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Growing evidence suggests that increased levels of α-synuclein might contribute to
the pathogenesis of Parkinson’s disease (PD) and therefore, it is crucial to understand
the mechanisms underlying α-synuclein expression. Recently, microRNAs (miRNAs)
have emerged as key regulators of gene expression involved in several diseases such
as PD and other neurodegenerative disorders. A systematic literature search was
performed here to identify microRNAs that directly or indirectly impact in α-synuclein
expression/accumulation and describe its mechanism of action. A total of 27 studies
were incorporated in the review article showing evidences that six microRNAs directly
bind and regulate α-synuclein expression while several miRNAs impact on α-synuclein
expression indirectly by targeting other genes. In turn, α-synuclein overexpression also
impacts miRNAs expression, indicating the complex network between miRNAs and
α-synuclein. From the current knowledge on the central role of α-synuclein in PD
pathogenesis/progression, miRNAs are likely to play a crucial role at different stages
of PD and might potentially be considered as new PD therapeutic approaches.

Keywords: Parkinson’s disease, α-synuclein, microRNA, alpha-synuclein, gene expression, miRNA, gene
regulation

INTRODUCTION

Growing evidence suggests that increased levels of α-synuclein are toxic and may contribute
to the pathogenesis of Parkinson’s disease (PD). Supporting evidence includes: (i) duplications
and triplication of the α-synuclein gene cause dominantly inherited PD, with a dose-correlation
of α-synuclein load to the PD phenotype (Singleton et al., 2003; Ibáñez et al., 2004, 2009; Ahn
et al., 2008; Ross et al., 2008); (ii) polymorphisms in α-synuclein promoters are associated with
increased PD risk by enhancing α-synuclein expression (Chiba-Falek and Nussbaum, 2001;
Touchman et al., 2001; Maraganore et al., 2006); (iii) increased α-synuclein mRNA levels are
found in surviving dopaminergic (DA) neurons in the substantia nigra (SN) of idiopathic
PD patients (Gründemann et al., 2008); (iv) induced pluripotent stem cells (iPS) from PD
patients exhibited α-synuclein accumulation (Nguyen et al., 2011; Sánchez-Danés et al., 2012;
Mazzulli et al., 2016); (v) α-synuclein is up-regulated in several in vivo PD models including
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mice and monkeys (Vila et al., 2000,
2001; Purisai et al., 2005); and (vi) overexpression of human wild-type and A53T mutant
α-synuclein in rats and monkeys induced nigrostriatal degeneration (Kirik et al., 2002, 2003).
In addition to PD, α-synuclein plays a key role in and other synucleinopathies such as dementia
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with Lewy bodies (DLB) and multiple system atrophy (MSA;
Tagliafierro and Chiba-Falek, 2016).

MicroRNAs (miRNAs) are endogenous 17–24 base-pair
(bp) single-stranded non-coding RNAs that have recently
emerged as a key regulators of gene expression. Biogenesis of
miRNAs, which are encoded within the genome as independent
genomic transcription units or as introns of protein-coding
genes, required a multi-step process that takes place in the
nucleus and the cytoplasm (Figure 1; Meister and Tuschl,
2004; Ameres and Zamore, 2013; Catalanotto et al., 2016).
First, miRNAs are transcribed in the nucleus by the RNA
polymerase II as long primary miRNAs (pri-miRNAs) which
are converted by the RNAse III enzyme Drosha into 60 bp
stem-loop structures called pre-miRNAs. The pre-miRNAs are
subsequently exported to the cytoplasm by the Exportin 5 via
a nuclear pore. Once in the cytoplasm, the pre-miRNAs are
further processed by a second RNase II enzyme called Dicer
into a ∼22nt miRNA-miRNA complex intermediate. Then, the
RNA-duplex binds to an Argonaute (AGO) protein and one of
the strands is removed resulting in the mature RNA-induced
silencing complex (RISC). Finally, the RISC will bind to
complementary mRNA sequence (seed matches) and repress
their expression by: (i) translational repression via blocking
translational initiation, poly(A) tail shortening or recruiting
translation blockers; (ii) mRNA decay; or (iii) direct cleavage
of target mRNAs by RISC (Ameres and Zamore, 2013). Via
regulation of target genes, miRNAs are involved in several
biological process including cell proliferation, differentiation,
apoptosis, development, angiogenesis and immune response
(Huang et al., 2011; Tüfekci et al., 2014a) and therefore,
miRNAs dysregulation is associated with the pathogenesis of
several human disease such as cancer, diabetes, autoimmune
diseases, neurological disorders, diabetes and cardiovascular
disease (Tüfekci et al., 2014b).

Considering the importance of modulating α-synuclein levels
in PD and other related disorders, the objective of this study is to
review miRNAs that impact directly or indirectly in α-synuclein
expression and describe their mechanisms of action.

