. It is a tab-delimited text document and can
be customized to meet an individual project’s needs.

The program converts fully specified ICD9 codes into diagnostic code
groups and finds associated controls for each. Invalid ICD9 codes are ignored
during the process, as are any codes marked as ignorable in the code
translation file. The output includes both Microsoft® Excel spreadsheets
and tab-delimited text files summarizing the number of cases and controls
for each diagnostic group, χ2 test statistic, P-value, allelic OR and Bonferroni
level of significance. Another output file lists all SNP–disease associations

Table 1. Demographics of those studied

Attribute Value, median (interquartile range)

Age 57 (44–68)
Female (%) 55.9
Total fully specified ICD9 codes 56 (23–134)
Distinct fully specified ICD9 codes 23 (11–48)
Distinct ICD9 three-digit codes 17 (9–32)
Distinct PheWAS code groups 17 (8–32)
Years of follow-up (IQR) 4 (2–9)

achieving significance above a user-set threshold. The program is available
free of charge from http://knowledgemap.mc.vanderbilt.edu/research.

3 RESULTS

3.1 Demographics
Table 1 presents the demographic data of our cohort of 6005
European–American individuals. These individuals had 220 527
fully specified ICD9 diagnostic codes, representing 900 unique
three-digit ICD9 code categories. These codes translated into
137 517 PheWAS code groups representing 733 distinct code groups.
The most common specific diagnostic codes were hypertension
(2877 patients), disorders of lipid metabolism (1989 patients) and
unspecified anemias (1776 patients).

3.2 Previously known SNP–disease associations
Table 2 presents the previously known SNP–disease associations
and their ORs and significance in this analysis. Of seven previously
reported SNP–disease associations investigated in this study, four
(MS, CD, CAD and RA) replicated in this study at P < 0.02. Three
previously reported SNP–disease associations (CAS, AF and SLE)
did not replicate in this study. Given our case and control counts
based on ICD9 codes, each was adequately powered (>90%) to
detect a difference at P < 0.05. To achieve 80% power, we needed
90 cases of SLE, 387 cases of AF and 223 cases of CAS.

3.3 PheWAS results for five SNPs
Figure 1 presents the PheWAS results for the rs3135388, which has
been reported to be associated with MS and SLE. In the PheWAS
analysis, it was strongly associated with MS, surviving Bonferroni
correction (P = 1.0×10−4), but not with SLE (P = 0.51). Twenty-
two other diseases were also associated at P < 0.05, as labeled
in the figure. Figure 2 presents the PheWAS results for the other
four SNPs. In three of the four SNPs (rs6457620, rs17234657
and rs1333049), the PheWAS replicated a known prior disease
association, as indicated by the diseases highlighted by gray boxes.
As with rs3135388, each of these SNPs contains a number of other
possible disease associations with P < 0.05, as shown in Figure 2.

Table 2. Diseases previously associated with the five SNP studied and current PheWAS ORs

SNP Gene/region Disease Cases Previous OR PheWAS P-value PheWAS OR

rs3135388 DRB1*1501 MS 89 1.99a 2.77×10−6 2.24 (1.56–3.16)
SLE 141 2.06b 0.51 1.13 (0.79–1.58)

rs17234657 Chr. 5 CD 200 1.54c 0.00080 1.57 (1.19–2.04)
rs2200733 Chr. 4q25 AF and flutter 606 1.75d 0.14 1.15 (0.95–1.39)
rs1333049 Chr. 9p21 CAD 1181 1.20–1.47e 0.011 1.13 (1.03–1.23)

Carotid atherosclerosis 333 1.46f 0.82 0.98 (0.84–1.15)
rs6457620 Chr. 6 RAg 392 2.36c 0.0002 1.35 (1.15–1.58)

aHafler et al. (2007).
bPan et al. (2009).
cWellcome Trust Case Control Consortium., 2007.
dGudbjartsson et al. (2007).
eSamani et al. (2009); Wellcome Trust Case Control Consortium., 2007.
f Ye et al. (2008).
gThe code group of RA also includes other inflammatory arthritides.

1207

http://knowledgemap.mc.vanderbilt.edu/research


[14:00 18/4/2010 Bioinformatics-btq126.tex] Page: 1208 1205–1210

J.C.Denny et al.

Table 3 presents all SNP–disease associations with P < 0.01 (an
arbitrary cutoff) that to our knowledge have not been previously
reported. A number of other possible autoimmune conditions
were associated with rs3135388 and rs2200733, including eczema,
aplastic anemic and psoriasis.
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Fig. 1. Phenome-wide scan for association with rs3135388. MS is replicated
from prior analyses. The dashed line represents the P = 0.05; the dotted line
represents the Bonferroni correction.