MATERIALS AND METHODS

Registration
Following PRISMA recommendations (Liberati et al., 2009;
PRISMA Checklist available in Supplementary Materials), the
systematic review was registered in The Joanna Bridge Institute
(JBI) website with date 27th July 2016. Registration details are
described in Supplementary Table 1.

Eligibility Criteria
All the studies selected for the review satisfied the PICOS
selection criteria detailed in Supplementary Methods. No
language or publication date restrictions were imposed.

Information Sources and Search
Three different database were used in this review article:
PubMed, Scopus and Web of Science. The last search was run

FIGURE 1 | Mechanisms of action of microRNAs (miRNAs) that directly
bind and regulate α-synuclein expression. Biogenesis of miRNAs required
a multi-step process that takes place in the nucleus and the cytoplasm of the
cells. First, miRNAs are transcribed in the nucleus by the RNA polymerase II
as long primary miRNAs (pri-miRNAs). Then, a RNAse III enzyme called
Drosha converts pri-miRNAs into 60 base-pair (bp) stem-loop structures
(pre-miRNAs). Pre-miRNAs are subsequently exported to the cytoplasm by the

(Continued)
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FIGURE 1 | Continued
Exportin 5, where a second RNase II enzyme called Dicer will process
pre-miRNAs into a ∼22nt miRNA-miRNA complex. The RNA-duplex binds to
an Argonaute (AGO) protein and one of the strands is removed resulting in the
mature RNA-induced silencing complex (RISC). Finally, RISC binds to
complementary mRNA sequence (seed matches) and represses its expression
by: (i) translational repression; (ii) mRNA decapping and decay; or (iii) direct
cleavage of mRNAs target by RISC. To date, six miRNAs have been described
to directly bind the 3′-untranslational region (UTR) of the α-synuclein mRNA
transcript and repress its expression. These six miRNAs are: miR-7, miR-153,
miR-34b, miR-34c, miR-214 and miR-1643.

on 25th May 2016. No supplementary approaches were used to
identify additional studies. Duplicated records were removed.
The full electronic search strategy for each database is described
in Table 1.

Study Selection
First, an over-inclusive screening by titles and abstracts
was done to identify potential relevant studies. At this
stage, irrelevant records, reviews, abstracts, editorials, letters,
comments, perspective, reports, opinion and book chapter were
removed. Full-text articles from the candidate studies were read
and a second screening was done accordingly to the exclusion
criteria detailed in Supplementary Methods.

Data Extraction
All the included studies were divided into two groups:
(i) overexpressing studies: studies using α-synuclein
overexpressing models (OEM); and (ii) standard studies.
Relevant information from all included studies was extracted
using two different extraction datasheets, depending on the
category of the article (overexpressing vs. standard). See
Supplementary Methods for detailed data extraction.

RESULTS

Initially, a total of 353 publications were identified using three
databases: Pubmed, Scopus and Web of Science (Figure 2).
After duplicates removal, a total of 223 studies were screened
by title and abstract and 61 potential relevant studies were
selected for full-text review. A second screening was performed
and 34 studies were discarded according to the following
exclusion criteria: five were single nucleotide polymorphism
(SNP) association studies with PD, another five were miRNA

expression profile studies in PD patients, 12 studies did not
investigate the impact on α-synuclein expression, two studies did
not describe the impact of miRNAs expression, and 10 studies
did not correlate miRNA and α-synuclein expression. Finally,
27 studies were included in the present review article, from
which 12 investigations studied the effect of miRNA that directly
bind and regulates α-synuclein expression, 10 studies focused
on miRNAs that indirectly impact on α-synuclein expression
and five studies used α-synuclein overexpressing in vivo models
(Table 2).

miRNAs that Directly Bind 3′-UTR
α-Synuclein and Negatively Regulate
α-Synuclein Expression
The results derived from all included studies demonstrated that
a total of six miRNAs (miR-7, miR-153, miR-34b, miR-34c,
miR-214 and miR-1643) directly bind to the 3′-untranslated
region (UTR) of the α-synucleinmRNA transcript and negatively
regulate its expression (Figure 1).

miR-7
Seven studies demonstrated the impact of miR-7 in α-synuclein
expression (Junn et al., 2009; Doxakis, 2010; Choi et al., 2014;
Fragkouli andDoxakis, 2014; Latreille et al., 2014; Fan et al., 2015;
Zhou et al., 2016). From these studies, a total of three confirmed
the direct binding of miR-7 to α-synuclein 3′-UTR sequence
using luciferase reporter assays in three different in vitro models
(SH-SY5Y, HEK293T and primary neurons; Supplementary
Table 2). The specificity of the binding site was confirmed by
introducing mutations in the α-synuclein 3′-UTR sequence that
blocked the effect of miR-7 in the luciferase activity assay. The
predicted binding site of miR-7 within the α-synuclein gene
required to repress its expression is located at bases 119–217 of
the α-synuclein 3′-UTR (Junn et al., 2009; Doxakis, 2010).

The direct effect of miR-7 in α-synuclein expression was first
reported by Junn et al. (2009). In particular, transfection with
40 nM of premiR-7-2 in HEK293T cells resulted in a reduction
of α-synuclein expression both at protein and mRNA levels. On
the other hand, treatment with miR-7 inhibitors significantly
increased the levels of α-synuclein protein in SH-SY5Y cells.
The direct impact of miR-7 in α-synuclein expression was
reproduced by Doxakis (2010) using both HEK293T cells and
murine primary neurons.

TABLE 1 | Full electronic search strategy for each database used in the review article.

Database Query No. records

Pubmed (“MicroRNAs”[Mesh] OR miRNA OR miRNAs OR microRNA OR MIR) AND (“alpha-Synuclein”[Mesh] OR α-synuclein OR
α-synucleins OR alpha-synuclein OR snca OR alphasynuclein OR alphasynucleins OR alpha-synuclein OR
alpha-synucleins OR “alpha synuclein” OR “alpha synucleins”)

69

Scopus (MicroRNAs OR miRNA OR miRNAs OR microRNA OR MIR) AND (alpha-Synuclein OR α-synuclein OR α-synucleins OR
alpha-synuclein OR snca OR alphasynuclein OR alphasynucleins OR alpha-synucleins OR “alpha synuclein” OR “alpha
synucleins”)

121

Web of science ((MicroRNAs OR miRNA OR miRNAs OR microRNA OR MIR) AND (alpha-Synuclein OR α-synuclein OR α-synucleins OR
alpha-synuclein OR snca OR alphasynuclein OR alphasynucleins OR alpha-synucleins OR “alpha synuclein” OR “alpha
synucleins”))

163
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FIGURE 2 | Flow diagram of the selection process by which the studies were included in the review article.

One of the studies was focused on the role of miR-7
in pancreatic β-cell function (Latreille et al., 2014) and
generated a miR-7 conditional knockout mice using Cre/Lox
system (miR7a2fl/fl mice) which developed diabetes due to
impaired insulin secretion and β cell differentiation. The direct
impact of miR-7 in α-synuclein expression was confirmed
in MIN6 cells and pancreatic islets obtained from miR7a2fl/fl

mice. In particular, adenovirus-miR7a-mediated overexpression
in MIN6 cells resulted in a reduction of α-synuclein transcript
levels, while exposure to miR-7a inhibitors increased α-synuclein
mRNA and protein levels. In addition, α-synuclein levels were
increased in miR7a2fl/fl pancreatic islets. Interestingly, miR-7
played a role in insulin secretion by repressing the expression
of α-synuclein which in turn modulated the granule fusion
with the plasma membrane. These results are in line with the
previous observation that α-synuclein, whose exact function
still remains unknown, plays a role in neurotransmitter release
via regulating the pool of vesicles available in the synaptic
bouton and its fusion with the plasma membrane (Murphy
et al., 2000; Cabin et al., 2002; Fernández-Chacón et al., 2004;
Chandra et al., 2005; Larsen et al., 2006; Mazzulli et al.,
2016).

The neuroprotective effect of miR-7 has been assessed
under different conditions (Junn et al., 2009; Choi et al.,
2014; Fragkouli and Doxakis, 2014; Fan et al., 2015). One
of the studies investigated the protective effect of miR-7
in N20Y cells overexpressing mutant A53T α-synuclein
challenged with hydrogen peroxide (H2O2). Notably, the
presence of miR-7 reduced H2O2-induced cell death in
A53T α-synuclein mutant cells (Junn et al., 2009). Additional
protective effects of miR-7 against the MPTP-active metabolite
1-methyl-4-phenylpyridinium (MPP+) in vitro was investigated
in two studies (Choi et al., 2014; Fragkouli and Doxakis,
2014). Both of them demonstrated that overexpression
of miR-7 significantly increased cell viability after MPP+

treatment in SH-SY5Y cells, ReNcell VM cells and mouse
primary neurons. One of the studies suggested that the
protective effect of miR-7 against MPP+ is independent of
α-synuclein repression, since knocking down α-synuclein
in SH-SY5Y cells did not impact on miR-7-enhanced cell
viability. This study rather suggested that miR-7 protected
against MPP+-induced cell death by directly targeting the
expression of RelA, a component of the nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB)
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TABLE 2 | Summary of studies included in the review article.