The chart review of SLE PheWAS cases demonstrated that only 95
individuals (67% of the 141 cases by billing codes) had documented
or probable SLE as indicated by their treating physicians; the
other records contained SLE ICD9 codes as reasons for ordering
tests or hypothetical diagnoses that were later dismissed. Similarly,
only 280 individuals (84% of the 333 cases) with CAS billing
codes had objective evidence of CAS. Of the 606 patients with
an AF ICD9 code, only 148 had definite electrocardiographic
evidence of AF.

4 DISCUSSION
We present an algorithm to facilitate the performance of phenome-
wide associated studies to detect disease–gene associations using
ICD9 billing codes. This proof of concept study applied this
algorithm to five SNPs with seven known disease associations.
This study found that four of these previously known SNP–
disease associations from the literature were identified using our
PheWAS algorithm, and also indicated other potential disease–
gene associations not previously investigated. As the high-density
genotype data becomes increasingly available, such phenome-
wide scans may have great utility to both discover new genetic
associations and provide greater insight to the biology underlying
certain associations.
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Fig. 2. Phenome-wide scan for association for four additional SNPs with known disease-SNP associations. The boxed diseases represent associations replicated
from prior GWAS analyses. The dashed line represents the P = 0.05; the dotted line represents the Bonferroni correction.
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Table 3. Potential SNP–disease associations discovered through PheWAS algorithm

SNP Disease/syndrome N OR P-value

rs17234657 Non-infectious gastroenteritis and colitis 389 1.42 (1.16–1.73) 5.3×10−4

rs3135388 Cancer of rectum and anus 107 1.76 (1.24–2.45) 8.2×10−4

rs2200733 Unspecified congenital anomalies 44 2.56 (1.48–4.29) 2.6×10−4

rs17234657 Autonomic nervous system disorder 100 0.46 (0.24–0.82) 8.9×10−3

rs3135388 Diabetes mellitus 1238 0.82 (0.71–0.94) 4.3×10−3

rs3135388 Benign neoplasm of other parts of digestive system 585 1.33 (1.12–1.57) 9.4×10−4

rs2200733 Aplastic anemia 194 0.49 (0.30–0.77) 2.0×10−3

rs6457620 Disorders of the pituitary gland 101 1.52 (1.12–2.06) 6.3×10−3

rs3135388 Benign neoplasm of respiratory and intrathoracic organs 62 1.96 (1.24–3.02) 2.1×10−3

rs3135388 Conduct disorders 32 2.08 (1.10–3.74) 1.0×10−2

rs3135388 Acute renal failure 580 0.74 (0.61–0.90) 2.8×10−3

rs17234657 Concussion 70 1.85 (1.19–2.81) 3.9×10−3

rs3135388 Erythematous conditions 206 1.47 (1.13–1.90) 3.3×10−3

rs1333049 Phlebitis and thrombophlebitis 188 1.35 (1.09–1.68) 4.7×10−3

rs17234657 Chronic liver disease and cirrhosis 421 0.73 (0.57–0.92) 8.9×10−3

RS2200733 Anaphylactic shock and angioedema 244 1.44 (1.10–1.87) 7.0×10−3

RS1333049 Mononeuritis of upper limb and mononeuritis multiplex 243 1.30 (1.08–1.57) 4.9×10−3

RS3135388 Pulmonary heart disease 350 0.71 (0.54–0.91) 6.6×10−3

RS2200733 Adjustment reaction 347 0.68 (0.50–0.91) 1.0×10−3

An exciting consequence of PheWAS analyses is that they, in
combination with GWAS or candidate gene studies, may help
elucidate new biology. For example, GWAS-identified associations
with genetic variation in intergenic regions could be investigated
with PheWAS to discover other potential associations. In this
study, the 9p21 region identified by rs1333049 was also associated
with portal thrombosis, intracranial hemorrhage and phlebitis and
thrombophlebitis, possibly suggesting a common etiology related to
coagulation that could be investigated with subsequent, adequately
powered studies.

PheWAS analyses may also help identify potentially causative
associations between disease and SNP associations discovered in
disease-specific GWAS. When performing a GWAS in isolation, one
may discover an association between an infection and a given SNP
(such as pneumonia and rs17234657), and potentially conclude that
the SNP confers susceptibility. The alternative explanation is that
this SNP increases the likelihood of autoimmune diseases, and the
treatment for the autoimmune disease (such as corticosteroids and
other immunosuppressive agents) may be the causative agent.