References Category miRNA studied/overexpressing model used

Junn et al. (2009) Direct miR-7
Doxakis (2010) Direct miR-7 and miR-153
Latreille et al. (2014) Direct miR-7
Choi et al. (2014) Direct miR-7
Fragkouli and Doxakis (2014) Direct miR-7 and miR-153
Fan et al. (2015) Direct miR-7
Zhou et al. (2016) Direct miR-7
Song et al. (2012) Direct miR-7
Kim et al. (2013) Direct miR-153
Lim and Song (2014) Direct miR-153 and miR-1643
Kabaria et al. (2015) Direct miR-34b and miR-34c
Wang et al. (2015) Direct miR-214
Alvarez-Erviti et al. (2013) Indirect miR-21∗; miR-224; miR-373∗; miR-379, miR-26b: miR-106a∗ and miR-301b
Li et al. (2014) Indirect miR-320
Su et al. (2016) Indirect miR-21
Zhang and Cheng (2014) Indirect miR-16-1
Decressac et al. (2013) Indirect miR-128
Niu et al. (2016) Indirect miR-133
Wang et al. (2008) Indirect miR-433
Schmitt et al. (2012) Indirect miR-433
Parsi et al. (2015) Indirect miR-16
Gillardon et al. (2008) OEM Mice model
Asikainen et al. (2010) OEM Caenorhabditis elegans
Ubhi et al. (2014) OEM Mice model
Kong et al. (2015) OEM Drosophila
Schafferer et al. (2016) OEM Mice model
Thome et al. (2016) OEM Mice model

The included studies were divided into three categories: (1) direct: studies associated with miRNAs that directly binds and modulate α-synuclein expression; (2) indirect:

studies related with miRNAs that indirectly impact on α-synuclein expression; and (3) overexpressing models (OEM) of α-synuclein.

consequently relieving NF-κB suppression (Choi et al.,
2014). On the other hand, Fragkouli and Doxakis (2014)
suggested that miR-7 protects against MPP+-induced cell
death by activating the mTOR pathway. Relevant to this
context, SH-SY5Y cells treated with MPP+ and subchronic
MPTP administration in mice resulted in a significant
reduction of miR-7 expression in both models (Junn et al.,
2009; Choi et al., 2014; Fragkouli and Doxakis, 2014). Two
studies were focused on the protective effect of miR-7
against A53T mutant α-synuclein-induced toxicity (Fan
et al., 2015; Zhou et al., 2016). Both studies concluded that
miR-7 protects against PD-like degeneration by directly
targeting nod-like receptor protein 3 (Nlrp3) expression and
therefore modulating NLRP3 inflammasome activation. The
protective effect of miR-7 in vivo was also assessed in the
MPTP mice model (Zhou et al., 2016), in which the injection
of miR-7 mimics into wild type mice treated with subacute
MPTP dose rescued the loss of tyrosine hydroxylase (TH)-
positive neuron number in the SN and dramatically inhibited
Ionized calcium binding adaptor molecule 1 (Iba1) microglial
activation via supressing NLRP3 inflammasome-mediated
neuroinflammation. Further supporting the concept that miR-7
regulates α-synuclein expression in vivo, Song et al. (2012)
reported that schizophrenia-like transgenic mice overexpressing
heme oxygenas-1 (HO-1) protein in astrocytes exhibited
decreased levels of miR-7 and increased α-synuclein levels in the
SN/ventral tegmental area (VTA) at 48-weeks of age compare to
control animals.

miR-153
A total of four studies investigated the impact of miR-153 in
α-synuclein expression and its protective effect (Doxakis, 2010;
Kim et al., 2013; Fragkouli and Doxakis, 2014; Lim and Song,
2014). Two studies investigated the combined effects of both
miR-7, miR-153 and the combination of miR-7/153 (Doxakis,
2010; Fragkouli and Doxakis, 2014). One study predicted the
binding site of miR-153 within the α-synuclein gene in the
442–448 bases of the α-synuclein 3′-UTR (Doxakis, 2010).
The specificity of the predicted binding site for miR-153 was
confirmed in vitro (Doxakis, 2010; Kim et al., 2013; Lim and
Song, 2014) using luciferase assays and introducing mutations
in the α-synuclein 3′-UTR. The direct effect of miR-153 in
α-synuclein expression has now been studied in HEK293T
cells. Cotransfection with an α-synuclein plasmid containing the
3′-UTR and miR-153 significantly reduced α-synuclein levels
both at protein and mRNA level (Doxakis, 2010). The protective
effect of miR-153 was also studied in embryonic murine neurons
treated with MPP+. As reported with miR-7, overexpression of
miR-153 in primary cortical neurons attenuated MPP+-induced
neurotoxicity by upregulating the mTOR pathway (Fragkouli
and Doxakis, 2014).

miR-34b and miR-34c
One study demonstrated that miR-34b and miR-34c directly
targeted α-synuclein expression (Kabaria et al., 2015).
Computational algorithms were used to predict two miR-34b
and one miR-34c binding sites in the 3′-UTR of α-synuclein
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mRNA (Kabaria et al., 2015): miR-34b binding site #1: located
between bases 528–549; miR-34b binding site #2: between bases
732–754; and miR-34c binding site: between bases 1149–1171.
These bindings sites were verified by cotransfecting SH-SY5Y
cells with a plasmid construct expressing α-synuclein 3′-UTR
with miR-34b or miR-34c. Interestingly, the introduction of a
polymorphic variation (rs10024743) which lies within the target
site 1 of miR-34b significantly decreased the impact of miR-34b
in the luciferase activity. As a consequence of the direct binding
between miR-34b/miR-34c and α-synuclein, overexpression of
miR-34b or miR-34c in SH-SY5Y cells resulted in significant
reduction in α-synuclein mRNA and protein levels. Interestingly,
miR-34b and miR-34c did not repress β-synuclein, but rather
increased its expression by up to 2.3-fold. Moreover, inhibition
of miR-34b and miR-34c increased α-synuclein mRNA and
protein level as well as the formation of α-synuclein-containing
aggregates in DA neurons.

miR-214
Only one study has demonstrated the direct impact of
miR-214 in α-synuclein expression. Using luciferase assays in
SH-SY5Y cells, miR-214 has been shown to directly target
the α-synuclein 3′-UTR. In addition, miR-214 overexpression
reduced α-synuclein expression both at mRNA and protein
levels, while downregulation of miR-214 increased not only
α-synuclein expression (mRNA and protein) but also the number
of α-synuclein-aggregates in cells (Wang et al., 2015). This
work also investigated whether the regulation of α-synuclein
by miR-214 was the mechanism underlying the neuroprotective
effect of Resveratrol. First, they showed that Resveratrol could
ameliorate MPP+/MPTP-induced cell death both in vitro
and in vivo. Interestingly, miR-214 inhibitors reversed the
neuroprotective effect of resveratrol treatment in MPP+/MPTP
models.

miR-1643
One study found that miR-1643 is a direct regulator of
α-synuclein expression (Lim and Song, 2014). Luciferase assay
in 293TF cells confirmed the direct binding of miR-1643 to
α-synuclein 3′-UTR sequence.

miRNAs that Indirectly Impact on
α-Synuclein Expression Without Binding to
α-Synuclein 3′-UTR Sequence
In addition to miRNAs that directly bind and regulate
α-synuclein protein, several miRNAs have been reported to
indirectly regulate α-synuclein levels by targeting the expression
of other genes. There are five different studies that report
miRNAs that directly impact on proteolytic pathways and result
in α-synuclein accumulation (Figure 3; Alvarez-Erviti et al.,
2013; Decressac et al., 2013; Li et al., 2014; Zhang and Cheng,
2014; Su et al., 2016). In addition, miR-133b (Niu et al., 2016)
and miR-433 (Wang et al., 2008; Schmitt et al., 2012) have
been reported to impact on α-synuclein by directly targeting Ras
homolog gene family, member A (RhoA) and fibroblast growth
factor 20 (FGF20), respectively (Figure 4).

miRNAs, Proteolytic System and α-Synuclein
α-Synuclein turnover predominantly involves chaperone-
mediated autophagy (CMA). Therefore, alterations in CMA
result in pathological α-synuclein accumulation. Four studies
have investigated how miRNA regulation of CMA influences
α-synuclein accumulation (Alvarez-Erviti et al., 2013; Li et al.,
2014; Zhang and Cheng, 2014; Su et al., 2016). Firstly, Alvarez-
Erviti et al. (2013) transfected SH-SY5Y cells overexpressing
α-synuclein with seven miRNAs that directly bind and negatively
regulate two key proteins involved in CMA: Lysosome-associated
membrane protein 2 (Lamp2a, hsa-miR-21∗; hsa-miR-224; hsa-
miR-373∗; and hsa-miR-379) and Heat shock protein 70 (Hsc70,
hsa-miR-26b: hsa-miR-106a∗; and hsa-miR-301b). In addition
to the expected reduction in Lamp2a and Hsc70 gene expression,
transfection with the seven candidate miRNAs significantly
increased α-synuclein protein levels. Notably, only two of
them (miR-106a∗ and miR-301b) caused a significant decrease
in α-synuclein mRNA levels. Interestingly, miR-106a∗ was
predicted to target the 3′-UTR of α-synuclein although the direct
binding has not yet been confirmed.

The impact of miR-21 on Lamp2a and α-synuclein
aggregation was confirmed by a second study using SH-SY5Y
cells. Cells transfected with miR-21 mimics exhibited decreased
levels of Lamp2a both at protein and mRNA levels, and
increased α-synuclein only at the protein level. On the other
hand, SH-SY5Y cells treated with miR-21 inhibitors displayed
increased levels of Lamp2a (protein and mRNA) and decreased
α-synuclein levels. This study also suggested that geniposide
had a neuroprotective effect against MPP+/MPTP by inhibiting
α-synuclein expression through the miR-21/Lamp2a axis (Su
et al., 2016). In relation to Hsc70, two studies added miR-320
(Li et al., 2014) and miR-16-1(Zhang and Cheng, 2014) as direct
regulators of Hsc70 expression, which negatively downregulated
Hsc70 expression promoting α-synuclein aggregation in
SH-SY5Y cells overexpressing α-synuclein, without affecting
α-synuclein mRNA levels. Interestingly, miR-16 is a member
of the miR-15/107 superfamily, a miRNA family highly
dysregulated in Alzheimer’s disease (AD; Parsi et al., 2015).
In this context, a preclinical study aimed to evaluate members
of the superfamily miR-15/107 as potential drugs for AD,
discovered that the brainstem of mice treated with a miR-16
mimic exhibited decreased α-synuclein protein levels (Parsi
et al., 2015). This result was confirmed in HT22 cells, whereby
overexpression of miR-16 downregulated α-synuclein protein
levels (Parsi et al., 2015).