Similar to GWAS, the current PheWAS study highlights the
statistical challenges associated with analyzing high-dimensionality
data. In this analysis, few disease–gene associations were significant
when a Bonferroni correction was applied. However, there are
several reasons to suggest that a Bonferroni correction is too
conservative. Unlike GWAS, in which nearly every individual will
have a genotype value for that SNP, and thus its statistical power
is limited primarily by the minor allele frequency and genetic
effect size (i.e. OR), PheWAS is limited by these factors and the
prevalence of the disease in the population, which is often <5% of
the population. Thus, for most diseases, it may be unreasonable to
expect P-values as extreme as seen in GWAS with similar population
sizes. Indeed, several prior known gene-disease associations in this
study had P-values between 2.8×10−6 and 0.011. Furthermore,
many diseases are associated with each other in much the same
was as SNPs may be in linkage disequilibrium with each other. For

example, CD and ‘non-infectious gastroenteritis’ (both associated
with rs17234657) not only represent similar conditions but often
referred to the same individuals (72% of those with ‘non-infectious
gastroenteritis’ had both conditions). These collocations of disease
reduce the hypothesis space and lend greater strength to the validity
of discovered associations. Like GWAS, the true significance level
of clinical and genetic interest will need to be experimentally
determined with future study.

While the associations in this study were often weak due to the
small sample sizes for individual disease codes, the power of these
data will only increase. As more genetic data is deposited, as is
policy, into the BioVU resource for reuse, the ability to detect true
signals with sufficient statistical power even for rare diseases will
be enhanced. Furthermore, the broad availability of ICD9 codes
permits easy portability to other institutions and offers the potential
of cross-institution application.

This PheWAS study did not replicate three of the seven previously
known SNP–disease associations. Our review of these cases
revealed that each of these three ICD9 code groups contained a
number of false positives in which billing codes were recorded as
a hypothetical reason for a test. Repeating the study using only
true positive cases revealed that AF (OR 1.51; P = 0.015) and
SLE (OR 1.42; P = 0.039) both replicated the previously reported
associations, and CAS (OR 1.32, P = 0.12) trended in a similar
direction as previously noted. Further work to refine the PheWAS
case algorithms may improve performance beyond using prevalent
ICD9 codes. Incorporation of laboratory data, natural language
processing and machine learning algorithms may improve case
accuracy.

Limitations caution interpretation of this initial feasibility study.
This study was performed in a single institution with five SNPs.
Other institutions may have different coding practices, which can
affect the ability to replicate these results if the PheWAS is
undertaken at another institution. To define phenotypes in a high-
throughput fashion, we used groupings of ICD9 billing codes, which
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are known to have substantial limitations relative to both sensitivity
and specificity of given disease. Certain ICD9 codes, such as MS, are
likely very specific and sensitive, whereas more general codes such
as ‘hypertension’ represent a very heterogeneous disease phenotype
and may be billed by physicians with less sensitivity and specificity.
Our experiences locally and as part of the eMERGE consortium
(http://www.gwas.net) have demonstrated that combining billing
codes, laboratory data, medication records and natural language
processing of clinical documents provides a better approach to
phenotype identification, often achieving positive predictive values
≥95%. The PheWAS code groupings were designed by a single
clinician with limited external review, with a strong bias toward
the existing ICD9 organization. Using the existing framework
of the ICD9 coding schema allowed for rapid generation and
quick interpretation from a known resource; however, it is likely
suboptimal for some diseases and groupings. Furthermore, the
coding schema can be easily revised for different analyses. By
publishing this resource as open-source, we hope for community
researchers to refine this schema into a more robust, etiologic lexicon
of disease phenotypes. Both the current case and control groupings
lack the specificity that come with carefully curated manual case
definitions, and lack the ability to measure disease severity. Until
larger genotyped sample sizes are obtained, rare diseases will likely
contain insignificant numbers of cases, limiting the range of diseases
that can be studied. The current algorithm also does not consider
important risk factors such as age, gender or family history. These
methods provide a mechanism that will serve to efficiently highlight
avenues for further study; they are not intended to be conclusive in
making associations by themselves. Finally, this PheWAS analysis
requires linkage of genetic data with available EMR data. While
many genotyped cohorts currently lack association with clinical
data, we expect the growing use of EMR-linked biobanks will make
such analyses increasingly possible.

The current PheWAS work demonstrates the possibility of a
phenome-wide scan to discover genetic associations with a single
locus at a time. Future research should investigate more accurate
methods of automatic phenotypic determination and extensions
to include other phenotypic traits, such as laboratory results and
treatment efficacy.Another logical extension of this work is coupling
of PheWAS analysis with GWAS analysis. Such an analysis leads
to increasing statistical challenges beyond those already posed
by existing GWAS and now PheWAS. However, growing extant
genotyped records in EMR biobanks from case–control studies make
such a genome–phenome wide analysis increasingly feasible.
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