Another proteolytic pathway related with α-synuclein
induced-toxicity is the autophagy-lysosomal pathway (ALP). The
impact of ALP-associated miRNAs in α-synuclein expression
was studied by Decressac et al. (2013) using rat midbrain
overexpressing human wild-type α-synuclein. First, they
demonstrated that α-synuclein toxicity is linked to impairment of
the transcription factor EB (TFEB), a master regulator of the ALP
controlled by mTOR signaling. In this context, AAV-mediated
overexpression of miR-128 (which directly targeted TFEB)
increased the formation of α-synuclein oligomers and the
number of α-synuclein-positive axonal swellings, which resulted
in α-synuclein-induced toxicity as revealed by a significant loss
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FIGURE 3 | miRNAs that impact on α-synuclein expression by modulating proteolytic degradation pathways. α-Synuclein can be degraded by several
proteolytic pathways including chaperone-mediated autophagy (CMA) and autophagy-lysosomal pathway (ALP). During the CMA, the KFREQ-like sequence of the
α-synuclein protein is recognized by a chaperone complex which includes the Heat shock protein 70 (Hsc70). This complex is guided to the lysosomes and
recognized by the Lysosome-associated membrane protein 2 (Lamp2A), which in turn translocate the α-synuclein into the lysosome where it is finally degraded by
hydrolytic enzymes. To date, nine microRNAs have been described to modulate the CMA pathway and impact on α-synuclein degradation by directly binding and
repressing the expression of Hsc70 (miR-301b, miR-26b, miR-320a, miR-106a and miR-16-1) or Lamp2a (miR-21∗, miR-379, miR-373∗ and miR-224). For ALP
degradation, α-synuclein is firstly enclosed into an autophagosome. Then the autophagosome is guided and fused with a lysosome where α-synuclein is finally
degraded. In this context, miRNA-128 activates transcription factor EB (TFEB) which has been demonstrated to promote the transcription of genes involved in ALP
pathway. Therefore miRNA-repression of Hsc7, Lamp2a or TFEB result in alterations in the α-synuclein degradation and its consequent accumulation.
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FIGURE 4 | miR-133 and miR-433 indirectly influence α-synuclein by
targeting Ras homolog gene family, member A (RhoA) and fibroblast
growth factor 20 (FGF20) respectively. On one hand, miR-133 targets and
regulates RhoA expression which has been previously reported to regulate
α-synuclein expression. In this context, RhoA first activates megakaryoblastic
leukemia 1 (MKL-1) factor, which in turn activates serum response element
(SRF) transcription factor. MKL-1 and SRF activation promote the transcription
of early immediate (EI) genes. Finally SRF forms a multiprotein complex with
GATA-2 factor which regulates α-synuclein expression via occupancy at the
intron-1. On the other hand, miR-433 directly targets FGF20, which has been
suggested to directly regulate α-synuclein expression through the
FGF-receptor 1 (FGFR1).

of nigral DA neurons, striatal innervation and DA levels, as
well as development of motor deficits at 8 weeks after vector
injection.

miR-133b
RhoA is a Rho family member that acts downstream of
Rho-associated kinase (ROCK) and is a major regulator of the
morphological events during apoptosis and neurite extension
(Katoh et al., 1998; Shi and Wei, 2007). The fact that miR-133b
was previously shown to promote neurite outgrowth and
enhance neural function recovery after spinal cord injury and
stroke by targeting RhoA (Liu et al., 2009; Yu et al., 2011;
Xin et al., 2013), prompted Niu et al. (2016) to investigate
the potential neuroprotective effect of miR-133b in the MPP+

model. In this scenario, Niu et al. (2016) reported that
MPP+ treatment reduced miR-133b levels, increased RhoA
expression and reduced neurite length in PC2 cells and rat
DA neuron. Overexpression of miR-133b reversed the negative
impact of MPP+ in neurite length and decreased RhoA protein
level, although it had no impact on RhoA mRNA levels.
Interestingly, ectopic expression of miR-133b in PC2 cells and
primary neurons downregulated α-synuclein mRNA levels, both
under baseline and MPP+ conditions. The authors attributed
α-synuclein downregulation to miR-133 inhibition of RhoA,
although this pathway has not been experimentally confirmed.
Supporting this idea it has been previously reported that RhoA
can directly modulate α-synuclein expression by activating the
serum response element (SRF) transcription factor and GATA-2
transcription factor which regulates α-synuclein expression via
occupancy at the intron-1 (Scherzer et al., 2008; Zhou et al.,
2011).

miR-433
The discovery that SNPs located within the miR-433 binding
sites in FGF20 gene were associated with PD (van der Walt
et al., 2004; Haghnejad et al., 2015) triggered two studies to
investigate the potential impact of miR-433 in α-synuclein
expression (Wang et al., 2008; Schmitt et al., 2012). Wang
et al. (2008) first demonstrated that miR-433 directly targets the
FGF20 mRNA transcript and negatively regulates FGF20 protein
translation. They showed that when SH-SY5Y cells were treated
with the miR-433-target FGF20, α-synuclein protein levels were
significantly increased compared to control cells. The authors
suggest that FGF20 might regulate α-synuclein expression via
FGF-receptor 1 (FGFR1), as it was previously demonstrated for
FGF2 (Ohmachi et al., 2003; Rideout et al., 2003). Supporting this
hypothesis, miR-433 did not bind to the α-synuclein 3′-UTR as
reported with luciferase assays in Neuro2A and SK-N-SH cells
(Schmitt et al., 2012).

Synuclein-Induced Changes in miRNAs
Expression
In total, six studies report in vivo overexpressing α-synuclein
models to investigate the impact of α-synuclein in miRNA
expression (Figure 5; Table 2 and Supplementary Table 3;
Gillardon et al., 2008; Asikainen et al., 2010; Ubhi et al., 2014;
Kong et al., 2015; Schafferer et al., 2016; Thome et al., 2016).
Four out of six studies used mice models (Gillardon et al., 2008;
Ubhi et al., 2014; Schafferer et al., 2016; Thome et al., 2016),
one was performed in Caenorhabditis elegans (Asikainen et al.,
2010) and one in a Drosophila model (Kong et al., 2015). In all
the species, overexpression of α-synuclein dysregulated several
miRNAs (results summarized in Figure 5 and Supplementary
Table 3).

One of the three mice model studies investigated alterations
in the miRNA profile of early-symptomatic α-synuclein (A30P)-
transgenic mice usingmicrofluidic chip technology (LC Sciences,
Houston, TX, USA; Gillardon et al., 2008). The study of
266 unique mature mouse miRNA probes using µParaflo
microfluidic chip (#MRA-1002) revealed that five microRNAs
were downregulated in early-symptomatic α-synuclein (A30P)-
transgenic mice: mmu-miR-10b, mmu-miR-10a, mmu-miR-212,
mmu-miR-132 and mmu-miR-495. Two out of three mice
studies were focused on MSA mice models overexpressing
α-synuclein in oligodendroglial cells (Ubhi et al., 2014;
Schafferer et al., 2016). Of these two MSA models, one
was a comparative study of frontal cortex from several
neurodegenerative transgenic mice models: (i) two different
models of MSA in which α-synuclein was expressed under the
control of oligodendrocyte-specific MPG promoter (lines MBP1-
hαsyn and MBP29-hαsyn, medium and high αsyn expression
respectively); (ii) DLB/PD; (iii) AD; and (iv) tauopathy (Ubhi
et al., 2014). The study revealed that 55 out of 88 microRNAs
analyzed were dysregulated in both MSA models (MBP1 and
MBP29) compared to non-transgenic animals, and five of
these genes were disease specific (Supplementary Table 3).
Surprisingly, the DLB/PD model expressing human α-synuclein
under the control of the mThy1.2. promoter did not show
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FIGURE 5 | Summary of the impacts on the miRNAs profile after
α-synuclein-overexpression in multiple in vivo models. Overexpression
of α-synuclein induces alterations of several miRNAs in mice, Drosophila and
Caenorhabditis elegans (C. elegans).

significant differences. The second MSA study analyzed the
striatum and SN in premotor MSA models overexpressing
oligodendroglial α-synuclein in the third postnatal month using
microarrays (Schafferer et al., 2016). The results showed that
33 miRNAs were dysregulated in the striatum and 59 miRNAs
in the SN compared to control groups. Particularly, the miRNA
family miR-437 was significantly enriched (p < 0.0001) among
the up-regulatedmiRNAs (Figure 4 and Supplementary Table 3).

Neuroinflammation and miR-155
Considering the growing evidence that neuroinflammation plays
a key role in the pathogenesis and progression of PD, Thome
et al. (2016) investigated the impact of miR-155 expression, one
of the key microRNA modulators of neuroinflammation, in the
α-synuclein transgenic mice. Interestingly, adenovirus-mediated
overexpression of α-synuclein (AAV2-Syn) enhanced the
expression of miR-155 in the SN of α-synuclein-overexpressing
mice compared to control (30% increment 2 weeks after
transduction) and induced a 29.7 ± 6.6% loss of TH positive
neurons in the SN 6 months after transduction. Reactive
microgliosis markers Major Histocompatibility Complex Class
II (MHCII) and CD68 were also increased in the AAV2-Syn
transgenic mice. Interestingly, genetic deletion of miR-155
prevented the increments of MHCII and CD68 and markedly
attenuated the TH positive neuronal loss in the SN of AAV2-syn
transgenic mice. These results were confirmed in vitro using
primary microglial murine cells. The authors first showed that
microglial cells treated with fibrils of human wild-type α-
synuclein exhibited increased levels of MHCII and inducible

nitric oxide synthase (iNOS), while monomeric α-synuclein did
not activate the inflammatory response. On the other hand,
α-synuclein fibrils did not activate the inflammatory process
in microglial cells derived from miR-155−/− mice. However,
miR-155 mimic treatment restored the inflammatory activity in
miR-155−/− microglial cells.

DISCUSSION

miRNAs both regulate and are regulated by α-synuclein
expression, indicating the complex network between miRNAs
and α-synuclein.

miRNAs Regulate α-Synuclein Expression
Growing evidence indicates that increased levels of α-synuclein
are toxic and may initiate a deleterious cascade of events
leading to neuronal death in PD. However, the cause that
triggers α-synuclein upregulation in PD is only understood in
a small percentage of patients with duplications/triplications
in the α-synuclein gene or SNPs in the α-synuclein promoter.
miRNAs impact on α-synuclein expression raises the hypothesis
that dysregulated miRNAs in PD patients are responsible
for α-synuclein upregulation and/or accumulation. Supporting
this idea, several studies have demonstrated that PD patients
exhibited dysregulated miRNAs in brain (Kim et al., 2007; Cardo
et al., 2013; Miñones-Moyano et al., 2013; Briggs et al., 2015;
Hoss et al., 2016), blood (Margis et al., 2011; Martins et al., 2011;
Khoo et al., 2012; Botta-Orfila et al., 2014; Burgos et al., 2014),
cerebrospinal fluid (CSF; Burgos et al., 2014; Gui et al., 2015;
Hossein-Nezhad et al., 2016) and medulla (Liao et al., 2013).

Synuclein-Induced Changes in miRNAs
Expression
α-synuclein overexpression impacts on miRNAs expression.
Recent studies suggest that changes in miRNA expression
can be directly linked to the pathophysiology of several
diseases. Therefore, it is possible that the early α-synuclein
overexpression linked to PD patients induces a stable miRNAs
deregulation which can be the beginning of a process of neuronal
death and the subsequent development of PD (Eacker et al.,
2009). Supporting this idea, changes in miRNAs expression
as a consequence of cellular damage and brain injury can
be detected in the CSF and in the blood plasma/serum
(Moldovan et al., 2014).

miRNAs as Potential Therapeutic
Opportunity in PD
Similar to other neurodegenerative diseases, there is still no
treatment available that stops or halts the progression of PD; and
symptomatic treatments are the only option for PD patients. In
this context, a large proportion of therapeutic approaches under
development are aimed to reduce α-synuclein expression levels.

Targeting miRNAs seems to be a potential therapeutic
opportunity for PD. Indeed, multiple α-synuclein-targeting
miRNAs (miR-7, miR-153, miR-214 and miR-133b) have
displayed protective effects against the PD-like-induced toxins
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MPP+/MPTP. Strikingly, their effects are normally attributed to
α-synuclein-independent mechanisms; for example, miR-7 may
exert its protective effect by activating RelA, Nlpr3 and mTOR
pathways. However, each miRNAs is unique and displays its
own protective/deleterious effect: overexpression of miR-7 or
miR-155 induced a protective effect in MPP+/MPTPmodels and
α-synuclein-induced toxicity, while overexpression of miR-128
targeting TFEB exacerbated α-synuclein-induced toxicity in
mice. Nonetheless, when considering miRNAs as therapeutic
opportunities, one have to keep in mind that each miRNA can
target various mRNA transcripts, rendering difficult to target a
specific molecular way.

In addition to miRNAs that impact on α-synuclein
expression, other miRNAs might play essential roles in the
pathogenesis of PD. As an example, the list of miRNAs that
target other PD-related genes such as LRKK2, Parkin and Pink
becomes longer every year. Several reviews are available that
illustrate the complex interplay of miRNAs in PD (Salta and De
Strooper, 2012; Ma et al., 2013; Majidinia et al., 2016; Xie and
Chen, 2016).

CONCLUSION

This review article highlights that miRNAs regulate and are
subject to regulation by α-synuclein. Considering the central
role of α-synuclein in PD pathogenesis/progression, miRNAs
are likely to play a crucial role at different stages of PD and
might potentially be used in the future in new PD therapeutic
approaches.
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